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Abstract 
Current operating systems offer basic support for network 
interface controllers (NICs) supporting remote direct 
memory access (RDMA). Such support typically consists 
of a device driver responsible for configuring 
communication channels between the device and user-
level processes but not involved in data transfer. Unlike 
standard NICs, RDMA-capable devices incorporate 
significant memory resources for address translation 
purposes. In a multi-programmed operating system (OS) 
environment, these memory resources must be efficiently 
shareable by multiple processes. For such sharing to 
occur in a fair manner, the OS and the device must 
cooperate to arbitrate access to NIC memory, similar to 
the way CPUs and OSes cooperate to arbitrate access to 
translation lookaside buffers (TLBs) or physical memory. 
A problem with this approach is that today’s RDMA NICs 
are not integrated into the functions provided by OS 
memory management systems. As a result, RDMA NIC 
hardware resources are often monopolized by a single 
application. In this paper, I propose two practical 
mechanisms to address this problem: (a) Use of RDMA 
only in kernel-resident I/O subsystems, transparent to 
user-level software; (b) An extended registration API and 
a kernel upcall mechanism delivering NIC TLB entry 
replacement notifications to user-level libraries. Both 
options are designed to re-instate the multiprogramming 
principles that are violated in early commercial RDMA 
systems. 
 

1. Introduction 
 

The need to reduce networking overhead in system-
area networks in the early 1990's motivated a flurry of 
research on user-level networking protocols. Projects such 
as SHRIMP [2], Hamlyn [4], U-Net [23] and others, 
proposed user-level access to a network interface 
controller (NIC) as an approach that offers two primary 
benefits: First, it enables host-based implementations of 
new, lightweight networking protocols with lower 
overhead compared to kernel-based TCP/IP protocol 
stacks. Second, for applications requiring use of the 

TCP/IP protocol stack, there is a potential for application-
specific customization of user-level libraries. In addition 
to the ability for user-level access to the NIC, which is the 
defining feature of user-level NICs, most of these projects 
also advocated a new host programming interface to the 
NIC. This programming interface is based on a queue-
pair (QP) abstraction and requires pre-posting of receive 
buffers [1] [22]. It is important to note that this 
programming interface is not a defining feature of user-
level NICs and can be implemented without special NIC 
support [17]. In contrast, user-level access to the NIC 
necessarily requires special NIC support, which increases 
the complexity of NIC design as described later in this 
paper. 

A feature of the networking API introduced by user-
level NICs is the ability for remote direct data placement 
(RDDP), i.e., direct data transfer between the network and 
the target memory buffers without any intermediate data 
movement. The key benefit of RDDP is elimination of 
unnecessary memory system and CPU overhead incurred 
in systems built over standard TCP/IP interfaces and 
traditional NICs [13]. RDDP is possible with either 
unsolicited or solicited I/O operations. In the former case, 
incoming network I/O data are deposited in anonymous 
buffers posted prior to the I/O taking place. In the latter 
case, explicit tags are used (and carried on the incoming 
data headers) to identify the user-level buffer that is the 
target of the I/O operation. Tags for solicited RDDP can 
take various forms [12]; one widely used option is using 
the virtual memory address of user-level buffers as their 
RDDP tag. This flavor of RDDP is known as remote 
direct memory access (RDMA). 

The benefits of user-level RDMA-capable network 
interface controllers (RNICs) include lower CPU 
overhead and flexibility due to the bypassing of the 
kernel. The overhead reduction is partly due to transport 
protocol offload1, the avoidance of unnecessary data 
movement via memory copying, and the avoidance of the 

                                                 
1 RDDP requires total or partial transport protocol offload, 

particularly when TCP/IP is used as a transport, since RDDP 
operates at a higher level in the networking stack [16]. 



user-kernel boundary crossing. The bypassing of the 
kernel makes possible user-level implementations that are 
customized for applications and also the avoidance of 
buggy kernel components [23]. An additional benefit of 
the networking API is asynchrony without necessarily 
requiring OS support for it [13]. 

