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Abstract— The checkpoint roll-backward methodology is the 
underlying technology of several fault-tolerance solutions for 
continuous stream processing systems today, implemented 
either using the memories of replica nodes or a distributed file 
system. In this scheme the recovering node loads its most 
recent checkpoint and requests log replay to reach a consistent 
pre-failure state. Challenges with that technique include its 
complexity (typically implemented via copy-on-write), the 
associated overhead (exception handling under state updates), 
and limits to the frequency of checkpointing. The latter limit 
affects the amount of information that needs to be replayed 
leading to long recovery times. In this work we introduce 
continuous eventual checkpointing (CEC), a novel mechanism 
to provide fault-tolerance guarantees by taking continuous 
incremental state checkpoints with minimal pausing of 
operator processing. We achieve this by separating operator 
state into independent parts and producing frequent 
independent partial checkpoints of them. Our results show that 
our method can achieve low overhead fault-tolerance with 
adjustable checkpoint intensity, trading off recovery time with 
performance. 
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I.  INTRODUCTION 
Sources of continuously-flowing information today are 

growing in both number and data rates produced [1][9]. 
Consider for example the streams of call-detail records 
(CDRs) produced by mobile telephony base stations; credit-
card transaction authorizations; stock-price feeds from 
financial markets; and camera video streams used for 
surveillance. The need for online processing of such 
information streams has led to the design of complex event 
processing systems supporting continuous queries expressed 
in stream-oriented query languages [4][5]. The data operated 
on (often referred to as tuples) are associated with a 
monotonically increasing timestamp, forming a time series. 
A continuous stream processing query is composed of one or 
more interconnected operators, each computing a function on 
incoming tuples. Operators that accumulate state by 
computing a function over sets (also known as windows) of 
tuples are known as stateful operators. 

An important concern, especially in the case of stateful 
operators is that a failure in the underlying infrastructure 
may lead to long recovery times and/or irrecoverable loss of 
operator state. These risks are not acceptable in many 
application domains with stringent response time and data 
reliability requirements. Several fault tolerance solutions 

have been proposed in the past [6][10][11][19] to address 
this challenge most of them relying on replicating operator 
state either in the memories of different nodes or on disk 
(Section VI provides an overview of these solutions). 

A prominent fault-tolerance solution used today is the 
checkpointing and roll-backward methodology [10], 
hereafter referred to as CRB. In CRB the recovering node 
loads the more recent checkpoint and replays events that 
postdate the checkpoint to reach the pre-failure state. 
Efficient implementations of CRB use copy-on-write 
[10][17] mechanisms to reduce the amount of time an 
operator freezes processing while saving the checkpoint to 
stable store. Challenges with CRB include its complexity 
(such as in the implementation of copy-on-write), the 
associated overhead (exception handling during state 
updates), startup overhead (one needs to compute what needs 
to be checkpointed, especially if incremental checkpoints are 
being used) and limits to the frequency of checkpointing 
(one cannot start a new checkpoint while the previous one is 
still in progress). The latter limit affects the amount of 
information that needs to be replayed during recovery 
leading to potentially long unavailability periods. 

Straightforward applications of CRB to stream 
processing systems [17] consider the entire operator state 
when constructing checkpoints (namely all windows that 
have changed since the previous checkpoint). As such, 
operators accumulating large amounts of state (that is, 
several GBs in today’s systems) require inter-checkpoint 
intervals in the order of tens of seconds (for example, a 4GB 
state can take at least 40 seconds to checkpoint over a 
1Gbit/s line, assuming stable storage can sustain the same 
rate). Incremental checkpoints do not seem to help much in 
that aspect when state changes between checkpoints are 
spread across the majority of operator’s windows. 

One way to improve CRB in stream processing systems 
is to take advantage of the observation that certain window 
state transitions (such as the closure of a window) are leaving 
a “footprint” in the operator’s output stream (an output 
tuple). This “footprint” can also serve as a recovery point for 
that window in case of operator failure. Intuitively speaking, 
it contains the information that the state of the window was 
closed as of the time the output tuple was produced. We can 
build on this observation by creating other types of window 
state “footprints” by inserting special output tuples in the 
operator’s output stream, such as when a window opens or 
the state at an arbitrary point in time. A recovery mechanism 
can examine the operator’s output stream to find the most 



recent “footprints” of all windows that comprised the 
operator state at some point in time. In this paper we 
formalize the above observations into a novel checkpointing 
mechanism that we term continuous eventual checkpointing 
(CEC). 

CEC splits operator state into parts that can be 
checkpointed independently and in an as-needed basis. In 
contrast to conventional approaches where a checkpoint is 
statically constructed at checkpoint-capture time, in CEC the 
checkpoint is an evolving entity that is continuously and 
incrementally updated by adding partial checkpoints to it. 
Partial checkpoints take the form of control tuples containing 
window state and intermixing with actual data-carrying 
tuples (preserving time order) in the operator’s output 
stream. To ensure that the checkpoint is recoverable in the 
event of a node failure, CEC requires that the output stream 
be written to stable storage. The interleaving between control 
and regular output tuples means that the checkpoint is spread 
over the persistent representation of the operator’s output 
stream, rather than being a single cohesive entity at a single 
location in stable storage. As such, the CEC checkpoint is 
not immediately available for recovery but must be 
reconstructed through a process described in detail in this 
paper. 

Since checkpoints can be performed asynchronously at 
the pace of the operator’s choosing, the operator can exploit 
a tradeoff between overhead and recovery speed (i.e., how 
often to write control tuples to stable storage vs. how far 
back to seek into the output queue to reconstruct the CEC 
checkpoint vs. how far back to replay from upstream output 
queues). By mixing control and regular output tuples in the 
output stream, CEC can leverage an existing persistence 
mechanism (originally developed for persisting the 
operator’s output queue [20]) to also persist its evolving 
checkpoint. Besides being straightforward in its 
implementation, such a scheme enjoys I/O efficiencies due to 
the sequential access pattern involved. These characteristics 
make CEC an efficient CRB methodology for streaming 
operators that can provide rapid recovery with adjustable 
overhead characteristics. 

