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Abstract— Increasingly larger datacenters constructed to serve 
Internet-scale enterprise and Cloud computing workloads are 
creating significant challenges for the management systems 
designed to operate them. In this paper we present the design 
and implementation of a management system that uses server-
attached wireless sensors to create an auto-configuring 
wireless-only monitoring network that can be used to address a 
number of challenges in the area of datacenter operations 
management. We exhibit the use of this wireless network in 
tracking the physical location of servers and in troubleshooting 
connectivity problems in the wired datacenter network 
infrastructure. Our system is implemented as an extension to 
the Nagios distributed monitoring and management system 
and demonstrated to provide continuous awareness of the 
physical location of the server infrastructure as well as insight 
into wired network partitions under switch failures. 

Keywords- Wireless sensor networks; Datacenter 
management 

I.  INTRODUCTION  

Datacenter management tools are critical for the 
administration of large, enterprise-scale datacenters. The 
high complexity of configuration management in such 
centers requires significant expertise by large teams of 
human administrators. Running a datacenter is fraught with 
significant difficulties that have to do with managing 
complex configurations, the provisioning of hardware and 
software, change management, etc. Several systems such as 
Autopilot [9], SmartFrog [8], and others have been proposed 
with the goal to tame the complexity of operating 
datacenters. However many data center management 
problems are still not fully solved, thus keeping the 
complexity and cost of running a datacenter high. 

While the spectrum of existing challenges is very broad, 
in this paper we aim at providing a novel solution to two 
important such problems: First, to automatically determine 
the physical locations of servers over time and help 
administrators be aware of their positions as well as be 
notified of any changes. Second, automatically ascertaining 
the status of servers (whether they are alive or not) when 
transient failures in the wired network infrastructure prohibit 
the use of standard methods such as the exchange of 
heartbeat/ping messages. Our technical solution to both 
problems relies on the use of an auto-configuring wireless 
sensor network (WSN) based on the IEEE 802.15.4 

(Zigbee) protocol that we integrated with a popular open-
source distributed monitoring and management system. 

The use of distributed monitoring and management 
systems such as Nagios [1] and Ganglia [13] offers the 
ability to monitor and collect information about a variety of 
services and is an essential component for reducing the 
complexity of IT operations management in datacenters. 
Distributed monitoring and management systems typically 
run periodic checks on user-specified datacenter resources 
and services. Resources that can be monitored include 
memory usage, disk usage, CPU load, and the number of 
currently running processes. In addition many such systems 
support user-specified extensions (add-ons or plugins as 
they are typically referred to) that can further simplify the 
configuration and management of large scale systems. A 
user-friendly Web-based graphical user interface is often 
provided. Systems such as Nagios and Ganglia are available 
in open source form and have thus become popular due to 
their extensibility and ease of use. 

In this paper we propose extending the functionality of 
an open-source monitoring and management system 
(Nagios) by integrating it with an auto-configuring Wireless 
Sensor Network. Events such as temperature rise, airflow, 
energy consumption etc can be correlated with the physical 
location of the affected resources based on the signal 
strength of sensors (Received Signal Strength Indicator or 
RSSI) [6]. While positioning solutions using Satellite based 
global Position Systems (GPS) have been previously 
proposed, Zigbee devices offer a more viable positioning 
method using existing infrastructure, in closed spaces, and 
without a large impact on operating expenses. Taking full 
advantage of Nagios and Zigbee capabilities can give us 
critical information about server location and status, which 
could not be fully determined before. We have built an auto-
configuration capability into our IEEE 802.15.4 Zigbee 
WSN to ensure a low-impact overall solution to datacenter 
operations management. 

The remainder of our paper is structured as follows: 
Section II describes the design and the main components of 
the system. Section III introduces terminology and describes 
our implementation in more detail. Section IV discusses 
related work. Finally we present an evaluation of our 
prototype in Section V and our conclusions in Section VI. 