 

 
Figure 1. Two processes sharing a user-level RNIC. 
 
User-level RNICs often involve complex system 

architectures (Figure 1). The programming interface that 
user-level networking libraries use to control such RNICs 
typically consists of a pair of receive (Rx) and transmit 
(Tx) rings, mapped in the address space of each 
communicating process (typically managed by a user-level 
library) and shared between the process and the RNIC. 
User-space buffers used for communication must be 
described in terms of their virtual memory addresses. 
Since the RNIC must be able to resolve such virtual 
addresses into physical (bus) addresses to initiate direct 
memory access (DMA) operations, an RNIC typically 
includes a TLB-like address translation structure. 

Most commercially available RNICs today are not 
integrated into host and OS memory systems. This is due 
to two main reasons: First, most OSes do not provide 
support for device-specific page tables [20]; the 
alternative of incorporating such abstractions in device 
drivers involves significant complexity. Second, most 
RNICs do not offer any mechanisms for handling TLB 
miss faults, which would require suspending the faulting 
RDMA operation, throwing an exception that can be 
handled by the OS to load the missing translation (and 
possibly servicing a virtual memory (VM) page fault from 
disk), and restarting the operation [23]. This inability of 
RNICs to support on-demand loading and unloading of 
address translations means that these activities must 
instead happen proactively, i.e., a process (or the kernel) 
must load a translation to the NIC TLB prior to the 
translation being used and (voluntarily) unload the 
translation at some point in the future. The process of 

adding address translations to a user-level RNIC is 
currently performed by user processes using a REGISTER 
system call. Similarly, address translations may be 
voluntarily removed from the RNIC TLB using a 
DEREGISTER system call. Registration typically also 
involves pinning the VM pages whose address translations 
are loaded on the RNIC TLB in physical memory. 

The inability to support on-demand loading and 
unloading of RNIC TLB entries rules out the option of 
using host memory as a second-level address translation 
structure to extend the RNIC addressing capabilities. The 
only other practical option that can meet the requirements 
of I/O-intensive applications is to equip RNICs with large 
TLBs, which is standard practice today. This option 
however, increases the cost of the RNIC and does not 
work well in multiprogramming environments where the 
RNIC is shared by multiple applications. New designs that 
reduce RNIC TLB size requirements, better utilize those 
TLBs, and are practical to implement in commercial 
RNICs, could be a major driving force towards wider 
adoption and deployment of RNICs. Two possible ways to 
achieve these objectives are: 
 
1. Use NIC address translation resources only for 

operations that inherently require their use; such 
operations do not include messaging (i.e., unsolicited 
RDDP) nor control operations, e.g., access to control 
data structures for the purpose of communicating 
between the NIC and user-level networking libraries. 

 
2. Increase the degree of utilization and avoid hoarding 

of the NIC TLB in multiprogramming environments, 
where the RNIC is shared by multiple processes. 
With current RNICs, it is possible that a greedy 
process allocates a large chunk of the RNIC TLB 
without actually using all of it. This requires the 
ability to forcibly unload translations from the NIC 
TLB. 

 
In this paper we present two design options that can 

achieve the above goals. The first option is to use RDMA 
only in kernel-resident I/O subsystems, transparently to 
user-level software layers. This approach, which assumes 
that RNICs are only accessible via a kernel host interface, 
requires fewer RNIC TLB resources and allows for 
efficient and fair global policies in sharing the RNIC 
TLB. We describe such a design in Section 2. The second 
option is to provide a collaborative mechanism between 
user-level RNICs and user-level I/O libraries, whereby the 
kernel notifies the library with an upcall when a TLB 
entry must be de-registered; subsequently, the user-level 
library must take appropriate action to decommission the 
affected communication buffer(s). This mechanism, which 
addresses point (2) above, is described in more detail in 
Section 3. 