Our contributions in this paper include: 
 
• A novel state checkpointing technique for window-

based streaming operators that takes independent 
checkpoints of parts of the operator state in the form 
of control tuples integrated with regular tuples at the 
operator’s output queue. 

• Implementation of the technique (including both 
failure-free and recovery paths) in the context of the 
Borealis [8] open-source streaming middleware. 

• Evaluation of the prototype system under a variety 
of scenarios. 
 

The remainder of paper is structured as follows. In 
Section II we describe the detailed design of the CEC 
mechanism and in Section III our prototype implementation. 
In Section IV we present the experimental evaluation of CEC 
and in Section VI we present related work on fault-tolerant 
streaming. Finally we draw our conclusions in Section VII. 

II. DESIGN 
In this paper we assume a fairly general continuous 

stream processing model in which a continuous query is 
expressed as a graph of operators interconnected via streams 
between input and output queues. As shown in Figure 1 
operators receive tuples in their input queues (1), process 
those tuples (2), and preserve results in their output queues 
(3) until receiving an acknowledgment from all downstream 
nodes. Each stream is associated with an information schema 
describing the tuples that flow through it. Each operator 
implements a function such as filter, union, aggregate, join, 
etc. and may or may not be accumulating state over time. 
The latter distinction separates operators into stateless (such 
as filter, union) and stateful (such as aggregate, join) ones. 
Operators are executing in stream-processing engines (SPEs) 
that are distributed and communicating over the network. 

 
 

 
Figure 1. Checkpoint roll-backward (CRB). 

 
In explaining the CEC technique we will use as a 

canonical example of a stateful operator the aggregate 
operator. The aggregate operator computes a function (such 
as count, minimum, maximum, sum, or average) on a 
specific tuple field over windows of eligible tuples (defined 
through another field). A typical example would be a query 
stating “Compute the average talk time of all telephone calls 
(described by CDRs) originating from a specific phone 
number over a window of 1 hour, grouped by phone 
number”. The duration that a window remains open (and 
thus accumulates state) can either be time-based, as in the 
previous example, or count-based (remains open for a fixed 
number of tuples). The specification of the aggregate 
operator allows overlap between successive incarnations of a 
window (i.e., advancing the window for less than its size) 
taking tuples from the previous incarnation into account 
when computing the next result. In practical implementations 
(as for example in Borealis [3][8]) such windows are 
implemented as two separate physical windows, both 
accumulating tuples during the overlap period, and thus do 
not present additional challenges compared to non-
overlapping windows. 



In what follows we briefly describe the general principles 
of the checkpoint roll-backward technique in Section II.A 
and then move into the details of the CEC methodology in 
Section II.B. A brief description of the stream persistence 
architecture that we developed for logging output tuples and 
CEC checkpoints to storage appears in Section IX (see [20] 
for a full paper). 

A. Checkpoint roll-backward 
Figure 1 provides an abstract view of the checkpointing 

procedure in CRB. Downstream operators are taking 
checkpoints of their state (b) and send acknowledgments to 
upstream queues that they no longer depend on the 
corresponding input tuples to reconstruct it. In the standard 
implementation of CRB the operator state is a point-in-time 
consistent view of all open windows at checkpoint-capture 
time. The full checkpoint includes the state of the operator 
itself and its input and output queues. We call this an instant 
checkpoint of the operator. For the rest of the paper we 
assume without loss of generality that only output queues 
need to be persisted while input queues can be rebuilt by 
fetching tuples from the upstream operators’ output queues. 
Checkpoints are preserved in stable store (another node’s 
main memory or a storage device). 

The recovery procedure for a streaming node has two 
parts. First, one has to decide what the most recent 
checkpoint is; then ask upstream nodes to replay tuples from 
that point forward. If a node is asked to replay tuples that it 
has to reconstruct (perhaps because it also has failed and lost 
recent state), then upstream nodes have to go through the 
recovery process themselves. Note that the operator’s 
internal state (open windows before failure) has to be 
checkpointed in-sync with its output queue. 

B. Continuous eventual checkpoints 
CEC departs from the standard implementation of CRB 

by breaking the overall operator state into independent 
components corresponding to the different open windows wi 
and performing checkpoints of each of them asynchronously 
at different times ti. Figure 2 depicts an example of an 
aggregate operator with N open windows at time tc. The time 
is defined by the timestamp of the last tuple that entered the 
operator and affected its state by either updating an existing 
window, or opening a new window, or closing a window and 
emitting an output tuple. 

Window checkpoints are expressed as control tuples 
containing the partial state S accumulated by the operator for 
a given window up to time t. Each window checkpoint 
additionally contains the following parameters: 
 
1. Type of checkpoint (Gcheck or Gopen): 

 
- Gcheck is the type of checkpoint produced for an existing 

window. For a Gcheck checkpoint, S is equal to the partial 
result accumulated by the window up to time t. 
 

- Gopen is the type of checkpoint produced when a window 
opens. For a Gopen checkpoint, S is equal to the state of 
the window after taking into account the tuple that 

opened it. Tuples of type Gopen are necessary to ensure 
we have a guaranteed known state for a window at time 
tc to roll back to in case a Gcheck has not been produced 
for it yet. 

 
2. Total number of open windows (N) at checkpoint time t. 
 

Figure 2 depicts the time evolution of an operator from 
time tk to tc with checkpoints for windows wk, wi, wj, wc. 
Standard data-carrying tuples produced when a window 
closes are abbreviated as R (result). Gcheck

k and Rk refer to a 
checkpoint and a data-carrying tuple for window wk. 
 

 
 

Figure 2. Continuous eventual checkpointing (CEC). 

Window checkpoint tuples are logged at the operator’s 
output queue along with regular output tuples in timestamp 
order. Thus Gcheck

k is emitted and stored in the log before the 
subsequent Rk produced when wk closes (Figure 2). If a 
persistence mechanism is used to write the output queue to 
stable storage it should preserve timestamp order for all 
tuples produced by the operator. 

