
Improving Datacenter Operations Management using Wireless Sensor Networks

Panagiotis Garefalakis
Institute of Computer Science

Foundation for Research and Technology - Hellas
Heraklion GR-70013, Greece

pgaref@ics.forth.gr

Kostas Magoutis
Institute of Computer Science

Foundation for Research and Technology - Hellas
Heraklion GR-70013, Greece

magoutis@ics.forth.gr

Abstract— Increasingly larger datacenters constructed to serve
Internet-scale enterprise and Cloud computing workloads are
creating significant challenges for the management systems
designed to operate them. In this paper we present the design
and implementation of a management system that uses server-
attached wireless sensors to create an auto-configuring
wireless-only monitoring network that can be used to address a
number of challenges in the area of datacenter operations
management. We exhibit the use of this wireless network in
tracking the physical location of servers and in troubleshooting
connectivity problems in the wired datacenter network
infrastructure. Our system is implemented as an extension to
the Nagios distributed monitoring and management system
and demonstrated to provide continuous awareness of the
physical location of the server infrastructure as well as insight
into wired network partitions under switch failures.

Keywords- Wireless sensor networks; Datacenter
management

I. INTRODUCTION

Datacenter management tools are critical for the
administration of large, enterprise-scale datacenters. The
high complexity of configuration management in such
centers requires significant expertise by large teams of
human administrators. Running a datacenter is fraught with
significant difficulties that have to do with managing
complex configurations, the provisioning of hardware and
software, change management, etc. Several systems such as
Autopilot [9], SmartFrog [8], and others have been proposed
with the goal to tame the complexity of operating
datacenters. However many data center management
problems are still not fully solved, thus keeping the
complexity and cost of running a datacenter high.

While the spectrum of existing challenges is very broad,
in this paper we aim at providing a novel solution to two
important such problems: First, to automatically determine
the physical locations of servers over time and help
administrators be aware of their positions as well as be
notified of any changes. Second, automatically ascertaining
the status of servers (whether they are alive or not) when
transient failures in the wired network infrastructure prohibit
the use of standard methods such as the exchange of
heartbeat/ping messages. Our technical solution to both
problems relies on the use of an auto-configuring wireless
sensor network (WSN) based on the IEEE 802.15.4

(Zigbee) protocol that we integrated with a popular open-
source distributed monitoring and management system.

The use of distributed monitoring and management
systems such as Nagios [1] and Ganglia [13] offers the
ability to monitor and collect information about a variety of
services and is an essential component for reducing the
complexity of IT operations management in datacenters.
Distributed monitoring and management systems typically
run periodic checks on user-specified datacenter resources
and services. Resources that can be monitored include
memory usage, disk usage, CPU load, and the number of
currently running processes. In addition many such systems
support user-specified extensions (add-ons or plugins as
they are typically referred to) that can further simplify the
configuration and management of large scale systems. A
user-friendly Web-based graphical user interface is often
provided. Systems such as Nagios and Ganglia are available
in open source form and have thus become popular due to
their extensibility and ease of use.

In this paper we propose extending the functionality of
an open-source monitoring and management system
(Nagios) by integrating it with an auto-configuring Wireless
Sensor Network. Events such as temperature rise, airflow,
energy consumption etc can be correlated with the physical
location of the affected resources based on the signal
strength of sensors (Received Signal Strength Indicator or
RSSI) [6]. While positioning solutions using Satellite based
global Position Systems (GPS) have been previously
proposed, Zigbee devices offer a more viable positioning
method using existing infrastructure, in closed spaces, and
without a large impact on operating expenses. Taking full
advantage of Nagios and Zigbee capabilities can give us
critical information about server location and status, which
could not be fully determined before. We have built an auto-
configuration capability into our IEEE 802.15.4 Zigbee
WSN to ensure a low-impact overall solution to datacenter
operations management.

The remainder of our paper is structured as follows:
Section II describes the design and the main components of
the system. Section III introduces terminology and describes
our implementation in more detail. Section IV discusses
related work. Finally we present an evaluation of our
prototype in Section V and our conclusions in Section VI.

