
Towards Cross-layer Monitoring of
Multi-Cloud Service-based Applications

Chrysostomos Zeginis, Kyriakos Kritikos, Panagiotis Garefalakis
Konstantina Konsolaki, Kostas Magoutis, and Dimitris Plexousakis

Institute of Computer Science
Foundation for Research & Technology – Hellas

Heraklion GR-70013, Greece
{zegchris, kritikos, pgaref, konsolak, magoutis, dp}@ics.forth.gr

Abstract. Cloud computing is becoming a popular platform to deliver
service-based applications (SBAs) based on service-oriented architecture
(SOA) principles. Monitoring the performance and functionality of SBAs
deployed on multiple Cloud providers (in what is also known as Multi-
Cloud setups) and adapting them to variations/events produced by sev-
eral layers (infrastructure, platform, application, service, etc.) in a co-
ordinated manner are challenges for the research community. This pa-
per proposes a monitoring framework for Multi-Cloud SBAs with two
main objectives: (a) perform cross-layer (Cloud and SOA) monitoring
enabling concerted adaptation actions; (b) address new challenges raised
in Multi-Cloud SBA deployment. The proposed framework is empirically
evaluated on a real-world Multi-Cloud setup.

Keywords: Cloud computing, service-oriented architecture, monitoring, mod-
eling, event processing, service dependencies.

1 Introduction

Cloud computing emerges as a dominant IT services paradigm that enterprises
increasingly acknowledge for its ability to flexibly host applications over man-
aged virtualized infrastructures. As in any distributed application hosting en-
vironment, Clouds must support extensive monitoring mechanisms to aid in
controlling application performance and adapt to infrastructure variations.

Considering the close relations between Cloud (IaaS, PaaS and SaaS) and
SBAs layers (Business Process and Management (BPM), Service Composition
and Coordination (SCC) and Service Infrastructure (SI) [9]), it is essential to
perform and correlate monitoring across all layers. While it is hard to overesti-
mate the value of effective monitoring (strong infrastructure control, support for
elasticity policies and quality of service (QoS)), most related approaches are frag-
mented (confined within a specific Cloud provider or service layers) and not ap-
plicable/aligned across layers. Multi-Cloud SBA deployment further complicates
this due to lack of cross-platform support for uniform monitoring solutions [3].



2 C. Zeginis et al.

Fig. 1. Multi-Cloud deployment

This paper addresses the cross-layer Cloud SBA monitoring by exploiting
the dependencies among layers and using the event patterns concept. It supports
Multi-Cloud SBA deployment by distributing a monitoring mechanism across
Cloud providers. Our monitoring framework relies on an event model to specify
the possible monitored SBA events in a Cloud environment, and a component
model to describe component dependencies [8] and capture system snapshots at
any particular time point. Our evaluation indicates that collecting monitored
events can be effectively distributed across Cloud providers. Event retrieval and
publication towards a rule engine can be efficiently performed from any location.

The paper is structured as follows. Section 2 describes the architecture of our
monitoring engine and implementation details. Section 3 introduces the event
model. Section 4 evaluates aspects of our monitoring system. Section 5 describes
related work. Finally, section 6 draws conclusions and future work directions.

2 Architecture Overview

The architecture presented in this paper builds upon our previous work [10]
on cross-layer SBA monitoring and adaptation, extending it to a Multi-Cloud
setting. It comprises a Monitoring Engine, collecting cross-layer events during
SBA execution, and an Adaptation Engine, performing cross-layer adaptation ac-
tions, which communicate events via a publish/subscribe mechanism (Figure 1).
A Model Repository provides various information, such as service descriptions,
Multi-Cloud deployment models, layer dependencies, and metric/SLA models.

In this Multi-Cloud setting, SBAs are deployed on various Clouds based on
the provided requirements. Three monitoring components are used to perform
monitoring at the SaaS, PaaS, and IaaS layers, while a manager retrieves their
monitoring results, stores them at a time-series database, and reports detected
violations via the publish/subscribe mechanism to Adaptation Engine instances.

This paper focuses primarily on the Monitoring Engine and Model Reposi-
tory implementation in Multi-Cloud setups. We define monitored events using
OWL-Q [6], a semantic and extensible QoS description model for SBAs. It is de-



Towards Cross-layer Monitoring of Multi-Cloud Service-based Applications 3

signed modularly, incorporating several independent QoS-based SBA description
facets, such as QoS offers, requests, metrics, attributes and constraints (require-
ments/capabilities). The SaaS monitoring component uses the Astro monitoring
tool [2] to collect events at the BPM and SCC layers. The supported QoS at-
tributes (metrics) include service/SBA execution time (min, max), throughput
(min, max, average) and availability.

