
An Architecture for Evaluating Distributed
Application Deployments in Multi-Clouds

Antonis Papaioannou
Institute of Computer Science (ICS)

Foundation for Research and Technology–Hellas (FORTH)
Heraklion GR-70013, Greece
Email: papaioan(at)ics.forth.gr

Kostas Magoutis
Institute of Computer Science (ICS)

Foundation for Research and Technology–Hellas (FORTH)
Heraklion GR-70013, Greece
Email: magoutis(at)ics.forth.gr

Abstract—In this paper we present an architecture for the
modeling, collection, and evaluation of long-term histories of
deployments of distributed multi-tier applications on federations
of Clouds (Multi-Clouds). Our goal is to capture several aspects of
application development and deployment lifecycle, including the
evolving application structure, requirements, goals, and service-
level objectives; application deployment descriptions; runtime
monitoring, and quality control; Cloud provider characteris-
tics; and to provide a Cloud-independent resource classification
scheme that is a key to reasoning about Multi-Cloud deployments
of complex large-scale applications. Since our target is capturing
the continuous evolution of applications and their deployments
over time, we ensure that our metadata model is designed to
optimize space usage. Additionally, we demonstrate that using
the model and data collections over varying deployments of an
application (using the SPEC jEnterprise2010 distributed bench-
mark as a case study) one can answer important questions about
which deployment options work best in terms of performance,
reliability, cost, and combinations thereof.

I. INTRODUCTION

The problem of evaluating a multitude of possible deploy-
ments of complex distributed applications on heterogeneous in-
frastructrures with the aim of selecting feasible or even optimal
ones dates from the early days of data centers [1]. Solutions
to this problem often rely to either performance prediction
models [2], simulations, or a limited set of experiments [3] to
estimate performance of the underlying infrastructure under
different load assignments to it. The problem of how to
systematically explore a large collection of past execution
histories of a multitude of real deployments of applications is
less well studied. Such a facility has the potential of answering
a variety of key questions about the runtime behavior of
different deployments of complex applications, such as: which
infrastructure (Cloud providers and/or types of resources)
works best for certain applications? what are the most cost-
effective options between a variety of configurations I (or
my user community) have tried in the past? What rules or
policies have been effective in achieving goals (or equivalently
in addressing runtime issues) during past executions?

Integration of application modeling and deployment/oper-
ations environments has been gaining traction recently. For
instance, the popular GitHub code repository supports adding
a Cloud provider as a remote application repository, on which
applications can be pushed for deployment. An interoperable
Cloud provider (such as Heroku) will accept the push and

receive the expected directories and files, deploying the appli-
cation. Bringing together developer and operation teams is the
goal of a new wave of DevOps platforms such as Chef [4] and
Puppet [5]. What is missing from such environments is a well-
integrated feedback loop including monitoring information,
SLA assessments, etc., support for storage and analysis of
potentially vast histories of past executions, and awareness of
Multi-Cloud deployments. Support for such an integrated loop
is a key goal of the architecture presented in this paper.

Handling heterogeneity in the infrastructure has been a
challenging undertaking since the early days of data centers. A
variety of hardware vintages and suppliers selected to improve
cost-efficiency over time complicates the resource picture. The
state of things in the Cloud space today is not much different:
heterogeneity is ever present in the form of different types
of resources offered from different Cloud providers. What is
more, virtual resources carry nominal or indicative character-
isations of their capabilities, making comparison inaccurate.
To improve on the current state of affairs, we propose and
implement a Cloud-independent classification scheme where
virtual machine (VM) types are grouped with similarly-rated
types across Cloud providers, according to a specific dimension
such as CPU, memory, or I/O capability. The VM ratings are
computed using a vector-driven approach taking into account
individual micro-benchmarks on the VMs. Rating is sampled
across regions and periodically repeated to capture variations
and changes over time in the underlying hardware of the Cloud
provider. Classification may also be repeated at different times
to apply different criteria on the VM ratings (such as how
many classes to group VMs into).