In CEC the operator checkpoint is not a single, cohesive 
entity as in traditional CRB schemes. Instead, CEC 
maintains an eventual checkpoint (EC) at time tc as a set of 
window checkpoints W = {(wi, ti): ti ≤ tc} that can be used to 
bring the operator to a consistent state, i.e., a state the 
operator went through in the actual execution, at time tc. This 
state includes all windows that were open at time tc and for 
which, their most recent persisted “footprint” (i.e., partial 
checkpoint) was written to stable storage prior to tc. Once we 
determine the oldest “footprint” of any window that is open 
at tc (and call its timestamp T, T = mini ( ti ) for all ti ≤ tc) 
CEC loads onto the operator the state of all open windows 
wi. This state corresponds to different times ti and is thus not 
immediately consistent. To achieve consistency, the operator 
must contact its upstream node and request replay of input 
tuples with timestamps t > T. Since T is the earliest among 
all ti's whereas the state of all (except one) windows reflects 
a later time, the operator will unavoidably see tuples that it 
has already seen in the past. To ensure that we reach the 
correct pre-failure state, the operator must ensure that 
window wi ignores tuples with timestamps t < ti. 



Constructing an EC 
A key challenge when constructing an eventual 

checkpoint from the persisted output queue is finding out 
how far to roll back into the log looking for window 
checkpoints (Gopen, Gcheck). We solve this problem by storing 
along with each checkpoint the number N of open windows 
at that time, which turns out to be the number of different 
window “footprints” we need to look for when rolling back 
the log. For example Figure 2 shows that the checkpoint of 
wc at time tc records the total number of open windows N at 
that time. It is important to ensure that the entire checkpoint 
record (S, G{check|open}, N, and t) is atomically written to stable 
storage. We ensure this by using a fingerprint to detect 
partial I/O errors and in that case discard the record. 

During failure-free operation, CEC increases N when a 
window opens and decreases it when a window closes. By 
CEC rules, at time tc all open windows must have produced a 
Gopen and possibly Gcheck checkpoints in the output queue. 
During reconstruction it is important to skip Gopen or Gcheck 
tuples for windows that are known to have closed prior to tc. 
If a window closed prior to tc (as for example is the case for 
window wk in Figure 2), its R tuple will be encountered prior 
to any checkpoints for that window and therefore it will be 
excluded from the EC. 
 
Extent of an EC 

Our system evolves the eventual checkpoint continuously 
over time as new control and regular output tuples are being 
produced. Recall that for an eventual checkpoint W = {(wi, 
ti): ti ≤ tc}, T is the earliest timestamp of any open window 
among the wi in W. We define as the extent of W (henceforth 
referred to simply as the extent) to be the set of tuples (of 
any type, Gopen, Gcheck, or R) in the output queue that 
recovery needs to go through when rolling-back to reach the 
tuple with timestamp T. 

The extent is an important parameter in constructing the 
EC since the time to complete the construction is 
proportional to its size. Intuitively the rate of growth of the 
extent is inversely proportional to the rate of progression of 
T. T may be lagging behind in the past when the window it 
corresponds may have had no Gcheck tuple produced for it 
since the last Gcheck or Gopen tuple produced for the same 
window. Besides increasing EC reconstruction time, a large 
T means that we will need to replay a large amount of tuples 
from upstream queues to bring the operator to a fully 
consistent state. 
 
Controlling the extent 

Windows can remain open for a long time mainly due to 
two reasons: (1) the stream tuple distribution favors some 
windows over others; (2) the window specification allows 
for a large accumulation of tuples before closing and 
computing a result, either via the tuple count or time 
parameters. We refer to windows that are staying open for 
long periods of time (due to (1), (2) or both) as slow and 
those that close and re-open frequently as fast. Note that 
depending on the characteristics of the incoming stream a 

fast window may turn into a slow one over time and vice 
versa. 

The existence of slow windows in the operator state is a 
key factor leading to a growing extent size. Our goal in CEC 
is to produce Gcheck checkpoints more aggressively –as far as 
performance and recovery-time objectives allow— for the 
slowest windows in order to advance T and reduce the size 
of the extent. 
 
CEC benefits 

A benefit of performing individual window checkpoints 
is that we avoid freezing the operator for long checkpoint-
capture time intervals typical of traditional CRB approaches. 
CEC still needs to devote time to individual window 
checkpoints, but this time is smaller, spread over a longer 
time period, and adjustable to application needs. 
Additionally we do not require any operating system support 
for copy-on-write or other memory-protection schemes that 
are typically used in traditional implementations of CRB, nor 
incur the overhead of protection violation exceptions in these 
schemes. 

CEC enables a performance vs. recovery time tradeoff by 
parameterizing how frequently it produces checkpoints as 
well as the set of windows the checkpointing effort focuses 
on. As described, CEC focuses on checkpointing of slow 
windows. However the degree of intensity at which CEC is 
producing checkpoints may impact performance. The CEC 
performance vs. recovery time tradeoff is thus enabled 
through explicit control of the following parameters: (1) how 
much time to devote (out of the overall execution time) to 
checkpointing; (2) when is checkpointing necessary for the 
slowest windows. Section III provides details into the 
specific choices we have made in our implementation when 
tuning those parameters. 

Finally, another benefit of CEC is that by integrating 
checkpoints into standard operator output it can leverage a 
single persistence architecture and stable storage structure 
for both operator and output-queue states. Note that although 
control tuples mix with data-carrying tuples in the stable 
storage abstraction, they do not complicate processing in 
downstream SPEs as the SPEs are able to recognize them in 
their input streams and disregard them during operator 
processing. 
 
CEC challenges 

Constructing an EC requires reading the output queue log 
sequentially looking for all window checkpoints that 
comprise the EC. This is a sequential process that can be 
sped up by reading large chunks (currently 256KB) of the 
log into memory to avoid the penalty of small I/Os. A factor 
that affects performance has to do with the way tuples are 
grouped in the output stream. The degree of grouping tuples 
into a structure called a stream event [8] before storing them 
in the distributed file system is proportional to the operator’s 
output rate: operators with low output rate are expected to 
feature a smaller degree of grouping (in some cases, each 
tuple occupies a separate stream-event). In such cases a 
larger number of stream events to process in the recovery 
path will lead to a longer time to reconstruct the EC. 