II. DESIGN 

We assume a typical datacenter architecture consisting of 
racks of server blades interconnected via a wired network 
infrastructure [4][5] as depicted in Figure 1. A key 
component of the management system presented in this 
paper is a wireless sensor network (WSN) interconnecting 
sensors (we use IEEE 802.15.4 Zigbees) physically 
mounted on each server. A second component of the system 
is a management server equipped with a wireless sensor and 
using a database repository for storing system configuration 
information. Our design allows the use of multiple 
management servers to achieve wide coverage of large 
datacenter floor spaces; for simplicity however, in this paper 
we focus on the use of a single management server. Our 
software architecture consists of an extended version of the 
Nagios management system (hosted on the management 
server) that controls a number of WSN agents hosted on all 
managed servers in the datacenter as shown in Figure 1. 

Nagios monitors datacenter resources (such as processes 
running on servers). Such resources are modeled as services 
that are associated with management information and a 
current status. Nagios monitors datacenter resources through 
the use of plugins. Each plugin contains expert information 
about how to gauge the status of a service and relies on 
script execution to mine the necessary information. Remote 
execution of scripts is supported via the remote plug-in 
executor (RPE). Nagios periodically invokes known 
plugins, which report on the status of datacenter resources. 
Whenever a service changes state, a handler can be 
triggered to notify an administrator or to take corrective 
action (such as restarting a non-responding service) via 
script execution. State changes and other information 
detected by plugins are also stored in log files. 

Our management system effectively provides Nagios 
with a wireless communication path operating in parallel to 
the standard wired-network path that all standard Nagios 

plugins typically use. Our system consists of two main 
software components: The WSN agent and the WSN plugin 
that reside on managed systems and on the management 
server respectively (Figure 1), jointly referred to as the WSN 
service. The system goes through an initial phase of auto-
configuring the WSN, periodically performing re-
configuration actions to adapt to changes in the underlying 
infrastructure. Following the initial auto-configuration phase 
the system goes into a periodic schedule of data collection 
activities. 

A. Auto-configuration phase 

A WSN agent is deployed across each managed server 
with the responsibility to interface and control its locally-
attached wireless sensor device. It is notified on the arrival 
of WSN control messages, which it processes taking 
specific actions. A straightforward method to ensure all 
servers contain the WSN agent is to deploy the agent at 
server boot time (or at provisioning time) along with the 
operating system (OS) image and application binaries. 
Systems such as Autopilot [9] and IBM Tivoli Provisioning 
Manager [11] support this method by storing OS images in a 
repository and deploying them on new servers on demand. 

The next step in the auto-configuration process is to 
configure the wireless sensor attached to each server. This 
process is initiated by the Nagios management server 
(specifically, by the WSN plugin shown in Figure 1) by 
broadcasting an initialization message (called REPORT 
RACKS) aimed at all servers. The aim of this message is to 
discover all wireless devices along with the rack they are 
part of. We assume that a server can determine its rack 
automatically by using methods such as network subnetting 
(assuming each rack is assigned to a different IP subnet as is 
typically the case in datacenters), or by invoking special 
management interfaces. Upon receipt of a REPORT RACKS 
message, each wireless device obtains the rack identifier 
from its attached server and reports it via a unicast response 
message to the management server. The management server 
stores each wireless device’s MAC address and rack ID to a 
local repository. 

After collecting information about wireless devices 
across the entire system, the WSN plugin proceeds to assign 
devices within the same rack to a unique IEEE 802.15.4 
personal-area network (PAN) and communication channel 
(Zigbee supports up to 65536 PANs with 16 channels each). 
The management server first chooses a specific wireless 
device for the role of coordinator within a rack and 
communicates that decision to it via a unicast message 
called START COORDINATOR. That message includes the 
addresses of the wireless devices in the same rack (referred 
to as slave devices) that will be controlled by that 
coordinator. The coordinator is responsible for creating the 
PAN and for inviting slave devices to join it. By grouping 
wireless sensors on a per-rack basis we avoid overdrawing 
the wireless bandwidth limit (up to 250Kbit/sec per 

 

 
 

Figure 1: System architecture. 



