MYE017 Distributed Systems

Kostas Magoutis magoutis@cse.uoi.gr http://www.cse.uoi.gr/~magoutis

The Bully Algorithm (1)

(a) Process 4 holds an election(b) Process 5 and 6 respond, telling 4 to stop(c) Now 5 and 6 each hold an election

The Bully Algorithm (2)

e) Process 6 wins and tells everyone

Another example

The election of coordinator p_2 , after the failure of p_4 and then p_3

Coulouris, Dollimore, Kindberg, Blair, 5th Edition, © Addison Wesley, May 2011. All rights reserved 0-13-214301-1.

A Ring Algorithm

Mutual Exclusion: A Centralized Algorithm

a) Proc 1 asks coordinator for permission to enter critical region (granted)b) Proc 2 asks permission to enter same CR, coordinator does not replyc) When proc 1 exits CR, it tells the coordinator, which then replies to 2

A Distributed Algorithm

a) Procs 0, 2 want to enter critical region at the same time

- b) Proc 0 has the lowest timestamp, so it wins
- c) When process 0 done, it sends an OK, so 2 can now enter the CR

A Token Ring Algorithm

a) An unordered group of processes on a networkb) A logical ring constructed in software

Comparison

Algorithm	Messages per entry/exit	Delay before entry (in message times)	Problems
Centralized	3	2	Coordinator crash
Distributed	2 (n – 1)	2 (n – 1)	Crash of any process
Token ring	1 to ∞	0 to n – 1	Lost token, process crash

A comparison of three mutual exclusion algorithms

Global State (1)