Gopen checkpoints required by CEC on every window 
opening are expected to increase the amount of tuples 
produced by the operator per window from one to two (Gopen 
at open and R on close), a fact that becomes more important 
when the application features a large number of fast 
windows. However this is not expected to be an issue in 
practice in most real deployments as stateful operators 
typically have low output tuple rates and consequently are 
much less I/O-intensive compared to stateless operators (a 
filter or a map) that produce an output tuple for each input 
tuple that they receive. 

III. IMPLEMENTATION 
In this section we describe the implementation of CEC 

using the aggregate operator as a case study. We use the 
Borealis [8] implementation of the operator as a reference 
but our principles are more general and can apply equally 
well to other continuous-query data stream processing 
systems. 

First we describe the state maintained by the streaming 
operator. This state includes (a) the set of all currently open 
windows; (b) the state of each window: open or closed; 
accumulated state so far; and two timestamps τ1 and τ2, τ1 
corresponding to the input tuple that created the window and 
τ2 corresponding to the last checkpoint (Gopen or Gcheck) 
produced for the window; and (c) an ordering of all open 
windows by their τ2 timestamp. The objective of this 
ordering is to always be able to start from the window with 
the least-recent checkpoint when checkpointing with the 
objective to reduce the size of the extent. 

CEC requires minimal changes to the standard Borealis 
tuple header to store its own information. It uses the existing 
type attribute to indicate tuple type (Gopen, Gcheck or R). The 
existing timestamp attribute is used to store the timestamp 
of the tuple that was last processed by the operator (tnow). 
Finally, CEC introduces a count field to indicate the number 
of active windows at tuple production time. These 
modifications work for both stateful and stateless operators 
since the later can be thought of as a special case of the 
former with window count 0. 

In terms of execution paths we distinguish between 
foreground, background, and recovery. All processing is 
performed in the main thread of the operator because a 
separate thread would result in unnecessary complexity and 
locking overhead. The foreground path focuses on 
processing the tuples entering the operator through the input 
stream. The last tuple that entered the operator may be either 
(1) opening a new window; (2) contributing to an existing 
window; (3) contributing to an existing window and causing 
its closure. In case (1) we increase the counter of active 
windows N, set τ1 and τ2 to tnow and produce a Gopen tuple 
into the output stream. The Gopen tuple carries the number N, 
the current state of the window, and the timestamp tnow. In 
case (2), the tuple updates the state of a window; τ2 is not 
updated until the first Gcheck emitted for that window. The 
number of active windows remains unchanged. In case (3) 
the counter of active windows is decreased, an R tuple is 

produced, and the just-closed window is erased from the 
ordered list of open windows of point (c) above. 

In the background path the operator periodically 
checkpoints slow windows via the production of Gcheck 
tuples. The Gcheck tuples are marked with the tnow timestamp 
of the tuple entering the operator at the time of Gcheck 
production. Simultaneously the τ2 timestamp for the 
corresponding window changes to tnow. The number of 
windows eligible for checkpointing at any time (we call this 
the intensity of checkpointing) is decided based on recovery-
time objectives expressed by two parameters Q, U described 
in Section III.A. To avoid the impact of uncontrolled 
checkpointing on response time we limit checkpointing only 
to specific time intervals. We use two parameters to denote 
the amount of time we devote to checkpointing (checkpoint 
interval, CI) and the time between checkpointing intervals 
(checkpoint period, CP). The combination of Q, U and 
CI/CP can be used to adjust to a desirable performance vs. 
recovery speed operating point as we demonstrate in our 
evaluation section. Note that the choice of these parameters 
does not affect correctness because even if we delay 
checkpointing, a window will roll-back to an older Gcheck for 
that window or –in the worst case— to the Gopen tuple for 
that window. at the expense of longer recovery time. 

During the recovery path, CEC reconstructs the eventual 
checkpoint by sequentially rolling back on the output queue 
log as described in Section III.B. Following EC 
reconstruction, the EC must be loaded onto the operator to 
form its new state prior to asking upstream nodes for tuple 
replay. To load the EC onto the operator in an as simple 
manner as possible we created a special input stream (in 
addition to the standard input stream of the operator) through 
which we feed the EC into the operator. We call this new 
stream the “EC-load” stream. A complication we had to 
address with “EC-load” is that although it is created as an 
output stream (following the output tuple schema) it must be 
fed to the operator through an input stream. We further 
modified the operator threads to be aware that tuples coming 
from “EC-load” can only be part of the EC for the purpose of 
recovery. The implementation of the recovery code uses 
support provided by our persistence architecture described 
briefly in the Appendix and in [20]. The communication 
protocol between a recovering node and its upstream and 
downstream nodes (synchronization with upstream to request 
replay from given timestamp, synchronization with 
downstream to find out what it wants to have replayed) 
builds on the RPC message exchange framework provided 
by Borealis. 

A. Policies for producing Gcheck tuples 
Recall that CEC maintains an ordered list of open 

windows by their τ2 time of last checkpoint (Gnew or Gcheck), 
keeping the window with the oldest checkpoint at the top. 
This checkpoint is by definition at the end of the extent and 
thus the corresponding window (wk in the example of Figure 
3) is the prime candidate to produce a new checkpoint for 
(thus decreasing the size of the extent). To maintain an 
accurate estimate of the current size of the EC extent as well 
the amount of tuples that need to replayed by upstream 



operators during recovery, we maintain the following state: 
For each window wi in the open-window list we store (a) the 
number of tuples emitted by the operator between wi and the 
previously checkpointed window; and (b) the number of 
input tuples processed by the operator between producing 
checkpoints for these windows. Effectively, (a) provides a 
measure of the size of the extent, which we call q, and (b) 
provides a measure of the number of tuples u we need to 
replay where a crash to occur at this point in time. We have 
devised two methods to determine when it makes sense to 
produce a checkpoint for the oldest window: a method based 
on a cost-benefit analysis and another based on explicitly 
setting targets for q, u. 