PAN/channel for Zigbee) and as a consequence extend the 
total number of sensors that can be used in a datacenter. 
Typical racks consist of around 20-40 servers, which is a 
sizeable amount. Moreover the per-rack grouping makes it 
easier to organize and collect management data. 

After starting all coordinators, the management server 
periodically uses a wireless-device failure detector (such as 
the Zigbee Node Discover (ND) command or explicit 
heartbeats) to detect failures of either a coordinator or a 
slave device. In case of failure of a coordinator device, the 
management server elects a new coordinator in that rack 
picking one of the surviving slaves for that role. It then 
notifies that wireless device of its upgrade within the 
existing PAN of all wireless devices in its rack. If any node 
crashes due to a server reboot, it loses its state and thus tries 
to re-join the WSN when the server is back up again. The 
management server periodically re-broadcasts the REPORT 
RACKS message to discover newly appearing devices, as 
shown in Figure 2. 
 

B. Wireless data collection 

During the data collection phase the system uses unicast 
wireless-only communication between (i) the management 
server and the coordinator of each rack; and (ii) between the 
coordinator of each rack and its slave devices. Each 
coordinator is responsible for collecting management data 
from its subordinates and forwarding them wirelessly to the 
Nagios server when asked to do so. 

The management server periodically (at configurable 
intervals) selects specific types of queries and sends them 
via the WSN plugin to coordinators across all racks. This 
function is similar to that of the standard Nagios RPE plugin 
except for operating over the wireless rather than the wired 
infrastructure. The coordinators in turn propagate command 
queries wirelessly to all slave sensor devices in their PAN, 
collect their responses, and return the aggregate information 
to the WSN plugin. The plugin processes the information 
storing status codes to the Nagios repository and log files.  

Applications using the management system follow an 
event-driven style and are written as handlers invoked after 
a change in the status of a datacenter resource monitored by 
Nagios. We have so far experimented with two applications 

using the above mechanisms. The first application 
periodically tracks the physical location of wireless sensors, 
optionally notifying an administrator in case of change. A 
second application is a network partition detector 
implemented as a handler invoked when an IP connectivity 
probe service reports a failure (such as when a switch on the 
network path to a server fails). The handler correlates this 
information with the status of the WSN service on the same 
server. If the WSN service appears to be operating normally, 
the handler concludes that there could be a switch failure. If 
the WSN service appears to be down as well, the handler 
concludes that the server must be dead. 

III.  IMPLEMENTATION 

We first provide a brief background on the 
communication modes offered by the Zigbee protocol. We 
will hereafter refer to the wireless devices as XBee modules. 
In general XBee modules exchange two types of messages: 
one used for querying and setting configuration parameters 
(known as AT commands) and another used for more 
general communication needs. XBee modules operate under 
three communication modes: transparent, application 
programming interface (API), and command mode (used 
only for setting configuration settings). Transparent mode is 
the simpler, more convenient way to communicate since the 
modules require no configuration. Transmission of a byte 
requires it to be sent to the local XBee module. After a 
certain timeout period the module packetizes any bytes in its 
buffer and sends them to all remote XBees within range. 
Bytes communicated in transparent mode may be lost since 
the link layer under that mode does not support reliable data 
transfer. The transparent mode supports broadcast 
communication only (no unicast messaging). 

The API mode of communication (the one we are mainly 
using in our system) allows greater control of the link as 
well as the ability to send packets to an explicit address 
(unicast communication) in addition to unreliable 
broadcasts. Data formatting must be explicitly performed by 
the application. Received API-mode packets contain the 
source address of transmitting radio, a checksum for data 
integrity, and the RSSI (signal strength) value. Reliable data 
transfer is implemented at the link layer: when sending a 
unicast message to a specific host, the receiving radio will 

 

 
 

Figure 2: Auto-configuration message sequence. 
 



send an acknowledgement (ACK) if the packet was 
successfully received. If the transmitting radio does not 
receive the ACK it retransmits the packet. 