2. Kernel-based RDMA 
 

Kernel-based RNICs are defined to be RNICs that are 
accessible to hosts only via a kernel interface (Figure 2-
right). As such, they are used by kernel-based I/O 
subsystems (e.g., network file systems [5] and storage 
device drivers [6]), whereas user-level RNICs can be used 
by either user-level or kernel-based I/O subsystems [13]. 
In previous work we argued that the performance 
drawback of using a kernel-based RNIC instead of a user-
level RNIC amounts to the overhead of crossing the user-
kernel boundary for issuing and managing I/O operations, 
which is not a significant cost for I/O-intensive network 
storage workloads [14]. In this paper, we argue that 
kernel-based RNICs lend themselves to simpler and more 
efficient system designs than user-level RNICs. In 
particular, on the issue of efficient use of RNIC memory 
resources, user-level RNICs have at least two fundamental 
drawbacks compared to kernel-based RNICs. First, user-
level RNICs inherently use more memory resources for 
address translation purposes. Second, user-level 
networking systems do not currently offer the necessary 
controls to enforce efficient and fair sharing of RNIC TLB 
resources in multiprogramming environments. 

In more detail, user-level RNICs store virtual address 
translations and access control information on the RNIC 
TLB for three main purposes: (a) control structures, such 
as queues and transfer descriptors; (b) messaging buffers; 
and (c) RDMA buffers. However, the need to use the 
RNIC TLB for (a) and (b) can be eliminated in kernel-
based RNICs. First, control data structures and messaging 
buffers need not be mapped in user address space and can 
thus be referenced by physical address only. Since the 
kernel is trusted to enforce the proper access control in the 

case of control data structures and messaging buffers, 
there is no need to dedicate resources for that purpose on 
the RNIC. This, however, is not true for RDMA buffers 
since memory accesses can be initiated by an untrusted 
party and thus the access rights of the RDMA tags must 
always be verified. 

Another drawback of current commercially-available 
user-level RNIC systems is their lack of mechanisms to 
control the consumption of RNIC TLB resources by 
individual processes. User-level I/O libraries typically try 
to register with the RNIC as much of their communication 
buffer pool as possible. This is because user-level 
processes lack the incentive to be “good citizens” and to 
act unselfishly by de-registering buffers or by performing 
per-I/O registration, which would voluntarily reduce their 
RNIC TLB usage. Thus, greedy processes can monopolize 
the RNIC TLB, whether they use their TLB allocations or 
not, and refuse access to other processes. Although it is in 
principle possible to place limits on the maximum amount 
of registration a process can perform (similarly to the 
MLOCK kernel interface), such limits are typically static 
(e.g., a pre-set maximum number of TLB entries per 
process) and can result in underutilization of the NIC 
TLB. 

Stated differently, the issue has to do with the ability to 
specify and enforce global policy that fairly and efficiently 
arbitrates sharing of the NIC TLB (and of the physical 
memory referenced by it) between processes. Ideally, it 
should be possible to avoid processes selfishly hoarding 
these resources but also let processes use more resources 
than their “fair share” if others do not utilize their 
resources. This problem (the fact that it is impossible to 
enforce global system policy without some degree of 
kernel involvement) is inherent to any user-level system 

Figure 2. User-level vs. kernel-based RNIC. RDDP is possible in both cases, if supported by the I/O API [5][10] [13]. 



designed to bypass the kernel. Another example is 
Exokernel [11], a system that advocates extermination of 
all kernel abstractions. 

Kernel-based RNICs enable solutions to the above 
problems. First, regulation of the use of the RNIC TLB by 
the kernel ensures that each process uses entries in the 
RNIC TLB for only as long as necessary. This is possible 
because, in kernel implementations of I/O subsystems, the 
kernel is aware of the extent of the time interval a memory 
buffer translation must be known to the NIC and can be 
trusted to de-register the buffer after that. For example, in 
many I/O subsystems [5] [13], an RDMA operation is 
preceded by an RPC request and followed by an RPC 
response. These two RPC messages designate an upper 
bound on the duration of the RDMA operation. Thus, per-
I/O registration is enforceable, minimizing TLB space 
use, i.e., a TLB entry is consumed by a buffer only if an 
RDMA to that buffer is expected soon. 