II. DESIGN

We assume a typical datacenter architecture consisting of
racks of server blades interconnected via a wired network
infrastructure [4][5] as depicted in Figure 1. A key
component of the management system presented in this
paper is a wireless sensor network (WSN) interconnecting
sensors (we use IEEE 802.15.4 Zigbees) physically
mounted on each server. A second component of the system
is a management server equipped with a wireless sensor and
using a database repository for storing system configuration
information. Our design allows the use of multiple
management servers to achieve wide coverage of large
datacenter floor spaces; for simplicity however, in this paper
we focus on the use of a single management server. Our
software architecture consists of an extended version of the
Nagios management system (hosted on the management
server) that controls a number of WSN agents hosted on all
managed servers in the datacenter as shown in Figure 1.

Nagios monitors datacenter resources (such as processes
running on servers). Such resources are modeled as services
that are associated with management information and a
current status. Nagios monitors datacenter resources through
the use of plugins. Each plugin contains expert information
about how to gauge the status of a service and relies on
script execution to mine the necessary information. Remote
execution of scripts is supported via the remote plug-in
executor (RPE). Nagios periodically invokes known
plugins, which report on the status of datacenter resources.
Whenever a service changes state, a handler can be
triggered to notify an administrator or to take corrective
action (such as restarting a non-responding service) via
script execution. State changes and other information
detected by plugins are also stored in log files.

Our management system effectively provides Nagios
with a wireless communication path operating in parallel to
the standard wired-network path that all standard Nagios

plugins typically use. Our system consists of two main
software components: The WSN agent and the WSN plugin
that reside on managed systems and on the management
server respectively (Figure 1), jointly referred to as the WSN
service. The system goes through an initial phase of auto-
configuring the WSN, periodically performing re-
configuration actions to adapt to changes in the underlying
infrastructure. Following the initial auto-configuration phase
the system goes into a periodic schedule of data collection
activities.

A. Auto-configuration phase

A WSN agent is deployed across each managed server
with the responsibility to interface and control its locally-
attached wireless sensor device. It is notified on the arrival
of WSN control messages, which it processes taking
specific actions. A straightforward method to ensure all
servers contain the WSN agent is to deploy the agent at
server boot time (or at provisioning time) along with the
operating system (OS) image and application binaries.
Systems such as Autopilot [9] and IBM Tivoli Provisioning
Manager [11] support this method by storing OS images in a
repository and deploying them on new servers on demand.

The next step in the auto-configuration process is to
configure the wireless sensor attached to each server. This
process is initiated by the Nagios management server
(specifically, by the WSN plugin shown in Figure 1) by
broadcasting an initialization message (called REPORT
RACKS) aimed at all servers. The aim of this message is to
discover all wireless devices along with the rack they are
part of. We assume that a server can determine its rack
automatically by using methods such as network subnetting
(assuming each rack is assigned to a different IP subnet as is
typically the case in datacenters), or by invoking special
management interfaces. Upon receipt of a REPORT RACKS
message, each wireless device obtains the rack identifier
from its attached server and reports it via a unicast response
message to the management server. The management server
stores each wireless device’s MAC address and rack ID to a
local repository.

After collecting information about wireless devices
across the entire system, the WSN plugin proceeds to assign
devices within the same rack to a unique IEEE 802.15.4
personal-area network (PAN) and communication channel
(Zigbee supports up to 65536 PANs with 16 channels each).
The management server first chooses a specific wireless
device for the role of coordinator within a rack and
communicates that decision to it via a unicast message
called START COORDINATOR. That message includes the
addresses of the wireless devices in the same rack (referred
to as slave devices) that will be controlled by that
coordinator. The coordinator is responsible for creating the
PAN and for inviting slave devices to join it. By grouping
wireless sensors on a per-rack basis we avoid overdrawing
the wireless bandwidth limit (up to 250Kbit/sec per

Figure 1: System architecture.

PAN/channel for Zigbee) and as a consequence extend the
total number of sensors that can be used in a datacenter.
Typical racks consist of around 20-40 servers, which is a
sizeable amount. Moreover the per-rack grouping makes it
easier to organize and collect management data.