The architecture presented here combines a unique set of
features not found in existing systems. It shares the principle
of modeling application structure and deployed resources with
systems such as SmartFrog [6], CloudML [7], TOSCA [8],
models@runtime [9] and Cloudify [10]. It features detailed
component-based monitoring of application performance typ-
ically found in Application Performance Management sys-
tems [11] and products such as IBM Tivoli Composite Ap-
plication Manager. While addressing important problems in
an application’s lifecycle (such as determining problem root-
causes) such systems do not offer a way to benefit from
a potentially vast past experience in order to improve fu-
ture deployments. Mining past histories to gain knowledge
in the form of determining rules or detecting and ranking
anomalies has been applied in the case of data center event

collections [12], [13], in discovering configuration errors [14],
[15], and in modeling performance characteristics of desktop
applications [16]. Our approach extends to complex distributed
applications and covers deployment and lifecycle aspects such
as elasticity and resource classification that are relevant to
Multi-Cloud setups.

II. ARCHITECTURE

Figure 1 depicts the architecture of our system. The
purpose of the Classifier component (described in detail in
Section III) is to assess and classify periodically the re-
sources offered by different Cloud providers in a Cloud-
independent manner. It subsequently updates the corresponding
information in our metadata model described in Section IV.
The Explorer/Analyzer component has two major goals. First,
to explore the space of application configurations and de-
ployment possibilities based on certain criteria. Second, to
perform analyses of historical data from past executions in
order to mine information about performance, cost, etc. The
Explorer/Analyzer is aware of the structure of applications.
The Explorer part decides on which VMs the application
components should be deployed, based on certain requirements
(e.g the J2EEapplication server component of the application
should be deployed on a VM with CPU capability labeled -
generically, and in a provider-independent manner– as LARGE).
The Explorer stores these deployment plans as well as the SLA
requirements and the elasticity rules of the application (if any)
in the metadata model.

Clearly exploration can be a time-consuming task (since
deployment and execution of each run can take hours or
days, or even longer), so we assume that the exploration is
a background activity that grows the historical database over
time, rather than issued as a response to current time-sensitive
queries. Optionally, part of the input to the historical database
can be coming from a user community willing to share their
deployment histories in open data repositories such as the
Stanford Large Network Dataset Collection (SNAP) [17]. The
Analyzer part can pose a variety of queries to the database to
perform analytics, such as comparing the performance of an
application across different deployments to determine the best
performing or most cost-effective configuration settings.

III. CLOUD-INDEPENDENT CLASSIFICATION

A. Rank resources

To rank Cloud resources in a Cloud-independent manner
we first create a profile for every VM type offered by various
Cloud providers that describes the performance capabilities of
the VM. In this way we can categorize resources to different
classes of service, such as SMALL, MEDIUM, LARGE, etc.
The VM profile is based on a vector of performance metrics
focusing on three areas: CPU performance, memory size, I/O
throughput. Our rationale in using a vector of performance
metrics rather than a single benchmark was to simultaneously
take into account multiple aspects of performance in rank-
ing VMs. We use k-means cluster analysis [18] to classify
resources based on benchmark results for each VM aspect. K-
means takes as input the desired number of clusters to group
VMs in and performs the classification automatically.

Explorer/AnalyzerClassifier

Cloud Provider Cloud Provider Cloud Provider

Application

Metadata
DB

Fig. 1: System architecture

1c2m

1c1m

4c4m

6c6m

3c4m

3c6m

c1.m
edium

azure.sm
all

m
2.xlarge

m
1.xlarge

m
1.sm

all

m
1.m

edium
c1.m

edium

c1.xlarge

Fig. 2: CPU performance classification of different VM types

Our experience showed that existing benchmark suites such
as SPEC CPU2006 [19] satisfy our objectives, thus we rely
on it for CPU performance characterization. To factor-in the
benefits of core parallelism we use the rate metric of SPEC
CPU2006 that measures aggregate throughput. Classification
can be optionally refined by normalizing by the cost of
resources. Figure 2 presents the k-means grouping of 14
VM types from three Cloud providers (Amazon EC2, Azure,
Flexiant) based on CPU performance. We use the standard
naming scheme for Amazon VM types. We developed our own
naming scheme for Flexiant VMs based on two numbers: the
first denotes number of cores and the second memory size
(GB); e.g: 3c6m stands for 3 cores, 6GB memory. Our Azure
academic account provided us with access to a single VM
type, which we refer to as azure.small (1 core, 1.75GB). Our
k-means analysis classifies the 14 VM types into four groups:
XSMALL, SMALL, MEDIUM, LARGE. Amazon’s c1.xlarge is
alone in the LARGE class, whereas the other classes comprise
4-5 VM types each. A common theme in the XSMALL group
is that all VMs in it have a single virtual core.