The first method considers the costs and benefits of 
checkpointing: First, taking a Gcheck has the benefits of 
reducing the size of the extent (and thus the cost of 
eventually constructing the EC); second, a Gcheck brings 
forward the timestamp of the first tuple to replay, thus 
reducing the cost of replay. On the other hand, taking a Gcheck 
has two costs: First, it adds another tuple to the extent, 
increasing its size by one; second, it incurs the overhead 
(CPU and I/O) of producing the Gcheck. Based on the above it 
is reasonable to only perform a Gcheck when the benefits 
outweigh the costs. It is straightforward to derive an 
analytical cost-benefit formula based on the above principles 
but one needs to calibrate it for a given platform by including 
a number of empirically-measured parameters. The full 
implementation and evaluation of this method is an area of 
ongoing work. 

The second method (which is used in our experiments) 
takes the approach of explicitly setting appropriate 
empirically-derived targets for q and u. For example the 
policy “produce a Gcheck if q > Q or u > U or both, where Q = 
1,000 and U = 1,000,000” means that if the extent or the 
number of tuples to replay exceeds Q, U respectively, then 
try to decrease them by taking checkpoints starting from the 
older end of the extent (wk in Figure 3). Notice that values of 
Q should typically be smaller than values of U reflecting the 
fact that a tuple carries a heavier weight when considered in 
the context of EC reconstruction than in stream replay (to say 
it simply, a tuple costs much more to process in EC 
reconstruction than in stream replay). 

B. Implementation complexity 
The overall modifications to Borealis to support CEC are 

about 700 lines of code in our persistence and recovery 
mechanisms and about 30 lines of new code in the 
implementation of the aggregate operator. We have also 
added minor modifications to the Borealis SPE and 
consumer application code to drop Gopen and Gcheck tuples 
upon reception. We disable this feature in our experiments in 
order to be able to measure the number of checkpoint tuples 
produced as well as the aggregate throughput (control plus 
data) observed by the final receiver. 

IV. EVALUATION 
Our experimental evaluation of CEC focuses on three 

key areas: (1) The impact of CEC on streaming performance 
when operating under minimum recovery-time guarantees 
(henceforth referred to as baseline performance); (2) the 
impact of a range of Q, U values to operator recovery time; 
and (3) the response time vs. recovery time tradeoff with 
varying CI/CP. Our experimental setup consists of three 
servers as shown in Figure 4. All servers are quad-core Intel 
Xeon X3220 machines with 8GB of RAM connected via a 
1Gb/s Ethernet switch. 

 
 

  
 
 

Figure 4. Experimental setup. 

 
The first server hosts the tuple-producing engine (or 

source). The tuples produced consist of three fields: item_id, 
item_price, and item_time, where item_id is an integer 
identifying the item (e.g., an SKU), item_price is an integer 
indicating the item’s price, and item_time represents the time 
of purchase of the item. The tuple size is 100 bytes. The 
second server hosts an aggregate operator computing the 
average purchase price of items grouped by item_id (in other 
words the operator will maintain a separate window per 
item_id computing the average over a number of tuples equal 

Figure 3. Extent size (q), number of upstream tuples to replay
for given extent (u), and corresponding targets (Q, U). 



to the window size). The third server hosts the tuple 
consumer (or sink). 

The window size of the aggregate operator in all 
experiments is defined based on number of tuples received 
(count-based windows). We chose to evaluate CEC with 
count-based windows rather than time-based ones due to the 
special challenges posed by the former. The amount of time 
count-based windows remain open depends strongly on the 
distribution of input tuples and can be indefinite. Our results 
hold for time-based windows as well as for other stateful 
operators. Finally, we use a distributed file system (PVFS 
[18]) to persist the output queue of the aggregate operator. 

A. CEC baseline impact 
We first highlight the impact of CEC while operating 

under minimum recovery-time guarantees. In this case CEC 
produces Gopen tuples (necessary for correctness) but no 
Gcheck tuples (necessary to reduce the extent). We configure 
the aggregate operator for two different workloads: fast-
windows and slow-windows. The fast-windows workload 
uses a window size of 1. Each input tuple entering the 
operator forces the creation of a new window and its instant 
closure, emitting an R tuple. The slow-windows workload 
uses a window size of 1000. In both cases the source 
produces tuples randomly distributed across two item_ids. In 
all experiments the rate at which the tuple-generator injects 
tuples to the network is limited by its CPU or by network 
flow control. 

Figure 5 illustrates the performance impact of CEC on 
streaming throughput under the two workloads described 
above. The results are compared against those of native 
Borealis in the same setups. Other configurations depicted in 
Figure 5 include: Gopen/Net, which is the CEC setup where 
the aggregate operator forwards Gopen tuples to the network 
but does not persist them at its output log; and Gopen/Disk, 
which includes the additional overhead of persisting Gopen 
tuples. Gopen/Net and Gopen/Disk are measured at the sink 
after dropping control tuples. The Real bar represents the real 
throughput that our receiver observes including both normal 
(R) and control (Gopen) tuples. 

A key observation is that order-of-magnitude differences 
in output rate across workloads are mainly due to different 
operator specifications (higher window counts result in lower 
output rates). Performance of the Gopen/Net configuration 
drops by less than 10% versus native performance across all 
workloads. This decrease can be attributed to the ratio of 
Gopen vs. R tuples injected to the output stream: wider-spaced 

R tuples translate into lower R-tuple rate at the sink. 
Performance of the Gopen/Disk configuration is nearly 
identical to Gopen/Net, indicating that the I/O path has 
minimal impact on throughput, especially on lower output 
rates. The Real bar shows that the actual throughput seen by 
the receiver is twice the throughput of data tuples alone. 

In terms of CPU usage, native Borealis consumes about 
150% (fast-windows) and 130% (slow-windows) out of a 
total capacity of 400%. With CEC (Gopen tuples only) the 
CPU utilization remains the same for the Gopen/Net 
configuration and increases in the Gopen/Disk setup to 200% 
for the fast-windows workload. This increase can be 
attributed to the overhead of the I/O path. Throughout these 
experiments we did not saturate the CPU or the network at 
the server hosting the aggregate operator. The main factor 
limiting performance is the degree of parallelism available at 
the tuple source (Borealis does not allow us to drive a single 
aggregate operator by more than one source instances). 