After starting all coordinators, the management server
periodically uses a wireless-device failure detector (such as
the Zigbee Node Discover (ND) command or explicit
heartbeats) to detect failures of either a coordinator or a
slave device. In case of failure of a coordinator device, the
management server elects a new coordinator in that rack
picking one of the surviving slaves for that role. It then
notifies that wireless device of its upgrade within the
existing PAN of all wireless devices in its rack. If any node
crashes due to a server reboot, it loses its state and thus tries
to re-join the WSN when the server is back up again. The
management server periodically re-broadcasts the REPORT
RACKS message to discover newly appearing devices, as
shown in Figure 2.

B. Wireless data collection

During the data collection phase the system uses unicast
wireless-only communication between (i) the management
server and the coordinator of each rack; and (ii) between the
coordinator of each rack and its slave devices. Each
coordinator is responsible for collecting management data
from its subordinates and forwarding them wirelessly to the
Nagios server when asked to do so.

The management server periodically (at configurable
intervals) selects specific types of queries and sends them
via the WSN plugin to coordinators across all racks. This
function is similar to that of the standard Nagios RPE plugin
except for operating over the wireless rather than the wired
infrastructure. The coordinators in turn propagate command
queries wirelessly to all slave sensor devices in their PAN,
collect their responses, and return the aggregate information
to the WSN plugin. The plugin processes the information
storing status codes to the Nagios repository and log files.

Applications using the management system follow an
event-driven style and are written as handlers invoked after
a change in the status of a datacenter resource monitored by
Nagios. We have so far experimented with two applications

using the above mechanisms. The first application
periodically tracks the physical location of wireless sensors,
optionally notifying an administrator in case of change. A
second application is a network partition detector
implemented as a handler invoked when an IP connectivity
probe service reports a failure (such as when a switch on the
network path to a server fails). The handler correlates this
information with the status of the WSN service on the same
server. If the WSN service appears to be operating normally,
the handler concludes that there could be a switch failure. If
the WSN service appears to be down as well, the handler
concludes that the server must be dead.

III. IMPLEMENTATION

We first provide a brief background on the
communication modes offered by the Zigbee protocol. We
will hereafter refer to the wireless devices as XBee modules.
In general XBee modules exchange two types of messages:
one used for querying and setting configuration parameters
(known as AT commands) and another used for more
general communication needs. XBee modules operate under
three communication modes: transparent, application
programming interface (API), and command mode (used
only for setting configuration settings). Transparent mode is
the simpler, more convenient way to communicate since the
modules require no configuration. Transmission of a byte
requires it to be sent to the local XBee module. After a
certain timeout period the module packetizes any bytes in its
buffer and sends them to all remote XBees within range.
Bytes communicated in transparent mode may be lost since
the link layer under that mode does not support reliable data
transfer. The transparent mode supports broadcast
communication only (no unicast messaging).

The API mode of communication (the one we are mainly
using in our system) allows greater control of the link as
well as the ability to send packets to an explicit address
(unicast communication) in addition to unreliable
broadcasts. Data formatting must be explicitly performed by
the application. Received API-mode packets contain the
source address of transmitting radio, a checksum for data
integrity, and the RSSI (signal strength) value. Reliable data
transfer is implemented at the link layer: when sending a
unicast message to a specific host, the receiving radio will

Figure 2: Auto-configuration message sequence.

send an acknowledgement (ACK) if the packet was
successfully received. If the transmitting radio does not
receive the ACK it retransmits the packet.

Our WSN-agent and WSN-plugin modules interact with
their attached XBee radios using an open-source Java
library implementing basic communication primitives in
API mode [7]. The library provides functions for sending
and receiving API-mode packets in broadcast and unicast
mode and for configuring the locally-attached and (in the
case of a coordinator) remote XBee modules. The library
relies on another open-source component (RXTX) [15] to
transfer packets to and from the locally-attached XBee
module over a serial port (USB). To address security
concerns over the use of wireless network infrastructure in
monitoring business-critical systems we leverage standard
Zigbee hardware support for 128-bit symmetric key
encryption (AES) over the IEEE 802.15.4 protocol [16]. We
minimize the complexity of key management by utilizing a
single encryption key shared across all devices.