Classifying VM types based on memory size can be per-
formed via the k-means algorithm, just as in the case of CPU
performance. Figure 3 depicts three clusters SMALL, MEDIUM,
and LARGE, created for the 14 VM types used in the previous
case. Notice that the number of clusters created to classify
VMs in each of the dimensions (CPU, memory, I/O) can vary.

Classifying VM types based on storage performance must
ensure that all storage options offer the same consistency

m1.small

c1.medium

azure.small

1c1m

m1.medium

1c2m

3c4m

c1.xlarge

3c6m

6c6m

m1.large
4c4m

m2.xlarge

m1.xlarge

Small Medium Large

Fig. 3: Memory size classification of different VM types

Provider VM T/put (MB/s) Dev (%) Avg (MB/s) Class

Amazon

c1.medium 109.1 3.0 102 LARGEc1.xlarge 95.8 3.3
m1.small 78.7 5.9

73 MEDIUMm1.medium 70.9 10.7
m1.large 68.7 22.0

Flexiant

1c1m 38.4 15.3

41 SMALL

1c2m 40.5 13.5
3c4m 39.1 21.2
3c6m 41.1 16.7
4c4m 38.4 14.6
6c6m 45.0 6.3

Azure small 35.3 4.0 35 SMALL

TABLE I: Disk throughput measurements and classification

semantics. To reflect industry standard practices, we chose
to evaluate VMs with remotely mounted storage (without
optimizations) across all providers. We used the hdparm
benchmark to measure average disk throughput and standard
deviation over ten trials. We considered storage performance
of the Amazon, Azure, and Flexiant FCO VM types shown in
Table I. I/O throughput to network storage seems to fall into
one or two narrow bands within each Cloud provider. It thus
seems to depend more on the type of storage rather than type
of VM (although smaller VMs spend a higher CPU share to
do I/O at full speed). An exception is Amazon EC2 where
c1 instances seem to have access to higher-performing storage
compared to m1 instances. Table I shows the classification of
the VMs into SMALL, MEDIUM, LARGE. Finally we note that
we consider network performance primarily a characteristic of
the Cloud provider (previous work evaluated providers based
on their network performance, [20] Table 1) and to a lower
extent a characteristic of a VM type, we thus treat it separately
from the other three dimensions (CPU, memory, storage).

IV. METADATA MODEL

In this section we describe the metadata model at the core
of our architecture (Figure 1). The model (whose schema
in standard E/R notation is shown in Figure 4) is meant
to capture the description of an application, its requirements
and goals, rules and policies, and its provisioned resources,
as well as runtime aspects of its execution histories such as
monitoring information at different levels, invocations of rules
and policies, and quality of service assessments. The model
also captures Cloud provider characteristics, platforms, as well
as users, roles, and organizations.

The system described in this paper is meant for long-
term preservation for information. It is designed to associate
mutations with a wall-clock timestamp and to trace the identity
of the sources of mutations. It thus shares principles with

archival systems [21], temporal databases [22], and provenance
systems [23]. The information schema describes the applica-
tions and their deployment using principles from specifications
such as CloudML [7], PIM4Cloud [24], and TOSCA [8].
The exposition of the metamodel provided here is necessarily
concise and lacking detail, as an exhaustive presentation would
require far more space than we have available in this paper.

A version of an application is rooted at an APPLICATION
object and comprises software ARTEFACT and ARTEFACT
INSTANCE objects. An ARTEFACT INSTANCE can be
deployed either on another ARTEFACT INSTANCE object
or on a NODE INSTANCE object, which represents a
VM resource. The deployment relationship is a temporal
assocation represented by a DEPLOYMENT ASSOCIATION
object (with a start and end time). Requirements and
goals are represented by ROOT SLO (expresses non-IT
constraints such as overall cost, location, etc.), IT SLO
(expresses a requirement on an IT metric [25]), and
AFFINITY GOAL (expresses dependencies between artifacts)
objects. These requirements are connected to monitoring
information represented by APPLICATION MONITOR,
ARTEFACT MONITOR, RESOURCE MONITOR, and
RESOURCE COUPLING MONITOR. Each monitor relates
to the metric specified in the corresponding objective. Rules
or policies (such as ELASTICITY RULE, connecting to an
IT SLO) are captured in the metamodel.