B. CEC recovery time 
Next we focus on CEC recovery time using a range of Q 

and U values. Recall that Q represents the extent size to 
exceed before checkpointing the oldest window, whereas U 
represents the number of upstream tuples (to replay) to 
exceed before checkpointing the oldest window. In all cases 
the source produces tuples randomly distributed across 
100,000 item_ids. The aggregate operator uses a window 
size of 10 tuples. To isolate the impact of each of Q, U on 
recovery time we set up two separate experiments with a 
different parameter regulating recovery time in each case. 
The extent size is measured at a time of crash in the middle 
of each run. Our operator graph in this experiment differs 
from that depicted in Figure 4 in that we interpose a filter 
operator between the source and the aggregate to be able to 
persist and replay the filter’s logged output tuples during 
recovery. The CI parameter is set to 5ms and the CP to 
100ms in all cases. 

Figure 6 depicts the effects of varying Q from 1 to 8 
times the number of open windows (openwins) on two 
recovery-time metrics: eventual checkpoint (EC)-load time; 
bytes replayed by upstream source; and two CEC-internal 
metrics: extent size; and number of Gchecks emitted. The 
average value of openwins in the operator is measured to be 
around 90,000. Our smallest Q value (1*openwins) 
represents the extent size that the operator would have 
produced by just emitting Gnew tuples. This is the smallest 
possible extent for that number of windows. Setting Q to 
anything less than that would be setting an unattainable 
target, resulting in unnecessary overhead. 

Figure 6 (upper left) depicts the number of Gcheck tuples 
produced as the extent is allowed to grow larger. An 
observation from this graph is that the number of Gchecks 
drops sharply for Q > 2*openwins, evidence that the extent 
in these cases nearly always stays below target. Figure 6 
(upper right) depicts the extent size with growing Q. CEC 
cannot achieve the target of Q = 1*openwins due to the 
stringency of that goal but manages to achieve it in the Q=2, 
4*openwins cases. The extent size for Q = 8*openwins 
(500,000) is lower than its targeted goal (720,000) due to the 

Figure 5. CEC baseline impact (Gopen tuples only). 



fact that 500,000 is the maximum extent size reachable in 
this operator configuration. 

Figure 6 (lower left) depicts the increase in EC-load time 
with growing Q due to the operator having to read and 
process a progressively larger extent to reach its pre-failure 
state. We observe that for a smaller extent (120,000 and 
180,000 tuples) the time to read and load it into the operator 
varies from 3.5 to 5 seconds. A larger extent leads to EC-
load times of between 14 and 27 seconds. Figure 6 (lower 
right) depicts the number of bytes to replay from the 
upstream node after the operator has loaded the EC. Our 
results here exhibit the same trends as in EC-load. Lower Q 
values correspond to replaying 25MB to 50MB of tuples, 
whereas higher Q values correspond to replaying more than 
200MB of tuples. The CPU performing the EC-load 
operation was always 100% busy. CPU overhead due to 
CEC during failure-free operation is minimal. 

In the U experiment we vary the values of U between 
125,000 and 106 tuples. Figure 7 illustrates the impact of U 
on the same four metrics. Figure 7 (upper left) shows that 
relaxing the U target leads to fewer Gcheck tuples produced, 
consistent with our expectations. The drop is not as sharp as 
in the Q experiment, evidence that our large Q values lead to 
more relaxed policies compared to large U values in this 
experiment. Figure 7 (bottom right) shows that higher values 
of U result to between 20MB (200,000 tuples) and 90MB 
(900,000 tuples) of upstream input replayed during recovery. 

Figure 7 (upper right) shows that the extent size increases 
from 120,000 tuples to 230,000 tuples. This increase can be 
explained by the lower production of Gcheck tuples with 
growing U. Consistent with having to handle longer extents, 
EC-load time (bottom left) increases from 2.5s to 6.7s. The 
EC-load times measured for different extent sizes are in 
agreement with our results in the Q experiment. 

C. Impact of checkpointing period 
Next we evaluate the impact of different values of CI/CP 

to operator response and recovery time. In this experiment 
we vary CP between 25ms and 250ms while maintaining CI 
fixed at 10ms. All runs use the aggregate operator configured 
as described in the previous section. Q is fixed and equals the 
number of open windows (whose average was measured to 
be about 90,000), a very aggressive target that ensures there 
always exist windows that are candidates for checkpointing. 

Figure 8 depicts the response time of the aggregate 
operator measured as the difference between the opening and 
closure time of a window, reported as per-second averages. 
Operator response time ranges from 16.5s (without CEC), to 
18.5ms, 21.5ms, and 32.5s (CEC with CP = 100ms, 50ms, 
25ms, respectively) reflecting the fraction of operator time 
spent on checkpointing. For CP = 250ms (not shown in 
Figure 8) CEC response time approximates that of native (no 
CEC). To highlight the tradeoff between response time and 
recovery time, in Figure 9 we report the extent size as a 
function of CP. Longer CP values result in longer extent 
sizes and consequently longer recovery times. Based on our 
results from the Q, U experiments we estimate that varying 
CP from 25ms to 250ms increases EC-load time from 2s to 
5s. Given the higher impact of other factors such as failure 
detection, RPC communication, etc. in overall recovery time 
it is preferable in this particular setup to choose the most 
relaxed checkpoint period (e.g., CP = 250ms) achieving 
response time close to that of performing no checkpointing at 
all. 

V. DISCUSSION 
Although we have demonstrated CEC primarily for the 

case of an aggregate operator, we believe that CEC can be 
also applied to other stateful operators such as join. Join [3] 
has two input streams and for every pair of input tuples 
applies a predicate over the tuple attributes. When the 

Figure 7. Effect of U. Figure 6. Effect of Q. 



predicate is satisfied, join concatenates the two tuples and 
forwards the resulting tuple on its output stream. The stream-
based join operator matches only tuples than fall within the 
same window. For example assume two input streams, R and 
S, both with a time attribute, and a window size, w. Join 
matches tuples that satisfy t.time -s.time ≤ w, although other 
window specifications are possible. Tuples produced by 
operators in most cases maintain timestamp ordering or else 
ordering can be applied using sort operators during insertion. 
If output queues are persistent, then the timestamp of the 
result tuple can be changed to resemble the timestamp of the 
concatenated tuples. This way, in case of failure, the operator 
knows from which point in time to ask replay from both 
input streams. In addition, in join operator we have to 
remember the relevant position inside the input streams from 
which concatenation takes place. CEC will periodically 
produce Gcheck tuples indicating the relevant position of the 
two windows at any point in time. 