In our current implementation we assume the WSN
agent is already deployed on all managed servers. If a wired
network infrastructure is available however, we additionally
support agent deployment via Nagios remote plugin
execution (using a remotely executed script to pull the agent
binary into the server). We can further simplify the
deployment process by automatically discovering all
managed servers via the use of a Nagios plugin that scans
the IP network infrastructure over pre-specified subnets.

Our WSN agent service initially configures its attached
XBee device to join a specific PAN and channel (initially
the same for all devices) and executes a loop waiting for
broadcast or unicast messages of the formats described in
Table 1. After receiving a REPORT RACKS request message
(Table 1), the WSN agent responds to the management
server via a unicast message carrying its module’s unique
64-bit MAC address and rack identifier. Since message
broadcast is unreliable, the REPORT RACKS message may
not be received by all wireless devices. Repeated periodic
transmissions of that message however reduce the likelihood
that any wireless device will not report itself for long

periods of time. This method has worked well in practice as
we have never seen delivery errors in our experiments.

Following this initial broadcast step, all communication
takes place using reliable unicast messaging. XBee modules
that receive a unicast message of type START

COORDINATOR (Table 1) know that they have been elected
coordinators. Our XBee modules support messages of up to
100 bytes, thus with each MAC address occupying 64 bits
we can fit up to 12 slave devices in each START

COORDINATOR message. If the number of slave devices
exceeds that number we may need additional messages. A
coordinator’s WSN agent configures its XBee module for
the specified PAN ID, channel, and sets the coordinator-
enable option. It also configures all slave XBee modules
accordingly via remote configuration commands. At the end
of this process the wireless sensor network is ready for use.

The WSN plugin we developed (in Python) is a general-
purpose service that periodically sends specific requests as
API-mode packets to coordinators. The WSN plugin follows
standard Nagios practice in returning a service status code
and description (Table 2). Our current implementation of the
WSN plugin requests on-board state of an XBee module
(e.g., power, temperature) and uses the RSSI value reported
on the response message to calculate physical position; it is
however easily extensible to support other types of data
collection. For example, it may ask the XBee module to
collect readings (also known as IOSamples) of analog or
digital pins from its attached sensors via I/O operations.
XBee modules may also have access to a multitude of
server-mounted sensors through invocation (via the WSN
agent) of intelligent platform management interfaces such as
IPMI [10]. Figure 3 depicts an event handler using the
plugin’s reported status to detect wired-network partitions.

Script called when ping service returns failure on
server <host address>.

Input arguments are:
- service state, in (OK, Warning, Critical, Unknown)
- service type, in (SOFT, HARD)
- attempt # (service-type switches from SOFT
to HARD after a certain number of attempts)
- host address

If (state is “Critical”) AND
 (type is “SOFT”) AND (attempts > 3) :

WirelessSensor = Repository.WSN_Status(hostaddress)

if (WirelessSensor is “UP”):

 Nagios.log <- “<host address> unreachable”

else

 Nagios.log <- “<host address> is down”

Figure 3: Handler called when the ping service on
<host address> fails. It correlates with the status of
the wireless device to determine whether the host is
unreachable over the wired network or down.

REPORT RACKS request

REPORT RACKS

response
MAC RACK ID

START

COORDINATOR
PAN ID CHN ID

MAC addrs of
slave devices

Table 1: Structure of auto-configuration messages (top-
down): Report racks request, response, and start device
as a coordinator.

Based on previous work on node positioning [6] we
estimate distances through trilateration, which is a method
of determining the relative position of objects using the
geometry of triangles in a similar fashion to triangulation.
Unlike triangulation which uses angle measurements to
calculate the subject’s location, trilateration uses the known
locations of two or more reference points and the measured
distance between the subject and each reference point. To
accurately and uniquely determine the relative location of a
point using trilateration we need at least three reference
points on a 2D plane as shown in Figure 4. The above
estimate requires that the node must be within the
intersection of three other nodes whose locations are known
to the system. This assumption is not expected to be a
problem in practice as in large datacenters one can easily
pinpoint three static nodes whose coordinates are fixed and
a-priori known to our system. To achieve maximum range
coverage and precision in our system we place the reference
points on two corners and the center of the datacenter room.