Information about each execution of an application is
rooted at an EXECUTION CONTEXT (with a start and end
time) and SLO ASSESSMENT (an evaluation of the degree
to which an SLO was achieved) objects. Part of the exe-
cution history (beyond the monitoring info) are ELASTIC-
ITY ACTIONs, which are recorded firings of rules in response
to certain conditions. Each NODE INSTANCE is of a particular
CD VM TYPE and CI CM TYPE where CD stands for cloud
dependent and CI for cloud independent. A CD VM TYPE
describes a real-world VM type offered by a Cloud provider.
CI VM TYPEs are the result of (periodic) classifications de-
scribed in Section III. Cloud providers are described in
CLOUD PROVIDER objects and their offered platforms de-
scribed in PLATFORM AS SERVICE objects. Finally, users,
roles, and organizations connected to the modeled entities are
described in USERS, ORGANIZATION, and ROLES objects [26].

V. EVALUATION

We evaluate our architecture using the distributed SPEC
jEnterprise2010 benchmark [27] as a case study. To create a
rich history of executions we deploy SPEC jEnterprise2010
to different Cloud providers under different deployment plans.
SPEC jEnterprise2010 is a full system benchmark that allows
performance measurement and characterization of Java EE 5.0
servers and supporting infrastructure. The benchmark models
supply a chain consisting of an automobile manufacturer
(referred to as the Manufacturing Domain) and automobile
dealers (referred to as the Dealer Domain). The Web-based in-
terface between the manufacturer and dealers supports brows-
ing a catalog of automobiles, placing orders, and indicating
when inventories have been sold. The SPEC jEnterprise2010
application requires a Java EE 5.0 application server and
a relational database management system (RDBMS), which
comprise the system under test (SUT).

Fig. 4: Metadata model

The primary metric of the SPECjEnterprise2010 bench-
mark is throughput measured as jEnterprise operations per
second (EjOPS). A load generator (referred to as a Driver)
produces a mix of browse, manage, and purchase business
transactions at the targeted injection rate (or txRate, equal
to the number of simulated clients divided by 10), which
aims to produce the targeted EjOPS. The Driver measures
and records the response time (RT) of the different types of
business transactions. Failed transactions in the measurement
interval are not included in the reported results. At least 90%
of the business transactions of each type must have a RT of
less than the constraint threshold (set to 2 seconds for each
transaction type). The average RT of each transaction type
must not exceed the recorded 90th percentile RT by more
than 0.1 seconds. This requirement ensures that all users see
reasonable response times. The Driver checks and reports on
whether the response time requirements are met during a run.

We model the SPEC jEnterprise2010 application using
three artefacts (Section IV) corresponding to the business logic
of the application, the application server, and the RDBMS.
These artefacts are instantiated as specj.ear and emulator.war
files, a JBoss 6.0 application server, and a MySQL 5.5 and
their corresponding node instance are associated via the DE-
PLOYMENT INSTANCES table, as shown in Figure 5. The
IT SLO on response time is set to 2 sec. Our deployment
plans consider the deployment of the application and database
artefact instances on the same node as well as on separate
node instances (i.e., same VM vs. different VMs) on one or

more providers. The back-end database was populated for a
targeted dataset of up to 800 clients. For every execution of
the benchmark we use its EjOPS metric and the reported RTs
to assess the SLO requirements of the application during the
run. Simultaneously, we monitor the resource usage (CPU and
disk I/O) of the node instances used. We store the raw data in
a time-series database and periodic averages into the metadata
database. The latter is implemented on MySQL 5.1 RDBMS
hosted on a Flexiant 2c4m-type VM.

A. Typical use cases

Table II describes selected deployments of SPEC jEnter-
prise2010 on different VM types from Amazon and Flexiant
chosen by the Explorer and/or contributed by the user commu-
nity. All deployment scenarios considered here use an injection
rate of 200 clients (TxRate 20). A specific use-case of our
system is to mine past executions over a user-defined time
interval, select those that satisfied their SLOs, and between
those select the most cost-effective configuration options. The
set of those configurations can be determined by executing the
following SQL query to our metadata database.