VI. RELATED WORK 
General fault-tolerance methods typically rely on 

replication to protect against failures. The main replication 
mechanisms for high-availability in distributed systems 
include state machine [19], process-pairs [11], and rollback 
recovery [10] methodologies. In the state-machine approach, 
the state of a processing node is replicated on k independent 
nodes. All replicas process data in parallel and the 
coordination between them is achieved by sending the same 
input to all replicas in the same order. The process-pairs 
model is a related approach in which replicas are coordinated 
using a primary/secondary relationship. In this approach a 
primary node acts as leader forwarding all of its input to a 
secondary, maintaining order and operating in lock-step with 
the primary node. In rollback recovery, nodes periodically 
send snapshots (typically called checkpoints) of their state to 
other nodes or to stable storage devices. Upon recovery, the 
state is reconstructed from the most recent checkpoint and 
upstream nodes replay logged input tuples to reach the pre-
failure state. All of the above methodologies have in the past 
been adapted to operate in the context of continuous-query 
distributed stream processing systems. 

Two examples of the state machine approach adapted for 
stream processing are active-replicas [6] and Flux [21]. Both 

systems replicate the producer and the consumer operators in 
a stream dataflow graph in a symmetric fashion. Each 
consumer replica receives tuples from one of the producer 
replicas and, in case of producer failure, the consumer 
switches to another functioning producer replica. Strict 
coordination is not required since consistency is eventually 
maintained by the replicas simultaneously processing the 
same input and forwarding the same output. All operators 
preserve their output queues, truncating them based on 
acknowledgements periodically sent by consumers. In case 
of failure, all upstream replica nodes are up-to-date and can 
start serving their downstream nodes as soon as the failure is 
detected, minimizing recovery time. 

The work of Hwang et al. [14] extends the active-replicas 
approach so that all upstream replicas send their output to all 
downstream replicas and the latter being allowed to use 
whichever data arrives first. Since the downstream nodes 
receive data from many upstreams, the input stream received 
might be unordered or/and contain duplicate tuples. Despite 
the above complications their system manages to deliver the 
same result as it would produce without failures. To achieve 
this, operators are enhanced with extra non-blocking filters 
(one filter per input stream) that eliminate duplicates based 
on periodically exchanged timestamp messages t. All tuples 
with timestamp lower than t are considered duplicates and 
dropped. 

Another fault-tolerance methodology that combines the 
active-replicas and process-pair approaches is active standby 
[13]. In active-standby, secondary nodes work in parallel 
with the primary nodes and receive tuples directly from 
upstream operators. In contrast to active-replicas, in active-
standby secondary nodes log result tuples in their output 
queues but do not forward tuples to secondary downstream 
neighbors. Challenges with this approach include output 
preservation due to non-deterministic nature of operators and 
bounding the log of each secondary. 

Instances of the rollback recovery (also known as 
checkpoint-rollback or CRB) methodology [10] are the so-
called passive-replicas approaches, comprising passive-
standby and upstream-backup [6][13]. In passive-standby, 
the primary replica periodically produces checkpoints of its 
state and copies it to the backup replica. The state includes 
the data located inside the operators, along with the input and 
output queues. The secondary node acknowledges the state 

Figure 8. Operator response time for different checkpoint 
periods. 

Figure 9. Extent size for different checkpoint periods. 



already received with the primary upstream so as to drop 
tuples from the latter's output queue. In case of failure, the 
backup node takes over by loading the most recent 
checkpoint to its current state. A variant of passive-standby 
that allows independent checkpointing of fragments (sub-
graphs) of the entire query graph has been shown [15] to 
reduce the latency introduced by checkpointing. However 
checkpoint granularity with this methodology is still at the 
level of entire operators and stream processing freezes while 
storing a fragment checkpoint to a remote server memory. 

The upstream-backup [13] model was proposed for 
operators whose internal state depends on a small amount of 
input. In this approach, the upstream nodes act as backups 
for the downstream nodes by logging tuples in their output 
queues until all downstream nodes completely process their 
tuples. The upstream log is trimmed periodically using 
acknowledgments sent by the downstream primaries. In case 
of failure, the upstream primaries replay their logs and the 
secondary nodes rebuild the missing state before starting to 
serve other downstream nodes. In contrast to passive-
standby, upstream-backup requires a longer recovery but 
comes with lower runtime overhead. 

In all aforementioned methodologies replica nodes retain 
output tuples and checkpoints in memory buffers reducing 
the amount memory available for input tuple processing. One 
solution to this problem is to utilize persistent storage 
[15][20]. SGuard [17] is a system that leverages the use of a 
distributed and replicated file system (HDFS [7]) to achieve 
stream fault-tolerance in Borealis [8]. Operators periodically 
produce delta-checkpoints of their current state and the 
recovery is made using the latest checkpoint of the failed 
node. In this approach, HDFS act as the backup location for 
the checkpointed state, thus reducing the memory 
requirements of the stream processing nodes. To eliminate 
the overhead of freezing the operators during checkpoint, 
SGuard performs checkpoints asynchronously and manages 
resource contention of the distributed file system with the 
enhancement of a scheduler that batches together several 
write requests. SGuard is related to CEC in its focus on 
producing operator checkpoints and persisting them on stable 
storage. SGuard however considers the entire operator as a 
checkpoint unit whereas our approach breaks operator state 
into parts, treating each window as an independently entity. 
Another system that takes advantage of operator semantics to 
optimize checkpointing performance is SPADE [16]. 