IV. RELATED WORK

Zigbee [16] is an open standard that has been widely
adopted in the design and implementation of wireless sensor
networks and is rapidly becoming a key technology for
ambient intelligence environments. Zigbee is based on the
IEEE 802.15.4 standard [17] extended with higher-level
network and application layers. Its features include low
radio emission, low power consumption, long standby
duration, support for large number of nodes, flexible
topology, and ease of configuration. Zigbee applications
today extend into the domains of home care, home control,
security, and location tracking.

Location-tracking by wireless sensor networks is an
active area of research [6][14][20][21]. A variety of

location-tracking techniques have been proposed to identify
the physical location of large-scale system resources. Many
such techniques utilize a number of static nodes (three or
more) as reference points and the value of Received Signal
Strength Indicator (RSSI) provided by Zigbees for distance
measurement. The approaches differ on how they calculate
their localization estimates. We implemented the approach
described in [6] using a centralized algorithm to achieve
better estimation precision.

Datacenters are increasingly growing to support the needs
of Internet-scale electronic services and of Cloud computing
users. New ways to efficiently build very large-scale
datacenters have been a topic of intense interest recently
[4][5]. A challenge facing enterprise-scale datacenters today
is to tame the need for more administrative staff for day-to-
day operations along with the associated complexity and
operational cost [2]. This challenge is addressed to some
extent with distributed monitoring and management tools
such as Nagios [1], Ganglia [13], Autopilot [9], and
SmartFrog [8]. Open source monitoring tools such as
Nagios and Ganglia have recently received significant
attention by developers and datacenter managers. Both
systems are designed to be extensible with a large number
of plugins (extensions) being contributed to them by an
active development community.

Status
code

Explanation and status message

OK

The plugin was able to check the service and it
appeared to be functioning properly :

“Signal-Fine Distance + distance (m)”

Warning

The plugin was able to check the service, but it
appeared to violate a warning threshold or not
working properly :
“Signal-Low Distance + distance (m)” or

“Sensor Changed Position + distance (m)”

Critical

The plugin detected that either the service was
not running or it was violating a critical
threshold:

“Sensor Disconnected!”

Unknown

Invalid command line arguments were
supplied to the plugin or low-level failures
internal to the plugin (such as unable to fork or
to open a TCP socket) that prevent it from
performing the specified operation.

“Unknown State!”

Table 2: WSN plugin return codes and messages.

Figure 4: Intersection of three spheres.

The use of sensors in collecting datacenter information
for management purposes is not a new concept. Previous
work by HP [19] and Intel [20] proposed using RFID and
Wireless USB (WUSB) technologies respectively for asset
tracking and location-based services. The HP system is
based on passive RFID tags attached to each server and
requires one radio frequency identification (RFID) reader
per server which communicates with a rack-level data
collector. The RFID reader is connected with a controller
that learns its location by interacting with a configuration
server. The Intel system uses WUSB technology projected
to be widely available in the future along with knowledge
about data center geometry to arrive to a more cost-effective
solution. Their work focuses on the efficiency of
localization, whereas ours focuses primarily on integrating
such a mechanism with a data center management system.

Hewlett Packard recently (2012) announced the
commercial availability of servers equipped with a plethora
of sensors and the ability to pinpoint the server’s physical
location [3]. While details of HP’s management system (to
the best of the authors’ knowledge) have not been openly
disclosed, marketing literature seems to indicate that the
location-tracking facility depends on information drawn
from smart racks (presumably entered by administrators)
and is thus prone to errors over time. In the area of efficient
datacenter design, the use of sensors to detect airflow issues
in tightly packed datacenter server containers has been
proposed in the past [12].

Besides the problem of physical-location aware
visualization of datacenter resources, reasoning about
datacenter connectivity is another important problem that
we target with significant implications for scalable software
systems. Specifically, being able to distinguish between
server and link failures can greatly improve the accuracy of
failure detectors and thus the robustness of distributed
systems software deployed in modern datacenters.