Our WSN-agent and WSN-plugin modules interact with 
their attached XBee radios using an open-source Java 
library implementing basic communication primitives in 
API mode [7]. The library provides functions for sending 
and receiving API-mode packets in broadcast and unicast 
mode and for configuring the locally-attached and (in the 
case of a coordinator) remote XBee modules. The library 
relies on another open-source component (RXTX) [15] to 
transfer packets to and from the locally-attached XBee 
module over a serial port (USB). To address security 
concerns over the use of wireless network infrastructure in 
monitoring business-critical systems we leverage standard 
Zigbee hardware support for 128-bit symmetric key 
encryption (AES) over the IEEE 802.15.4 protocol [16]. We 
minimize the complexity of key management by utilizing a 
single encryption key shared across all devices. 

In our current implementation we assume the WSN 
agent is already deployed on all managed servers. If a wired 
network infrastructure is available however, we additionally 
support agent deployment via Nagios remote plugin 
execution (using a remotely executed script to pull the agent 
binary into the server). We can further simplify the 
deployment process by automatically discovering all 
managed servers via the use of a Nagios plugin that scans 
the IP network infrastructure over pre-specified subnets. 

Our WSN agent service initially configures its attached 
XBee device to join a specific PAN and channel (initially 
the same for all devices) and executes a loop waiting for 
broadcast or unicast messages of the formats described in 
Table 1. After receiving a REPORT RACKS request message 
(Table 1), the WSN agent responds to the management 
server via a unicast message carrying its module’s unique 
64-bit MAC address and rack identifier. Since message 
broadcast is unreliable, the REPORT RACKS message may 
not be received by all wireless devices. Repeated periodic 
transmissions of that message however reduce the likelihood 
that any wireless device will not report itself for long 

periods of time. This method has worked well in practice as 
we have never seen delivery errors in our experiments. 

Following this initial broadcast step, all communication 
takes place using reliable unicast messaging. XBee modules 
that receive a unicast message of type START 

COORDINATOR (Table 1) know that they have been elected 
coordinators. Our XBee modules support messages of up to 
100 bytes, thus with each MAC address occupying 64 bits 
we can fit up to 12 slave devices in each START 

COORDINATOR message. If the number of slave devices 
exceeds that number we may need additional messages. A 
coordinator’s WSN agent configures its XBee module for 
the specified PAN ID, channel, and sets the coordinator-
enable option. It also configures all slave XBee modules 
accordingly via remote configuration commands. At the end 
of this process the wireless sensor network is ready for use. 

The WSN plugin we developed (in Python) is a general-
purpose service that periodically sends specific requests as 
API-mode packets to coordinators. The WSN plugin follows 
standard Nagios practice in returning a service status code 
and description (Table 2). Our current implementation of the 
WSN plugin requests on-board state of an XBee module 
(e.g., power, temperature) and uses the RSSI value reported 
on the response message to calculate physical position; it is 
however easily extensible to support other types of data 
collection. For example, it may ask the XBee module to 
collect readings (also known as IOSamples) of analog or 
digital pins from its attached sensors via I/O operations. 
XBee modules may also have access to a multitude of 
server-mounted sensors through invocation (via the WSN 
agent) of intelligent platform management interfaces such as 
IPMI [10]. Figure 3 depicts an event handler using the 
plugin’s reported status to detect wired-network partitions. 