SELECT arm . e x e c u t i o n c o n t e x t , arm . value , ec2 .
t o t a l c o s t , (arm . va lue / ec2 . t o t a l c o s t) AS r a t i o

FROM a r t e f a c t m o n i t o r arm , e x e c u t i o n c o n t e x t ec2
WHERE arm . name= ’ EjOPS ’ AND ec2 . i d =arm .

e x e c u t i o n c o n t e x t AND arm . e x e c u t i o n c o n t e x t IN
(SELECT ec . i d
FROM e x e c u t i o n c o n t e x t ec
WHERE ap p id =1 AND ec . i d NOT IN

Fig. 5: Deployment and execution model of SPEC jEnterprise2010

Deployment Config
Configuration Artefact Settings VM type Provider

1 App Server Heap Size 2048MB m1.large AmazonDB Buffer Size 128MB

2 App Server Heap Size 2048MB m1.large AmazonDB Buffer Size 2000MB

3 App Server Heap Size 128MB c1.medium AmazonDB Buffer Size 768MB

4 App Server Heap Size 768MB m1.small AmazonDB Buffer Size 128MB

5 App Server Heap Size 2048MB 3c4m FlexiantDB Buffer Size 1100MB

6 App Server Heap Size 768MB 1c2m FlexiantDB Buffer Size 128MB

7 App Server Heap Size 768MB small AzureDB Buffer Size 128MB

8 App Server Heap Size 6000MB m1.large Amazon
DB Buffer Size 2000MB m1.large Amazon

9 App Server Heap Size 768MB c1.medium Amazon
DB Buffer Size 2000MB m1.large Amazon

10 App Server Heap Size 768MB m1.small Amazon
DB Buffer Size 2000MB m1.large Amazon

11 App Server Heap Size 2048 MB 3c4m Flexiant
DB Buffer Size 1100 m1.large Amazon

TABLE II: Selected SPEC jEnterprise2010 deployment plans

(SELECT DISTINCT (a s s e s . e x e c u t i o n c o n t e x t)
FROM s l o a s s e s s m e n t a s s e s
WHERE a s s e s . a s s e s s m e n t =FALSE)

)
ORDER BY r a t i o DESC

The results of this query are summarized in Table III.
The execution offering the best absolute performance costs
$0.385/hour whereas the most cost-effective deployment costs
$0.145/hour (VM time is the only billable metric in our
experiments). By selecting the most cost-effective rather than
the best-performing selection leads to saving $0.24/hour or
about $2,100 per year while still achieving SLOs.

Another use-case of our system is to determine typical
causes for suboptimal performance. For example, in executions
whose SLOs are violated, a look into resource usage (e.g.,
CPU%) may point to the root cause. For example the results
of the following query reveal that a saturated CPU (underpro-
visioning of some deployable artefact) is often an issue.

SELECT ∗
FROM r e s o u r c e m o n i t o r rm
WHERE rm . name= ’ c p u i d l e ’ AND

rm . e x e c u t i o n c o n t e x t IN
(SELECT ec . i d

FROM e x e c u t i o n c o n t e x t ec
WHERE ap p id =1 AND ec . i d IN (

SELECT DISTINCT (a s s e s . e x e c u t i o n c o n t e x t)
FROM s l o a s s e s s m e n t a s s e s

Deployment
Conguration EjOPS Cost ($) Ratio

3 20.272 0.145 139
5 20.228 0.176 114
1 20.135 0.24 83.89
2 20.123 0.24 83.84
9 20.273 0.385 52.65
8 20.239 0.48 42.16

TABLE III: Cost-effectiveness for successful executions (Ratio is price-normalized performance)

WHERE a s s e s . a s s e s s m e n t =FALSE)
)

For example, in deployments where multiple VMs are
used (e.g., Execution 9) we determine that the problem is
using an Amazon m1.small VM for hosting the application
server. The other VM, an m1.large hosting the database
server, seems to be overprovisioned with its CPU always
under 10% busy. A further look to the results of this query
reveals that all deployments that involve any VM from the
XSMALL cluster (regardless of Cloud provider) consistently
lead to SLO violations. Therefore a deployment specialist
would be advised to avoid VM types classified in that cluster in
future deployments of the application. Another jEnterprise2010
configuration failing its SLO is #10. This is a case of a multi-
Cloud deployment involving resources that, while adequate
in a single-Cloud scenario, their tight coupling via frequent
communication is expensive (highly latency, high cost) in a
multi-Cloud scenario. The coupling can be determined through
information in the RESOURCE COUPLING MONITOR object.