Another way to deal with hoarding processes in kernel-
based RNIC systems is to reduce their share of the TLB 
when necessary. For example, in network or file access 
protocols that use window-based flow control, the size of 
the outstanding I/O window in conjunction with the 
average I/O size give an estimate of the RNIC TLB 
consumption over a certain network connection. At times, 
a process with high throughput requirements may be 
exceeding its “ fair share”  of NIC TLB entries. In such 
cases, the kernel can decide to reduce the process’ share 
of the TLB and communicate that decision to the 
responsible kernel-resident I/O subsystem. The latter can 
effect the change by shrinking the appropriate outstanding 
request window(s), effectively limiting the maximum 
throughput achievable by that process, and de-registering 
the appropriate amount of buffers. Revocation of 
resources, just as described here, is straightforward when 
performed in the kernel. Similar functionality applicable 
to RNIC resource consumption by user-level I/O libraries 
requires additional support and is the subject of Section 3. 

In summary, use of kernel-based RNIC by kernel-
resident I/O subsystems only, offers the following 
benefits: 
1. The RNIC TLB is used only for essential operations 

(i.e., RDMA); messaging and control operations do 
not require use of the TLB when implemented in the 
kernel. 

2. The kernel can ensure economical consumption of 
RNIC resources on behalf of processes; for example, 
per-I/O registration and de-registration of buffers can 
be enforced. 

3. Besides economy of use, at times of contention for 
RNIC TLB resources, the kernel can further yield 
resources used by certain processes if necessary. 

 
Point (1) is inherent to kernel-based RNICs. Points (2) 

and (3) are matters of global policy, which is naturally 

implementable in the kernel but can also be applied to 
user-level systems with appropriate mechanisms, as 
discussed in the next section. 

 
3. A Collaborative Upcall-based Protocol 
 

As argued in Section 2, there is currently a lack of 
mechanisms to ensure that selfish user-level processes that 
over-consume RNIC resources are forced to yield some of 
those resources at times of contention. In this section, we 
present a protocol that requires the collaboration of user-
level RNICs, the kernel, and user-level I/O libraries to 
enable the revocation of unused or unlikely-to-be-used-
soon RNIC TLB entries from certain processes and their 
re-allocation to others which have an immediate need for 
them. 

The foundation of our scheme is the ability of the 
kernel (or of the user-level RNIC, through the kernel) to 
request that user-level buffers be de-registered. Such 
kernel-induced de-registrations require the attention and 
collaboration of the application or the user-level I/O 
library which has an incentive to comply in order to avoid 
RDMA address translation errors in the future. In more 
detail, our scheme consists of (a) a kernel upcall interface 
that notifies user-level I/O libraries of imminent NIC TLB 
entry replacement actions; note however, that the actual 
replacement is performed at a future point in time; (b) a 
new registration API that enables user processes to 
(optionally) wait until a registration request is satisfied, if 
not immediately possible; and finally (c) application-
specific NIC TLB replacement policies. 

The mechanics of our collaborative protocol depend on 
the type of buffer considered. For messaging buffers, the 
RNIC simply removes a given buffer address translation 
from its TLB and notifies (through the kernel) the user-
level process of this event with an upcall. After receiving 
the upcall, the user-level I/O library is expected to remove 
the buffer from its Rx or Tx rings (Figure 1) and also to 
perform any necessary protocol-specific actions, such as 
to adjust any application-level flow control protocol state 
[13]. Subsequently, the user-level process I/O library may 
either decide to remove that buffer from its active 
communication pool or attempt to re-register it again in 
the future. Incoming I/O transfers are not affected since 
the RNIC ensures that such transfers use other registered 
buffers from that process’s communication pool. 