The PaaS monitoring component exploits an existing cross-PaaS application
management solution [11] which offers a Cloud technology-agnostic PaaS mon-
itoring functionality and an SLA management layer, unifying diverse, provider-
specific resource-level metrics. Supported metrics include application load, ap-
plication and DB response time, and application container response time.

The IaaS monitoring component distinguishes between direct infrastructure
monitoring and monitoring services offered by Cloud providers. We use Na-
gios (http://www.nagios.org) for direct monitoring of user-specified system
resources and services via periodic checks on them. Monitored resources include
memory usage, disk usage, and CPU load. We also use Amazon Cloudwatch
as a Cloud monitoring service instance providing comprehensive monitoring for
Cloud resources and applications run by customers on Amazon Web Services. To
gain system-wide visibility of running EC2 VMs we enable a variety of metrics
via the Cloudwatch API, including CPU utilization, disk read/write rate and
volume of incoming/outgoing network traffic. Each Cloudwatch API request re-
turns a datapoint that is handled as a monitored entity. Our requests are issued
every few seconds to ensure that collected data are valid and can be reacted on
at a reasonable latency.

Regarding event storing, standard solutions include stream processing en-
gines and time-series databases (TSDBs). The former aim to meet stringent la-
tency requirements when performing continuous queries on streaming data and
minimize processing cost for large data sets. TSDBs differ as they focus more
on persistent event storage and in performing rollups (e.g., aggregated metrics
such as average, max, min) for user-specified intervals. Complex event processing
(CEP) could also be exploited to aggregate events, but since we are interested
to store both the raw events (even for a short period) and the rollups, our archi-
tecture uses (per-Cloud, federated) TSDBs. A variety of commercial and open
source TSDBs can be used to handle timestamped events. We decided to use
open-source OpenTSDB, a TSDB especially designed for distributed systems
with high scalability requirements, to store monitored events.

A publish/subscribe mechanism handles transferring raw monitored events
and TSDB rollups to the Adaptation Engine. Different adaptation engine in-
stances may be deployed to distribute adaptation load across applications/Clouds,
each interested only in relevant events and rollups. We use the Siena (http:
//www.inf.usi.ch/carzaniga/siena) pub/sub event notification service for
communicating events and rollups between TSDB and Adaptation Engine. Siena
is expressive enough to capture all appropriate event information via an exten-
sible data model without sacrificing scalability and performance during event
delivery.



4 C. Zeginis et al.

One of our approach’s main goals is to identify particular event patterns
occurring during SBA execution that lead to critical violations so as to en-
able selecting the appropriate cross-layer adaptation actions. Since the publish-
ing order of events is significant, the Monitor Manager must time-synchronize
them before being sent to the Adaptation Engine. Time synchronization is par-
ticularly important in Multi-Cloud settings as standard time synchronization
solutions are rarely deployed across Cloud providers. Synchronized events are
stored on a repository for post-processing to discover new patterns of interest
in event streams. Various clock synchronization algorithms have been proposed
to achieve temporal ordering of events produced by concurrent processes. The
main approaches are those using logical clocks to create event sequence num-
bers and those using physical clocks to synchronize events. Physical clock-based
algorithms, adjust the system components clocks based on server time or mas-
ter machine time. As such algorithms are intended for use within intranets and
require systematic adjustment of the machines’ physical clock, a logical-clock
algorithm seems more appropriate in a Multi-Cloud setting. We thus use Lam-
port’s algorithm [7] to efficiently establish event ordering.

Finally, regarding monitor manager functionality, monitored events from
within each Cloud are directed to local TSDB, which uses HBase (http://
hbase.apache.org) (a non-relational, distributed database) to organize the
event time-series. HDFS (http://hadoop.apache.org), a distributed file sys-
tem replicating data across all Cloud providers, handles time series storage. For
high performance during event collection, each Cloud’s local replica is updated
eagerly; remote replicas are updated in a relaxed (asynchronous) manner. Reads
are performed from local copies when available. The monitor manager includes
the synchronize and publish mechanisms on top of OpenTSDB. An analytics
manager queries OpenTSDB to retrieve row and aggregated data to perform
analysis for the adaptation engine. Stored events are tagged with other source
information (service/software component, hosting resource, Cloud provider).

3 Event Model

This section presents an event meta-model describing the most common moni-
tored event types and patterns that occur during the Cloud SBA execution. This
model (Figure 2) is generic enough and extensible to incorporate any other event
type defined by domain-specific service providers. A respective XML schema was
designed to guarantee the validity of concrete event models defined in XML.