 
# Script called when ping service returns failure on  
# server <host address>. 
# 
# Input arguments are: 
# - service state, in (OK, Warning, Critical, Unknown) 
# - service type, in (SOFT, HARD) 
# - attempt # (service-type switches from SOFT 
#    to HARD after a certain number of attempts) 
# - host address 
 
If (state is “Critical”) AND 
 (type is “SOFT”) AND (attempts > 3) : 
   
WirelessSensor = Repository.WSN_Status(hostaddress) 
 

if (WirelessSensor is “UP”): 

  Nagios.log <- “<host address> unreachable” 

else 

  Nagios.log <- “<host address> is down” 

 

Figure 3: Handler called when the ping service on 
<host address> fails. It correlates with the status of 
the wireless device to determine whether the host is 
unreachable over the wired network or down. 

 

REPORT RACKS request 

 
REPORT RACKS 

response 
MAC RACK ID 

 
START 

COORDINATOR 
PAN ID CHN ID 

MAC addrs of 
slave devices 

 
Table 1: Structure of auto-configuration messages (top-
down): Report racks request, response, and start device 
as a coordinator. 



Based on previous work on node positioning [6] we 
estimate distances through trilateration, which is a method 
of determining the relative position of objects using the 
geometry of triangles in a similar fashion to triangulation. 
Unlike triangulation which uses angle measurements to 
calculate the subject’s location, trilateration uses the known 
locations of two or more reference points and the measured 
distance between the subject and each reference point. To 
accurately and uniquely determine the relative location of a 
point using trilateration we need at least three reference 
points on a 2D plane as shown in Figure 4. The above 
estimate requires that the node must be within the 
intersection of three other nodes whose locations are known 
to the system. This assumption is not expected to be a 
problem in practice as in large datacenters one can easily 
pinpoint three static nodes whose coordinates are fixed and 
a-priori known to our system. To achieve maximum range 
coverage and precision in our system we place the reference 
points on two corners and the center of the datacenter room. 

IV.  RELATED WORK 

Zigbee [16] is an open standard that has been widely 
adopted in the design and implementation of wireless sensor 
networks and is rapidly becoming a key technology for 
ambient intelligence environments. Zigbee is based on the 
IEEE 802.15.4 standard [17] extended with higher-level 
network and application layers. Its features include low 
radio emission, low power consumption, long standby 
duration, support for large number of nodes, flexible 
topology, and ease of configuration. Zigbee applications 
today extend into the domains of home care, home control, 
security, and location tracking. 

Location-tracking by wireless sensor networks is an 
active area of research [6][14][20][21]. A variety of 

location-tracking techniques have been proposed to identify 
the physical location of large-scale system resources. Many 
such techniques utilize a number of static nodes (three or 
more) as reference points and the value of Received Signal 
Strength Indicator (RSSI) provided by Zigbees for distance 
measurement. The approaches differ on how they calculate 
their localization estimates. We implemented the approach 
described in [6] using a centralized algorithm to achieve 
better estimation precision. 

Datacenters are increasingly growing to support the needs 
of Internet-scale electronic services and of Cloud computing 
users. New ways to efficiently build very large-scale 
datacenters have been a topic of intense interest recently 
[4][5]. A challenge facing enterprise-scale datacenters today 
is to tame the need for more administrative staff for day-to-
day operations along with the associated complexity and 
operational cost [2]. This challenge is addressed to some 
extent with distributed monitoring and management tools 
such as Nagios [1], Ganglia [13], Autopilot [9], and 
SmartFrog [8]. Open source monitoring tools such as 
Nagios and Ganglia have recently received significant 
attention by developers and datacenter managers. Both 
systems are designed to be extensible with a large number 
of plugins (extensions) being contributed to them by an 
active development community. 

Status 
code 

 
Explanation and status message 

OK 

The plugin was able to check the service and it 
appeared to be functioning properly : 

“Signal-Fine Distance + distance (m)” 

Warning 

The plugin was able to check the service, but it 
appeared to violate a warning threshold or not 
working properly : 
“Signal-Low Distance + distance (m)”    or 

“Sensor Changed Position + distance (m)” 

Critical 

The plugin detected that either the service was 
not running or it was violating a critical 
threshold: 

“Sensor Disconnected!” 