Another use of our system is in reasoning about variations
in the service quality of Cloud providers over time. Such varia-
tions can be due to different levels of contention for hypervisor
resources at different times or days of the week, month, or
year. Another reason is the existence of different hardware
infrastructures (such as CPU, network, and disk generations)
in data centers (often within the same data center) of Cloud
providers, as has been previously observed [28]. Figure 6
shows the results from collecting (in APPL MONITOR and AR-
TIFACT MONITOR objects) response-time measurements for
SPEC jEnterprise purchase transactions over a 6-day period.

B. Analysis of application elasticity actions

In this section we demonstrate how the Explorer can
analyze the effectiveness of elasticity rules on application
performance under different scenarios. Since SPEC jEnter-
prise2010 does not offer elasticity features in its standard
setup, we modified it to place a load balancer (LB) frontend
for distributing the load between several application servers
as shown in Figure 7. Initially the deployment includes the
LB, one VM hosting an application server, and another VM
hosting the back-end database. The elasticity rule is triggered
when the (periodically monitored) response time exceeds a
SLO threshold (set by the benchmark at 2 sec); the action is
to start a new application server VM and add it to the LB list.

During each run of our elastic SPEC jEnterprise2010 we
collect all monitored information in our metadata database.
The artifact and resource monitors report response time and
CPU utilization every 20 seconds. Figure 8 shows the results

-1

 0

 1

 2

 3

 4

 5

 6

 7

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
im

e
 (

s
e

c
)

Time of day (UTC)

Purchase

Average
Deviation

SLO
Raw data

Fig. 6: Response time of purchase transations for hourly
executions of jEnterprise2010 over a period of six days

Fig. 7: SPEC jEnterprise2010 with elasticity [27]

of a run where the response-time SLO is initially violated due
to an overloaded application server CPU. In this run, the load
is set to 150 clients, the application server is hosted on an EC2
m1.small instance and the back-end database servers is hosted
on a m1.medium VM instance. After 60 sec, the elasticity rule
triggers an elasticity action (adding a second application server
on a new m1.small VM), eventually reducing response time
to acceptable levels. Looking at CPU figures at the bottom of
Figure 8 we can identify that CPU overload is indeed the cause
of the performance bottleneck in this case.

In a different situation, such an elasticity action may not
be effective. Figure 9 depicts performance of a deployment
where an application server is deployed on a m1.large instance
whereas its back-end database is hosted on a m1.small VM.
The benchmark simulates the load of 350 clients. In this case,

 0

 2

 4

 6

 8

 10

9
0

th
%

 R
e

s
p

.
T

im
e

 (
s
e

c
)

Purchase
Manage
Browse

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

%
 C

P
U

 i
d

le

Time (sec)

App server 1
App server 2

DB server

Fig. 8: Successful invocation of elasticity rule

 0

 2

 4

 6

 8

 10

R
e

s
p

.
T

im
e

 (
s
e

c
)

Purchase
Manage
Browse

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

%
 C

P
U

 i
d

le

Time (sec)

App server 1
App server 2

DB server

Fig. 9: Unsuccessful invocation of elasticity rule

response time is unaffected by the elasticity action. A closer
look at resource monitor data shows that CPU utilization was
high but not a critical factor at neither the application servers
or the database. In this case, network and I/O performance of
the m1.small VM instance hosting the database back-end is
the likely limitation.

C. Managing database evolution over time

Our metadata schema (Figure 4) was designed to avoid
redundancy when recording time-evolving state. They key
to achieving this is to explicitly represent time-dependent
associations, for example that of an application artefact with
the resources used to deploy it in each execution of the
application. If we recorded the time of deployment of every
artefact within the ARTEFACT INSTANCE table, we would need
to create a new artefact instance for every execution of the
application even though no other aspect of the artefact in-
stance changed across executions. This design ensures that our
metadata database grows at the reasonable pace. Similarly, we
use the table ARTEFACT CONFIG to correlate the configuration
parameters of an artefact instance within an execution context.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
 (

M
B

)

Applications Num

Database size

DB size

Fig. 10: Growth of metadata database size with increasing
number of applications

To get a feeling of the rate of growth for the physical
size of the metadata database in typical use cases, suppose the
Explorer plans to deploy the SPEC jEnterprise application on 8
different node instances (VM types) across 3 Cloud providers.
The Explorer further wants to try combinations of artefact
configuration settings for each node instance. Examples of
important settings for the JBoss application server and the
MySQL RDBMS are JVM heap size and database buffer size.
Trying 3 different values for each setting means the Explorer
needs to execute the application at least 9 times on each VM
type to cover the space of possible combinations. This would
result into 72 executions of the application.