V. EVALUATION

Our experimental testbed consists of server-grade PCs
with wireless sensors attached to them over USB. We use
XBee Pro Series 1 chips with 60mW output power
combined with XBee explorer dongles directly plugged into
each server’s USB port. The Nagios management server is
hosted by one of the servers. At startup, the Nagios auto-
discovery option locates all servers connected to the
datacenter subnets. Next the system discovers the wireless
sensors attached to the servers, sets a PAN identity for them,
and elects the coordinator devices. The auto-configuration
service can create a valid sensor network in less than 30
seconds. When the Nagios configuration is successfully
completed the Nagios user interface displays information
returned by the WSN plugin such as status of XBee module
along with sensor measurements such as physical location,
power, etc.

To demonstrate the accuracy of our server location-
tracking methodology we set up an experiment in a 10x30m
office (Figure 5) used by graduate students and software
engineers. The office contains about 30 server PCs and
associated network equipment where all but one of the
machines in the room are stationary over the time of our
experiment. Figure 5 depicts our three reference points
(abbreviated as Rx, x=1, 2, 3), R1 being the Nagios
management server itself, and S being the server being
moved. The management server continuously evaluates the
RSSI of messages received from the other two reference
points (R2, R3) and from S. RSSI measurements are taken
on a per-minute basis for periods of two hours. As we move
S over a 2m distance we compare the means of the three
RSSI time series (R2, R3, S) before and after the movement
using the unpaired Student t-test statistic. We find that the
means of the R2 and R3 time series do not change over time
(thus no movement is detected) whereas the mean of the S
time series has a statistically reliable shift (P value < .0001).
Thus we conclude that the server-movement event thrown
by our WSN plugin is accurate and has a low probability of
triggering a false alert. The warning message sent to the
administrator when the sensor distance has changed is
depicted in Figure 9. Moreover a critical message is sent to
the administrator when a sensor disappears.

Figure 5: Experimental testbed used for tracking the
physical location of servers (excerpt shown).

To test the accuracy of our methodology in tracking
server locations in a data center environment (where the
presence of metallic enclosures and electromagnetic
interference introduce noise), we deployed our management
system in the data center pictured in Figure 6 whose
topology (view from top) is depicted in Figure 7. The data
center consists of two rows, each row housing three vertical
layers of server PCs. The front sides of servers are facing a
cold aisle (HVAC equipment injecting cold air from the
ceiling). Two hot aisles are at the back side of each row.
The setup of our management system is as follows: All
servers have Zigbee devices connected to their USB ports
(back side). A group of 12 servers (4 servers per layer, 3
layers) reports to a single coordinator. We place the
management server at the middle of the cold aisle. Two of
the coordinators and the management server serve as the
three reference points. The management server continuously
evaluates the RSSI of messages received from all
coordinators. As we move a coordinator over a 1.5m
distance we compare the means of the RSSI time series (two
references and the moving coordinator) before and after the
movement using the unpaired Student t-test. We find that
the means of all time series have a statistically significant
shift, although the shift is small (<1.5dB) for the reference
points and larger (4.5dB) for the moved coordinator. Larger
data centers typically pack servers even more densely,
introducing additional levels of noise. Our system can
leverage known techniques, such as signal filtering [18], to
increase the accuracy of indoor location tracking using the
link quality indicator (LQI) available from the Zigbee
physical layer.

Another use-case of interest is detecting disconnections
in the wired network infrastructure. To demonstrate this use
case we inject into the platform a failure of our top-of-the-
rack switch connecting the servers. While the IP-based

service probes (HTTP, PING, SSH) report a critical problem
(Figure 8) that may be interpreted either as connectivity or
server-related issue, the WSN service reports that the
servers are in good health and thus pinpoints to the actual
cause of the problem. The Nagios monitoring system
supports monitoring the status of network switches and
routers using the SNMP protocol and some extra plugins.
However many commodity unmanaged switches and hubs
do not take an IP address and are essentially invisible, so
there is no way to monitor their status. In contrast, our
service is a comprehensive solution for discovering
connectivity issues in a large datacenter.

Figure 6: Data center used in localization experiment.

Figure 7: Data center topology. Only the top out of
three vertical layers of servers is shown. Groups of
servers sharing a coordinator are shown in dashed
boxes. Slave Zigbees are omitted from the figure.