Unknown 

Invalid command line arguments were 
supplied to the plugin or low-level failures 
internal to the plugin (such as unable to fork or 
to open a TCP socket) that prevent it from 
performing the specified operation. 

“Unknown State!” 

 

Table 2: WSN plugin return codes and messages. 

 

 
 

Figure 4: Intersection of three spheres. 



The use of sensors in collecting datacenter information 
for management purposes is not a new concept. Previous 
work by HP [19] and Intel [20] proposed using RFID and 
Wireless USB (WUSB) technologies respectively for asset 
tracking and location-based services. The HP system is 
based on passive RFID tags attached to each server and 
requires one radio frequency identification (RFID) reader 
per server which communicates with a rack-level data 
collector. The RFID reader is connected with a controller 
that learns its location by interacting with a configuration 
server. The Intel system uses WUSB technology projected 
to be widely available in the future along with knowledge 
about data center geometry to arrive to a more cost-effective 
solution. Their work focuses on the efficiency of 
localization, whereas ours focuses primarily on integrating 
such a mechanism with a data center management system. 

Hewlett Packard recently (2012) announced the 
commercial availability of servers equipped with a plethora 
of sensors and the ability to pinpoint the server’s physical 
location [3]. While details of HP’s management system (to 
the best of the authors’ knowledge) have not been openly 
disclosed, marketing literature seems to indicate that the 
location-tracking facility depends on information drawn 
from smart racks (presumably entered by administrators) 
and is thus prone to errors over time. In the area of efficient 
datacenter design, the use of sensors to detect airflow issues 
in tightly packed datacenter server containers has been 
proposed in the past [12]. 

Besides the problem of physical-location aware 
visualization of datacenter resources, reasoning about 
datacenter connectivity is another important problem that 
we target with significant implications for scalable software 
systems. Specifically, being able to distinguish between 
server and link failures can greatly improve the accuracy of 
failure detectors and thus the robustness of distributed 
systems software deployed in modern datacenters. 

V. EVALUATION  

Our experimental testbed consists of server-grade PCs 
with wireless sensors attached to them over USB. We use 
XBee Pro Series 1 chips with 60mW output power 
combined with XBee explorer dongles directly plugged into 
each server’s USB port. The Nagios management server is 
hosted by one of the servers. At startup, the Nagios auto-
discovery option locates all servers connected to the 
datacenter subnets. Next the system discovers the wireless 
sensors attached to the servers, sets a PAN identity for them, 
and elects the coordinator devices. The auto-configuration 
service can create a valid sensor network in less than 30 
seconds. When the Nagios configuration is successfully 
completed the Nagios user interface displays information 
returned by the WSN plugin such as status of XBee module 
along with sensor measurements such as physical location, 
power, etc. 

To demonstrate the accuracy of our server location-
tracking methodology we set up an experiment in a 10x30m 
office (Figure 5) used by graduate students and software 
engineers. The office contains about 30 server PCs and 
associated network equipment where all but one of the 
machines in the room are stationary over the time of our 
experiment. Figure 5 depicts our three reference points 
(abbreviated as Rx, x=1, 2, 3), R1 being the Nagios 
management server itself, and S being the server being 
moved. The management server continuously evaluates the 
RSSI of messages received from the other two reference 
points (R2, R3) and from S. RSSI measurements are taken 
on a per-minute basis for periods of two hours. As we move 
S over a 2m distance we compare the means of the three 
RSSI time series (R2, R3, S) before and after the movement 
using the unpaired Student t-test statistic. We find that the 
means of the R2 and R3 time series do not change over time 
(thus no movement is detected) whereas the mean of the S 
time series has a statistically reliable shift (P value < .0001). 
Thus we conclude that the server-movement event thrown 
by our WSN plugin is accurate and has a low probability of 
triggering a false alert. The warning message sent to the 
administrator when the sensor distance has changed is 
depicted in Figure 9. Moreover a critical message is sent to 
the administrator when a sensor disappears. 