The main model class is Event. Its CompositeEvent and SimpleEvent sub-
classes represent simple and composite events, respectively. Composite events
comprise two other (simple or composite) events (the first and second) which
map to a particular ordering. For instance, consider a hardware event comprising
a CPU overload and low available memory events. Simple events has a source
component (defined in a component model not provided in this paper due to
space limitations) and belong to a specific Cloud layer (SaaS, PaaS, IaaS). SaaS
events can be further located at the BPM or SCC layers. Events are also charac-



Towards Cross-layer Monitoring of Multi-Cloud Service-based Applications 5

Fig. 2. The Event model

terized by their criticality as warning, critical or successful. A simple event can
either be Functional or Non-Functional. Functional events refer to operational
characteristics defining the overall SBA behavior, while non-functional events
refer to quality attributes that are either measurable or get distinct qualita-
tive values. Two additional and different classifications exist for non-functional
events: (a) they can be classified as KPI-violations, SLA-violations or con-
textModification events, and (b) as numeric or string events. Sub-classes defined
for functional events include: (a) Process Model Modification, (b) Business Goal
Modification, Software Event, I/O event, Hardware event, and Platform event.
Finally, the EventPattern class represents event pattern appearing during Cloud
SBA execution and leading to critical violation events. Each event pattern has
a (composite or simple) causing event and a simple caused event.

4 Evaluation

This section describes an experimental evaluation of our monitoring architecture
under three deployments: single TSDB server in single Cloud provider (simple
setup 1-1); three TSDB servers in the same Cloud provider (scalability setup
3-1); three TSDB servers in three different providers (one TSDB server in each
Cloud, Multi-Cloud setup 3-3). We use a monitored events dataset consisting of



6 C. Zeginis et al.

Fig. 3. TSDB read-query response time with varying scope under different setups

one million (1M) events comprising six metric types provided by the following
sources: a service-level middleware based on the Astro monitoring tool (Web
service availability, execution time, and throughput); the Amazon Cloudwatch
service (CPU utilization, data transfer, and disk usage metrics for underlying
VMs). In our experiments, the Siena pub/sub mechanism retrieves events of
interest from the 1M event TSDB dataset via HTTP queries reflecting Siena
filters (e.g., with interest on specific metrics and/or event sources). Retrieved
events are then passed to an adaptation engine (where no further action is taken).

Our first experiment evaluates the three setups in terms of TSDB query com-
pletion time with increasingly broader scope. The query ranges from returning
5K to 1M events out of the 1M event dataset. In the 1-1 setup, TSDB, HBase,
and HDFS run on a single VM. In the 3-1 setup, the same software stack (TSDB,
HBase, HDFS) is deployed on three VMs in a single Cloud provider (Flexiant).
HDFS is configured with two data nodes (single replica per block) and a sin-
gle name node (responsible for metadata). HBase is configured with two region
servers and a single master. In the 3-3 setup the three VMs reside on different
providers (one VM in Amazon, Microsoft Azure, and Flexiant) using the same
HBase and HDFS configurations. In the 3-1, 3-3 setups, the 1M event dataset
is created on all three servers (each creates a different third of the dataset) and
thus events are spread over the HBase region servers and HDFS data nodes.

Figure 3 summarizes our results. Queries with smaller scope (returning 5-
10K events out of 1M examined) perform similarly on all setups. As the scope
increases, setups 3-1 and 3-3 outperform 1-1 due to simultaneously involving
two HBase/HDFS servers for data retrieval. 3-1 seems to outperform 3-3 only
for the 1M query due to cross-Cloud communication starting to impact overall
time. Although that impact is small, replication will reduce it further since local-
copy reads will mask the network latency of cross-Cloud communication.

Our next experiment measures the integrated (TSDB plus publish/subscribe
engine) system performance focusing on end-to-end latency (time to complete
one or more queries over 1M data points) and throughput (publish ops per sec-



Towards Cross-layer Monitoring of Multi-Cloud Service-based Applications 7

Number of events published (K) 5 10 50 100 200 500 1000

Single query latency (sec) 0.59 0.82 1.5 2.21 3.68 7.65 11.88

Single query throughput (Kops/sec) 8.5 12.2 33.3 45.2 54.3 65.4 84.2

Table 1. End-to-end (TSDB+Siena) response time, throughput under different setups

ond). Table 4 reports our results focusing on a single query going over 1M data
points with increasing scope. Our results show that latency and throughput in-
crease with an increasing number of publish-event operations. In practice such
large queries are expected to hurt responsiveness. Smaller, more frequent queries
should result into longer end-to-end latencies (although response time of indi-
vidual event publish operations will improve) and lower aggregate throughput.
Experiments with 100 consecutive queries over 10K data points each, publishing
a total of 1M events, take 15 sec (compared to 11.88 sec with a single query) and
result in a 67 Kops/sec throughput (compared to 84.2 Kops/sec for one query).