After the first execution the metadata database takes up
1.25 MB of storage, increasing to 1.31 MB after all 72
executions are in. Inserting data for another set of 72 runs of
a second application (similar to the first) increases the size of
the database to 1.64 MB. Repeating for up to 100 applications
(similar to the first application) increases the size to 29.3 MB.
All applications are distinct and therefore they do not share
artefacts, deployment instances (VMs), SLAs, monitors etc.

Taking into account the duration of each execution of
SPEC jEnterprise2010 (one hour in our case) means that we
will need at least 72 hours to test the application for the
72 runs we described above. When 100 similar applications
simultaneously populate the metadata database, the storage
growth would be about 30MB every three days. This equals
3.6 GB per year or 36 GB in 10 years, which is a modest
requirement. Figure 10 depicts the storage growth trend as
the number of applications increases. The execution time of
queries in the metadata database increases with database size:
The first query described previously takes on average 0.036,
0.384 and 3.55 seconds as the database size grows from 100,
to 1,000 and 10,000 applications respectively.

Note that this analysis does not take into account the
raw monitor data that are typically stored in a time series
database (TSDB). Only summaries (e.g., average values) are
periodically stored in the metadata database. In a typical
setting, the raw data would be erased over time while the
metadata database information would be preserved.

VI. RELATED WORK

Previous approaches to observing system executions over
time for the purpose of understanding application charac-
teristics include PeerPressure [14], Clarify [15], and App-
Model [16]. All three systems leverage deployed machines
for statistical analysis. PeerPressure and Clarify aim at trou-
bleshooting computer miscongurations and errors. AppModel
focuses on performance modeling, which has the additional
complication that performance is time-varying and depends
on interactions among many congurations (hardware and
software) as well as workload characteristics. Westermann
et al. [29] relate to AppModel in their use of extensive
performance measurements to derive application performance
models; however their work does not rely on the collection of
results from a large base of existing installations.

Our work is related to PeerPressure, Clarify, and AppModel
in that we leverage a large history of application configura-
tions in distributed environments for mining knowledge about
best practices and application behavior. Although performance
modeling could fit into the explorer/analyzer part and layered
over our metadata DB, its full exploration is a topic of future
work. The design of our metadata DB is geared towards
distributed multi-cloud applications rather than single-user
desktop-type applications as in the case of AppModel.

VII. CONCLUSIONS

In this paper we outlined an architecture for evaluating dis-
tributed application deployments in Multi-Clouds. The infor-
mation metamodel at the core of the architecture captures the
history and evolution of distributed application deployments
and can support a variety of interesting analytics. The proposed
classification scheme is critical in enabling a cross-Cloud
categorization of resources. Our evaluation using the SPEC
jEnterprise2010 application benchmark exhibits the use of our
system in discovering cost-effective deployment plans, and in
reasoning about elasticity policies under different assumptions.
We believe that the applicability of the architecture is broader
and plan to exhibiting it further in our future work.

ACKNOWLEDGMENT

We thankfully acknowledge the support of the PaaSage
(FP7-317715) EU project. We also acknowledge the valuable
feedback of Kyriakos Kritikos in the metadata schema design.

REFERENCES

[1] J. Wolf, “The placement optimization program: a practical solution to
the disk file assignment problem,” in Proceedings of the 1989 ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems. New York, NY, USA: ACM, 1989.

[2] R. R. Steffen Becker, Heiko Koziolek, “The Palladio component model
for model-driven performance prediction,” Journal of Systems and
Software, vol. 82, pp. 3–22.

[3] J. Tordsson et al., “Cloud brokering mechanisms for optimized place-
ment of virtual machines across multiple providers,” Future Generation
Computer Systems, vol. 28, no. 2, pp. 358–367, Feb. 2012.

[4] “Opscode Chef Automation Platform,” http://www.opscode.com/chef,
Accessed 6/2013.