 
 

Figure 5: Experimental testbed used for tracking the 
physical location of servers (excerpt shown).  



To test the accuracy of our methodology in tracking 
server locations in a data center environment (where the 
presence of metallic enclosures and electromagnetic 
interference introduce noise), we deployed our management 
system in the data center pictured in Figure 6 whose 
topology (view from top) is depicted in Figure 7. The data 
center consists of two rows, each row housing three vertical 
layers of server PCs. The front sides of servers are facing a 
cold aisle (HVAC equipment injecting cold air from the 
ceiling). Two hot aisles are at the back side of each row. 
The setup of our management system is as follows: All 
servers have Zigbee devices connected to their USB ports 
(back side). A group of 12 servers (4 servers per layer, 3 
layers) reports to a single coordinator. We place the 
management server at the middle of the cold aisle. Two of 
the coordinators and the management server serve as the 
three reference points. The management server continuously 
evaluates the RSSI of messages received from all 
coordinators. As we move a coordinator over a 1.5m 
distance we compare the means of the RSSI time series (two 
references and the moving coordinator) before and after the 
movement using the unpaired Student t-test. We find that 
the means of all time series have a statistically significant 
shift, although the shift is small (<1.5dB) for the reference 
points and larger (4.5dB) for the moved coordinator. Larger 
data centers typically pack servers even more densely, 
introducing additional levels of noise. Our system can 
leverage known techniques, such as signal filtering [18], to 
increase the accuracy of indoor location tracking using the 
link quality indicator (LQI) available from the Zigbee 
physical layer. 

Another use-case of interest is detecting disconnections 
in the wired network infrastructure. To demonstrate this use 
case we inject into the platform a failure of our top-of-the-
rack switch connecting the servers. While the IP-based 

service probes (HTTP, PING, SSH) report a critical problem 
(Figure 8) that may be interpreted either as connectivity or 
server-related issue, the WSN service reports that the 
servers are in good health and thus pinpoints to the actual 
cause of the problem. The Nagios monitoring system 
supports monitoring the status of network switches and 
routers using the SNMP protocol and some extra plugins. 
However many commodity unmanaged switches and hubs 
do not take an IP address and are essentially invisible, so 
there is no way to monitor their status. In contrast, our 
service is a comprehensive solution for discovering 
connectivity issues in a large datacenter. 

 
 

Figure 6: Data center used in localization experiment. 
 

 
 

Figure 7: Data center topology. Only the top out of 
three vertical layers of servers is shown. Groups of 
servers sharing a coordinator are shown in dashed 
boxes. Slave Zigbees are omitted from the figure. 



VI.  CONCLUSIONS 

In this paper we have presented an extension of the 
Nagios large-scale monitoring and management system to 
take advantage of an auto-configuring wireless sensor 
network that collects and can periodically be asked to report 
information and status about managed servers. Our system 
requires minimal effort to deploy and use, has low capital 
and operational costs, and can significantly improve the 
efficiency of datacenter management operations by helping 
administrators pinpoint the physical locations of servers as 
well as alert them in case of any changes in their location. 
Additionally the system enables sophisticated correlations 
of wireless sensor-reported state with other datacenter 
system state reported by other agents, such as in the case of 
our network partition detector. Our work highlights the 
potential of leveraging wireless sensors for datacenter 
management operations and for addressing a wide spectrum 
of challenges in this space. 
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Figure 14.  Nagios state when a network problem occurs but Zigbee is reachable.           .       

Figure 15.  Nagios state when server location changes.                                             . 

 

Figure 8. Nagios state when a network problem occurs but Zigbee is reachable. 
 

Figure 9. Nagios state when server location changes. 