Kernel-induced de-registrations of RDMA buffers 
require a similar degree of collaboration but are somewhat 
more complex. Unlike messaging buffers, where the RNIC 
has control over which messaging buffer is used next to 
place incoming data (and can thus ensure that a buffer is 
taken out of active use), RDMA buffers can be targeted at 
any time without the RNIC being able to predict it. As a 
result, the RNIC cannot immediately de-register a user-



level buffer associated with a given RDMA or otherwise 
risk causing the failure of the RDMA operation. To deal 
with this problem, the RNIC notifies the user-level 
process (through the kernel) with an upcall of its intention 
to de-register a buffer, but provides a grace period T to 
ensure that the user-level library has enough time to de-
register and decommission the buffer. T is thus the time 
between notification to the user-level process that a 
translation is about to be removed from the NIC TLB and 
the time of its actual removal. In this way, the kernel 
minimizes (but does not eliminate) the risk of failing an 
RDMA. The user-level I/O library is aware of the length 
of the grace period T and must ensure that the expected 
duration of any individual RDMA transfer operation it 
issues does not exceed it. 

Given the delay in satisfying eviction requests by 
processes due to the grace period T and wanting to ensure 
that processes do not wait too long before their 
registrations requests are honored, the RNIC must be 
proactive in evicting RNIC TLB entries (note similarity to 
policies for cleaning dirty buffers in file caches [15]). This 
is the task of the “ NIC TLB Reaper”  module in Figure 3. 
The upcall notification provides only a suggestion to the 
application as to which TLB entries to replace; the latter 
may respond by offering another “ victim”  buffer as will be 
discussed later. 

 

New Registration API: The registration interface 
offered by current commercial NICs returns successfully 
only if RNIC TLB resources are immediately available for 
allocation. If there are no available TLB entries at the 
time of the call (or if the process’ s static limit is reached), 
the registration API returns immediately with an error 
code. Such an error should be treated as fatal for the 
application, under the assumption that there is no dynamic 
mechanism to free up RNIC TLB space other than 
processes voluntarily de-registering some or all of their 
buffers. 

A more appropriate API for the functionality described 
in this paper is one where a process is given the option to 
wait (synchronously or asynchronously) for free RNIC 
TLB entries. Such an API could be termed REGISTER-
WAIT. Since a registration request can trigger replacement 
of other TLB entries (as seen in Figure 3), a registration 
request might incur a delay but will be eventually 
honored. The delay in satisfying a registration request 
depends on the latency in satisfying eviction notification 
upcalls delivered to other processes by the kernel. Such an 
API has also the additional advantage of giving the kernel 
an estimate of the current demand of a process for RNIC 
TLB entries. 

The “ Buffer Manager”  module in Figure 3 exhibits the 
structure of a user-level buffer manager that can handle 

Figure 3. Collaborative upcall-based protocol. This design assumes the availability of ALLOCATE and FAST-
REGISTER RNIC Verbs APIs [18] which separate the allocation of TLB resources from their binding to a 
particular buffer. 
 



de-registration upcalls from the RNIC (through the 
kernel), and perform (pre-)registrations (i.e., allocations of 
RNIC TLB entries). This diagram assumes the availability 
of the RNIC Verbs API [18]. 
 

RNIC TLB Replacement Policies: The RNIC TLB 
replacement policies must ensure high TLB utilization 
when used by multiple processes. TLB replacement must 
be performed proactively to reduce the average wait time 
incurred by processes wanting to register their buffers. A 
replacement policy must balance the desire to maintain a 
certain level of free TLB space with the amount of “ pain”  
caused to communicating processes by asking them to de-
register some of their TLB entries. By reducing the 
number of buffers on which a process can perform RDMA 
transfers, the RNIC is effectively limiting the total 
bandwidth achievable by that process. 

In accordance with well-tested systems principles, a 
NIC TLB replacement policy must satisfy the following 
requirements: 

 
1. Evict the least recently (or frequently, etc.) used TLB 

entry. To make this decision, the kernel needs 
information about access statistics for RNIC TLB 
entries, provided by the RNIC (e.g., the “ TLB Entry 
Usage Stats”  module in Figure 3). 