5 Related Work

While several Cloud monitoring approaches have been proposed, few comprehen-
sively consider cross-layer issues. Alcaraz Calero et al. [1] present an analysis of
a wide distributed monitoring solution set analyzing the features, requirements,
and topology of a cross-layer monitoring system for Cloud computing. A number
of EU-funded research projects are currently examining Cloud monitoring so-
lutions: IRMOS (http://www.irmosproject.eu) offers a Cloud infrastructure,
comprising a service management system acting as a link between SaaS and IaaS
to manage the application service component negotiation, reservation, execution
and monitoring. RESERVOIR (http://www.reservoir-fp7.eu) introduces the
Lattice non-intrusive monitoring framework for Cloud applications. Lattice fea-
tures probes to collect and transmit data to the service management part. VI-
SION Cloud (http://www.visioncloud.eu) proposes a monitoring framework
able to aggregate events, apply rules on them, and generate new events, repre-
senting complex system states. Cloud4SOA (http://www.cloud4soa.eu) pro-
poses a cross-PaaS management and monitoring system for applications hosted
on multiple Clouds, to ensure that their performance consistently meets expec-
tations and Cloud resources are being effectively utilized. In terms of cross-layer
SBA monitoring, Guinea et al. [5] present an integrated approach for multi-
layered SBA monitoring and adaptation which is based on a variant of MAPE
control loops. Gjørven et al. [4] propose a coarse-grained approach exploiting
mechanisms across SCC and SI layers in a coordinated fashion to support both
monitoring and adaptation. All these related approaches do not consider all lay-
ers (Cloud and SOA) as well as Multi-Cloud setups (see [3] for an overview),
while their main target is on non-functional properties. Our approach’s main
strength is that it deals with both service and Cloud-based applications while
considering challenges raised in a Multi-Cloud environment.



8 C. Zeginis et al.

6 Conclusions and Future Work

We have presented a cross-layer monitoring framework for Multi-Cloud SBAs.
The framework integrates monitoring mechanisms within each Cloud layer and
across Cloud providers. Our architecture uses an event and a component model
(not analyzed due to space limitations) to describe monitored events and their
source Cloud components. Evaluation of the cross-layer monitoring framework
in different deployment settings shows that TSDB performance scales with the
number of storage servers and minimally impacts a Multi-Cloud setup. Our next
step is to complete developing the adaptation engine and performing larger-scale
end-to-end Multi-Cloud experiments involving long-running SBAs.

7 Acknowledgements

We thankfully acknowledge the support of the PaaSage (FP7-317715) EU project.

References

1. Alcaraz Calero, J., König, B., Kirschnick, J.: Using cross-layer techniques for com-
munication systems. chap. Cross-layer monitoring in Cloud computing. Premier
reference source, Igi Global (2012)

2. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of in-
stances and classes of web service compositions. In: ICWS. pp. 63–71 (2006)

3. Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou, A., Plex-
ousakis, D., Zeginis, C.: Lifecycle Management of Service-based Applications on
Multi-Clouds: A Research Roadmap. In: MultiCloud (2013)

4. Gjørven, E., Rouvoy, R., Eliassen, F.: Cross-layer self-adaptation of service-oriented
architectures. In: MW4SOC. pp. 37–42. ACM (2008)

5. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring
and adaptation. In: ICSOC. vol. 7084, pp. 359–373. Springer (2011)

6. Kritikos, K., Plexousakis, D.: Semantic QoS Metric Matching. In: IEEE European
Conference on Web Services. Zurich, Switzerland (2006)

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

8. Magoutis, K., Devarakonda, M.V., Joukov, N., Vogl, N.G.: Galapagos: Model-
driven discovery of end-to-end application - storage relationships in distributed
systems. IBM Journal of Research and Development 52(4-5), 367–378 (2008)

9. Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: ”ECMAF: An
Event-Based Cross-Layer Service Monitoring and Adaptation Framework”. In:
NFPSLAM-SOC. Springer (2011)

10. Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: Towards proactive cross-
layer service adaptation. In: WISE. vol. 7651, pp. 704–711. Springer (2012)

11. Zeginis, D., D’Andria, F., Bocconi, S., Gorronogoitia Cruz, J., Collell Martin, O.,
Gouvas, P., Ledakis, G., Tarabanis, K.: A user-centric multi-PaaS application man-
agement solution for hybrid Multi-Cloud scenarios. Scalable Computing: Practice
and Experience 14(1), 17–32 (2013)