Zhou et al. [22] use log-based recovery and fuzzy 
checkpointing to offer programming support for high-
throughput data services. Their fuzzy checkpoints of 
independent memory objects are similar to our eventual 
checkpoints of independent operator-window states and their 
logs are similar to our upstream queues, which can replay 
input tuples during recovery. In addition, they propose an 
adaptive control approach to regulating checkpoint 
frequency based on a number of target parameters. Our work 
differs in that our checkpoints are integrated within the 
logging infrastructure; they are continuously and 
incrementally evolving; and we use a different set of target 
parameters to regulate checkpointing intensity. 

VII. CONCLUSIONS 
In this paper we proposed a new methodology for 

checkpoint-rollback recovery for stateful stream processing 
operators that we call continuous eventual checkpointing 
(CEC). This novel mechanism performs checkpoints of parts 
of the operator state asynchronously and independently in the 
form of control tuples produced by the operator. Individual 
window checkpoints are interleaved with regular output 
tuples at the output queue of each operator and persisted in 
stable storage. During recovery, CEC processes the output 
queue of the operator to reconstruct a full checkpoint, which 
it then loads on the operator. The checkpoint determines the 
amount of tuples that need to be replayed by the upstream 
source. Our results indicate that CEC does not penalize 
operator processing when operating under minimal recovery 
guarantees. Offering stronger recovery guarantees is possible 
through tuning of the Q, U target parameters regulating the 
eventual checkpoint’s extent size and upstream queue replay 
size. The checkpoint interval and period parameters CI, CP 
can further tune the system to the desired response-time 
objective. Overall our results demonstrate that CEC is a 
simple to implement, configurable, low-overhead 
checkpoint-rollback solution for mission-critical stream 
processing operators. 
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IX. APPENDIX: PERSISTENCE ARCHITECTURE 
CEC’s intermixing of operator state checkpoints with 

regular output tuples at the operator’s output queue raises the 
need for a queue persistence mechanism in the context of a 
stream processing engine (SPE). The upper-left part of 
Figure 10 shows a standard SPE structure such as found in 
the Aurora/Borealis [4] system. In this structure incoming 
tuples from a stream S are shepherded by a thread (the 
Enqueue thread in this figure) to be enqueued into the SPE 
for processing by operator(s) that use S as one of their inputs. 
The tuples produced by the operators are placed on an output 
stream and dequeued by a separate thread (the Dequeue 
thread in the figure) and grouped into stream events (SEs). 
SEs are serialized objects grouping several tuples for the 
purpose of efficient communication. The remainder of the 
figure describes the path that persists SEs prior to 
communicating them to downstream nodes. 

Our detailed description starts with the case of failure-
free operation:  

Failure-free operation: SEs created by the dequeue 
thread are first serialized. If the streams they are associated 
with are set for persistence (on a per-operator basis through a 
configuration option) the SEs enter the persist-event list, 
otherwise they move directly onto the forward-event list. A 
write operation to storage is initiated using a non-blocking 
API with asynchronous notification [2]. We additionally use 
checksums to check that an I/O has been performed correctly 
in its entirety on the storage device. The asynchronous I/O 



operations are handled by a state machine in an event loop. 
For parallelism, we maintain a configurable window of N 
concurrently outstanding I/Os. Once a completion of a write 
I/O is posted by the storage system we first update a per-
stream index (shown in Figure 10), and then move the 
persisted event data structure to the forward-event list. 
Subsequently a network send operation is initiated. The SE 
remains there until successfully sent out over the network. 

The stream index maps a timestamp into a serialized SE 
that contains a tuple with that timestamp. The mapping is 
typically the file offset within the persisted object. In our 
current prototype the index is implemented using an Oracle 
Berkeley DB database.  

 
Operation under failure: When a downstream SPE node 

fails, all streams connected to queues on that node disconnect 
and no outgoing network communication takes place on 
those streams until reconnection (other streams however are 
not affected). SEs produced by local operators are still 
persisted as described during failure-free operation. 
However, as soon as the SPE receives an I/O completion for 
an SE, it deletes it from memory. Other SEs belonging to 
still-connected streams proceed to the forward-event list as 
described during failure-free operation.  

 
 

 
 

Figure 10. Stream processing engine I/O architecture. 

 
Recovery: A recovering SPE node can reconnect to 

upstream SPEs serving the streams it was connected to prior 
to its failure. The recovering SPE performs the following 
steps: (1) reconcile the stream index in the DB with the log 
length reported by the file system; (2) determines the last 
consistent operator checkpoint, load the checkpoint, and 
determine the timestamp they want to start replaying from, as 
described in Section II.B; (3) communicate the timestamp to 
the appropriate upstream SPEs, which will replay tuples 
from those streams. Upon such a request from a downstream 
node SPE, an upstream node will look up the requested 
timestamp into its stream index. The lookup will return a 
pointer to an SE x that contains the requested timestamped 

tuple. The node will then start issuing asynchronous read I/O 
operations for stored SEs starting from x in a manner similar 
to the write operations described during failure-free 
operation. Upon completion of a read I/O, the retrieved SE 
may need to be de-serialized (if a subset of the SE is 
requested, as for example, in the beginning of a stream 
replay request) then re-serialized (if needed) and put into the 
forward-event list. Similar to the process followed during 
failure-free operation, the SE will be sent to the connected 
downstream SPEs over the network. 

 
Catching up with a live stream: The persisted queue may 

be growing by simultaneously appending tuples to it 
(incoming on a live stream), and reading tuples by multiple 
clients from different offsets. In certain cases, the rate at 
which a reader consumes tuples may be higher than the rate 
at which tuples are produced (as for example when tuples are 
produced at a source-determined rate of a few Mbps while 
the reader consumes as fast as I/O resources possibly - 
several tens of MB/s- allow). In such cases the read pointer 
into the persisted queue may reach the end -in essence, 
exhausting the object portion that exists only in storage. 
Read I/O operations will then start being satisfied from 
memory buffers and we can say that the reader has “caught 
up” with the live stream. In such cases, an SPE may decide 
to interrupt stream persistence if the reason for it was to 
avoid tuple loss due to a downstream node failure. In cases 
where persistence has been explicitly requested, the two I/O 
directions (reads and writes) can continue to be 
simultaneously active with reads satisfied at memory speeds. 
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