 
2. Consider evicting an entry that the user-level I/O 

library or the application considers to be less 
important than the one chosen by the kernel. This is 
reminiscent of extensible page replacement, for 
example as used in VINO ([21], Section 4.2) and 
other systems. This task is expressed by the 
“ Consider Alternative?”  module in Figure 3. 

 
Note that even when the RNIC does not provide access 

statistics about its TLB entries, processes themselves 
(possibly via shared memory segments between user-level 
communication libraries and the kernel) can provide that 
information to the kernel to enable an LRU or LFU or 
other replacement algorithm. It is in the best interest of 
processes to be truthful regarding their temporal and 
spatial access characteristics as that will result in correctly 
applying the kernel NIC TLB replacement policies for 
better performance. In the absence of any such 
information, a simple (e.g., random) replacement policy 
can be used. 

The scheme described here works fine if the process is 
always aware of when an RDMA may take place, either 
by initiating it, or by explicitly requesting its occurrence 
through RPC request-response messages. However, this 
excludes the case where RDMA can be initiated by a 
remote party at any time; in such case, evicting an RDMA 
address translation from the local RNIC TLB may cause 
an I/O failure when a remote party decides to initiate 

RDMA using that address. One solution to this problem is 
to contact all remote hosts that might have and use this 
translation and request to invalidate their relevant RDMA 
reference. Another solution (that requires advanced RNIC 
functionality) is to allow such faults to happen and recover 
from them by throwing and catching remote RDMA 
exceptions [12]. In most systems today, the process that 
exports remotely-accessible communication buffers is 
either the initiator of RDMA or explicitly requests that 
remotely-initiated RDMA take place, making the 
mechanisms described in this paper widely applicable. 
 

Dealing with Failure: The grace period T allowed by 
the kernel before a process de-registers a buffer is 
expected to be sufficient to avoid failure by compliant 
user-level I/O libraries under the assumption that a 
pending RDMA operation on the buffer can complete 
within time T after receiving the notification upcall. 
However, RDMA operations may suffer indeterminate 
delay in the network and communication libraries may not 
have the real-time features that enable timely processing 
of RDMA completions. While the latter problem can be 
tackled programmatically with appropriate hardware, OS, 
or runtime support, the RDMA network delay may be 
hard to bound, particularly in large-scale networks such as 
the Internet. This can result in evicting a busy RNIC TLB 
entry, leading to failure of the RDMA operation. In that 
case, the user-level library must be able to handle and 
gracefully recover from such failure. The likelihood of 
this happening can be reduced by increasing the grace 
period T at the expense of increasing the maximum delay 
incurred in de-registering a RNIC TLB entry. This 
tradeoff seems to be an unavoidable price to pay in our 
collaborative memory management protocol for user-level 
RNICs. 
 

4. Discussion 
 

Comparing the two options considered in this paper, it 
becomes apparent that one of them (using RDMA only in 
kernel-resident I/O subsystems) has a number of 
advantages over the other. First, de-registration of NIC 
TLB entries with kernel-based RDMA is fully controlled 
by the kernel; this eliminates the (however small) 
possibility of RDMA failures, which cannot be excluded 
with the upcall-based user-level RNIC approach. Second, 
with kernel-based RDMA, part of the complexity of 
managing RDMA memory resources is encapsulated in 
the kernel, simplifying application I/O libraries. 
Understandably, a source of complexity of the upcall-
based scheme stems from the difficulty that programmers 
have with rationally arguing about time. It is fair to say, 
however, that this difficulty has not prevented other 
systems to successfully introduce time-based mechanisms 



(e.g., see distributed consistency based on leases [9]). Part 
of the complexity in our scheme can be encapsulated in 
buffer managers developed to the new registration API. 
Taking the above into account and given that there is no 
performance-related reason against a kernel-based 
interface to an RDMA NIC for network-storage-intensive 
workloads [14], we recommend the kernel-based RNIC 
design for practical implementations. 