[5] “Puppet Labs DevOps Platform,” https://puppetlabs.com/solutions/devops/,
Accessed 6/2013.

[6] P. Goldsack et al., “The smartfrog configuration management frame-
work,” SIGOPS Oper. Syst. Rev., vol. 43, no. 1, pp. 16–25, Jan. 2009.

[7] N. Ferry et al., “Towards model-driven provisioning, deployment,
monitoring, and adaptation of multi-cloud systems,” in Proc. of the
2013 IEEE Sixth International Conference on Cloud Computing, ser.
CLOUD ’13. Washington, DC, USA: IEEE Computer Society, 2013.

[8] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services
using tosca,” IEEE Internet Computing, vol. 16, no. 3, pp. 80–85, May
2012.

[9] U. Aßmann, N. Bencome, B. H. C. Cheng, and R. B. France,
“Models@run.time (dagstuhl seminar 11481),” Dagstuhl Reports, Tech.
Rep. 11, 2011.

[10] “Cloudify,” http://www.cloudifysource.org/.
[11] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Application performance

management in virtualized server environments,” in Network Operations
and Management Symposium, NOMS 2006. 10th IEEE/IFIP, 2006.

[12] J. L. Hellerstein, S. Ma, and C.-S. Perng, “Discovering actionable
patterns in event data,” IBM Systems Journal, vol. 41, no. 3.

[13] K. Viswanathan et al., “Ranking anomalies in data centers,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE, 2012.

[14] H. J. Wang et al., “Automatic misconfiguration troubleshooting with
peerpressure,” in Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004.

[15] J. Ha et al., “Improved error reporting for software that uses black-box
components,” in Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation, ser. PLDI ’07.
New York, NY, USA: ACM, 2007.

[16] Eno Thereska, Bjoern Doebel, Alice X. Zheng, Peter Nobel, “Practical
Performance Models for Complex, Popular Applications,” in SIGMET-
RICS’10, June 14-18, 2010.

[17] “Stanford Large Network Dataset Collection,”
http://snap.stanford.edu/data/, Accessed 6/2013.

[18] J. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observation,” in Proc. of 5th Berkeley Symposium on
Mathematical Statistics and Probability. Univ. of California Press,
1967.

[19] “SPEC CPU2006 Benchmark,” http://www.spec.org/cpu2006/, Ac-
cessed 6/2013.

[20] I. Kitsos, A. Papaioannou, N. Tsikoudis, and K. Magoutis, “Adapt-
ing data-intensive workloads to generic allocation policies in cloud
infrastructures,” in Network Operations and Management Symposium
(NOMS), 2012 IEEE, 2012.

[21] S. Quinlan and S. Dorward, “Venti: a new approach to archival storage,”
in Proc. of the 1st USENIX conference on File and storage technologies,
ser. FAST’02. Berkeley, CA, USA: USENIX Association, 2002.

[22] R. T. Snodgrass, Developing Time-Oriented Database Applications in
SQL. Morgan Kaufmann Series in Data Management Systems.

[23] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in Proceedings of the annual
conference on USENIX ’06 Annual Technical Conference, ser. ATEC
’06. Berkeley, CA, USA: USENIX Association, 2006.

[24] “REMICS Deliverable D4.1: PIM4Cloud,”
http://www.remics.eu/system/files/REMICS D4.1 V2.0 LowResolutio
n.pdf, 2012.

[25] P. Bianco, G. Lewis, and P. Merson, “Service level agreements in
service-oriented architecture environments,” Software Engineering In-
stitute, Tech. Rep. CMU/SEI-2008-TN-021, September 2008.

[26] “CERIF metadata model,” Accessed 6/2013. [Online]. Available:
http://www.eurocris.org/Index.php?page=featuresCERIF&t=1

[27] “SPEC jEnterprise2010 Benchmark,” Accessed 6/2013. [Online].
Available: http://www.spec.org/jEnterprise2010/

[28] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements
in the cloud: observing, analyzing, and reducing variance,” Proceedings
VLDB Endowment, vol. 3, no. 1-2, pp. 460–471, Sep. 2010.

[29] D. Westermann et al., “The Performance Cockpit Approach: A Frame-
work For Systematic Performance Evaluations,” in Proceedings of
36th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), Lille, France, September 2010.