VI. CONCLUSIONS

In this paper we have presented an extension of the
Nagios large-scale monitoring and management system to
take advantage of an auto-configuring wireless sensor
network that collects and can periodically be asked to report
information and status about managed servers. Our system
requires minimal effort to deploy and use, has low capital
and operational costs, and can significantly improve the
efficiency of datacenter management operations by helping
administrators pinpoint the physical locations of servers as
well as alert them in case of any changes in their location.
Additionally the system enables sophisticated correlations
of wireless sensor-reported state with other datacenter
system state reported by other agents, such as in the case of
our network partition detector. Our work highlights the
potential of leveraging wireless sensors for datacenter
management operations and for addressing a wide spectrum
of challenges in this space.

VII. ACKNOWLEDGMENTS

We thankfully acknowledge the support of the
CumuloNimbo (FP7-257993) and PaaSage (FP7-317715)
EU projects.

REFERENCES
[1] Nagios, http://www.nagios.org/

[2] M. Armbrust et al. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28, UC, Berkeley,
Feb 2009.

[3] Q. Hardy, “HP servers are a play against the Cloud”, in NY Times,
Business of technology section, February 2012.

[4] M. Mitchell Waldrop, "Data Center In a Box", Scientific American,
August 2007.

[5] G. Hamilton, “An Architecture for Modular Data Centers”, in
Proceedings of 3rd Biennial Conference on Innovative Data Systems
Research (CIDR), Asilomar, CA, January 2007.

[6] R, Mardeni and Othman, Shaifull Nizman. “Node positioning in
Zigbee network using trilateration method based on the received
signal strength indicator (RSSI)”, European Journal of Scientific
Research, 46(1): 048-061, 2010.

[7] Xbee-api, http://code.google.com/p/xbee-api/

[8] P. Goldsack, “The SmartFrog Configuration Management
Framework”, ACM SIGOPS Operating Systems Review, 43(1):16-
25, 2009.

[9] M. Isard, “Autopilot: Automatic Data Center Management”, ACM
SIGOPS Operating Systems Review, 41(2):60-67, 2007.

[10] Intelligent Platform Management Interface (IPMI) version 2.0, Intel,
http://www.intel.com/design/servers/ipmi/

[11] IBM Tivoli Provisioning Manager, http://www-
01.ibm.com/software/tivoli/products/prov-mgr/

[12] C. Thaker, “Rethinking data centers”, Networking Seminar given at
Stanford Univesity, October 2007.

[13] M. Massie, B. Chun, and D. Culler, “The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience”,
Parallel Computing 30(7):817–840, 2004.

[14] C.-Y. Liu and G.-J. Yu, “Location Tracking by ZigBee”, Cheng Shiu
University (CSU), Technical Report. http://ir.csu.edu.tw/bitstream/
987654321/1288/1/496.pdf

[15] RXTX library, http://rxtx.qbang.org

[16] Zigbee Standard, http://www.zigbee.org/

[17] IEEE 802.15.4 standard, http://www.ieee802.org/15/pub/TG4.html

[18] S. Halder, J.-G. Park, and W. Kim. “Adaptive Filtering for Indoor
Localization using Zigbee RSSI and LQI Measurement”, Adaptive
Filtering Applications, Lino Garcia (Ed.), InTech Publishing, ISBN
978-953-307-306-4, 2011.

[19] C. Brignone, et al.: “Real Time Asset Tracking in the Data Center”,
Distributed and Parallel Databases, 21(2-3):145–165, 2007.

[20] N. Udar, K. Kant, and R. Viswanathan. “Asset localization in data
centers using WUSB radios”, In Proceedings of the Seventh
International Networking Conference on Ad Hoc and Sensor
Networks, Wireless Networks, Next Generation Internet
(NETWORKING 2008), Singapore, May 2008, pp. 756-767.

[21] Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of Wireless Indoor
Positioning Techniques and Systems. IEEE Transactions on Systems,
Man & Cybernetics 37(6), 1067–1080 (2007).

Figure 14. Nagios state when a network problem occurs but Zigbee is reachable. .

Figure 15. Nagios state when server location changes. .

Figure 8. Nagios state when a network problem occurs but Zigbee is reachable.

Figure 9. Nagios state when server location changes.