Note that the same general approach followed in the 
collaborative protocol of Section 3 can be used in other 
problems of similar flavor. One example is the case of 
managing a shared connection pool to a database or other 
transactional service. In that case, access to a limited 
number of connections by a large number of client 
applications must be arbitrated in a similar manner. 
Similar to the problem addressed in this paper, lightly-
used connections may be taken away from certain clients 
by the connection manager and given to other clients who 
request them. To reduce the possibility of failure (i.e., 
forcing a connection closed before a client process is 
finished using it) a similar grace period must be granted 
before a connection is actually taken away. 

 
5. Related work 
 

A number of recent RDMA protocol specifications, 
such as InfiniBand [10], the iWARP protocol suite [19], 
and RNIC [18] are addressing the issue of memory 
management and particularly how to reduce the cost of 
memory registration so that the association of NIC TLB 
resources with a buffer’ s memory address translation can 
be done on-the-fly prior to each RDMA I/O. This is a key 
requirement of storage protocols such as iSCSI and its 
extensions for RDMA [6] (iSER), where the binding 
between a memory buffer and the physical memory 
backing it is not known until the time of I/O. The FAST-
REGISTER MEMORY REGION and BIND MEMORY WINDOW 
APIs developed for this purpose, split the process of 
registration in two parts; the allocation of NIC resources, 
such as TLB entries, protection checks, etc.; and the 
loading of an address translation into those resources. The 
second part can be performed just prior to (and on the 
data-path of) the I/O. This requires that NIC TLB 
allocations be made early, possibly at the time of 
connection initialization, and memory region identifiers 
(STags) allocated in advance. The two above interfaces 
are provided at the Verbs [18] level and are meant to be 
implemented at the hardware, NIC firmware, driver or 
user-level network library. The current practice for using 
the FAST-REGISTER MEMORY REGION API is to rely on a 
pool of pre-allocated memory regions, which is currently 
assumed to be fixed. To work with the scheme described 
in this paper, the pool of pre-allocated regions must be 
managed dynamically by a buffer manager as depicted in 

Figure 3, which must ensure that new registrations (in this 
case, allocations of RNIC TLB space) are carried out as 
needed to compensate for any kernel-induced de-
registrations. It is assumed that prior to issuing a FAST-
REGISTER MEMORY REGION work request followed by an 
RDMA work request, the application must ensure that the 
STag used is still registered with the NIC, by validating it 
with the buffer manager. 

Previous work on memory management for RNICs and 
on reducing RNIC TLB memory requirements has focused 
on extending RNIC address translation structures into host 
memory, maintaining only a cache of address translations 
(and potentially of other state, such as network 
connections) onboard the RNIC. The key benefit of such 
two-level memory management schemes is improved 
scalability in the amount of memory that can be registered 
with the RNIC with the potential to support practically 
memory-free RNICs. Two-level schemes include systems 
such as U-Net [24], UTLB [7], and miNI [1]. In addition, 
the work of Schoinas and Hill [20] explored the design 
space of two-level memory management schemes for 
NICs. Design issues that vary in these projects are (a) 
whether the host-side (i.e., 2nd level) address translation 
structure is accessed by the RNIC or by the host; (b) 
whether access to host memory is by DMA or by 
programmable I/O (in case of direct access by the NIC), 
or by interrupts thrown by the NIC and handled by host 
software; and other issues such as time of memory 
pinning, etc. There are however, a number of factors that 
have impeded the adoption of two-level schemes: First, 
there is significant complexity involved in maintaining 
such a two-level address translation structure. Second, 
given the performance penalty of accessing host memory 
over I/O buses, it seems likely that effective use of the 
RNIC TLB will still be the key factor affecting 
performance, which argues for increasing RNIC memory 
resources. The kernel-induced de-registration scheme 
described in Section 3 is a similar but simpler and more 
practical alternative to the above referenced two-level 
memory management schemes. 
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