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Causality

• Lamport clocks order all events in a distributed system

• If a happened-before b, then C(a) < C(b)

• However, the opposite is not true

• To achieve this, we need to introduce vector clocks



Vector clocks
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Vector clocks

Each process Pi maintains a vector VCi with two properties:

1. VCi [i ] is the number of events that have occurred so far 
at Pi i.e., VCi [i ] is the local logical clock at process Pi

2. If VCi [j ] = k then Pi knows that k events have occurred at 
Pj. It is thus Pi’s knowledge of the local time at Pj .
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Vector clocks

1. Initially, VCi [j] ← 0 for i, j = 1, 2, … N

2. When process Pi sends a message m to Pj, it executes

– VCi [i ] ← VCi [i ] + 1

– Sets ts (m) ← VCi

3. On receipt of a message m, process Pj adjusts its own 
vector by setting 
VCj [k ] ← max{VCj [k ], ts (m)[k ]} for each k, 

updates its vector clock VCj [j ] ← VCj [j] + 1,          
and delivers the message to the application



Comparing VCs

If neither VC(e1) < VC(e2) nor VC(e2) < VC(e1) then e1 is concurrent with e2

VC(e1) < VC(e2) means that e1 causally precedes e2
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Comparing VCs
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(0, 0, 0, 2)

(3, 0, 0, 2)

(2, 2, 2, 0)



Causality in multicasts

• We know m* may have been caused by m everywhere,

• We can use vector clocks to capture this
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Causal ordering using VCs

1. Initially, VCi [j] ← 0 for i, j = 1, 2, … N

2. When Pi sends m to other processes, it executes

– VCi [i ] ← VCi [i ] + 1

– Sets ts(m) ← VCi

3. On receipt of a message m from Pi , process Pj :

1. Places (m, ts(m)) in hold-back queue 

2. Wait until

• VCj [i ] = ts(m) [i ] + 1

• VCj [k ] ≥ ts(m)[k] for each k ≠ i

3. Deliver m

4. Update VCj [i ] (VCj [i ] = VCj [i ] + 1)
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Other causally precedent events will have been delivered 

before that, increasing the corresponding entries



Enforcing Causal Communication

(0, 0, 0)

Consider that VCi(i) increases only when Pi sends a message

P1 has seen a message that P2 has not yet seen: Do not deliver

Deliver m* only if:

1. ts1 (1) = VC2(1) + 1 : m* is the next message expected from P1

2. ts1 (0) ≤ VC2(0) : P2 has seen all messages seen by P1 when sending m*

vt()

vt()
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Exercise 2

From Sukumar Ghosh, Distributed Systems: An Algorithmic Approach, Second Edition, CRC Press
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Exercise 2

(0, 1, 2)

P0

P1

m

P2

(1, 2, 0)
(0, 1, 0) (0, 2, 0)

Next expected from P0: 1

P2 must have seen what P0 has seen: (0, 2, 0)

(0, 0, 1)

(0, 0, 2)

(0, 1, 0)



Uses of vector clocks
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