
MYE017 Distributed Systems

Kostas Magoutis

magoutis@cse.uoi.gr

http://www.cse.uoi.gr/~magoutis

Causality

• Lamport clocks order all events in a distributed system

• If a happened-before b, then C(a) < C(b)

• However, the opposite is not true

• To achieve this, we need to introduce vector clocks

Vector clocks

Coulouris, Dollimore, Kindberg, Blair, 5th Edition, © Addison Wesley, May 2011. All rights reserved 0-13-214301-1.

Vector clocks

Each process Pi maintains a vector VCi with two properties:

1. VCi [i] is the number of events that have occurred so far
at Pi i.e., VCi [i] is the local logical clock at process Pi

2. If VCi [j] = k then Pi knows that k events have occurred at
Pj. It is thus Pi’s knowledge of the local time at Pj .

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Vector clocks

1. Initially, VCi [j] ← 0 for i, j = 1, 2, … N

2. When process Pi sends a message m to Pj, it executes

– VCi [i] ← VCi [i] + 1

– Sets ts (m) ← VCi

3. On receipt of a message m, process Pj adjusts its own
vector by setting
VCj [k] ← max{VCj [k], ts (m)[k]} for each k,

updates its vector clock VCj [j] ← VCj [j] + 1,
and delivers the message to the application

Comparing VCs

If neither VC(e1) < VC(e2) nor VC(e2) < VC(e1) then e1 is concurrent with e2

VC(e1) < VC(e2) means that e1 causally precedes e2

Coulouris, Dollimore, Kindberg, Blair, 5th Edition, © Addison Wesley, May 2011. All rights reserved 0-13-214301-1.

Comparing VCs

Coulouris, Dollimore, Kindberg, Blair, 5th Edition, © Addison Wesley, May 2011. All rights reserved 0-13-214301-1.

p4

(0, 0, 0, 1)

(0, 0, 0, 2)

(3, 0, 0, 2)

(2, 2, 2, 0)

Causality in multicasts

• We know m* may have been caused by m everywhere,

• We can use vector clocks to capture this

Publishing an article

Publishing a response

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Causal ordering using VCs

1. Initially, VCi [j] ← 0 for i, j = 1, 2, … N

2. When Pi sends m to other processes, it executes

– VCi [i] ← VCi [i] + 1

– Sets ts(m) ← VCi

3. On receipt of a message m from Pi , process Pj :

1. Places (m, ts(m)) in hold-back queue

2. Wait until

• VCj [i] = ts(m) [i] + 1

• VCj [k] ≥ ts(m)[k] for each k ≠ i

3. Deliver m

4. Update VCj [i] (VCj [i] = VCj [i] + 1)

Coulouris, Dollimore, Kindberg, Blair, 5th Edition, © Addison Wesley, May 2011. All rights reserved 0-13-214301-1.

Other causally precedent events will have been delivered

before that, increasing the corresponding entries

Enforcing Causal Communication

(0, 0, 0)

Consider that VCi(i) increases only when Pi sends a message

P1 has seen a message that P2 has not yet seen: Do not deliver

Deliver m* only if:

1. ts1 (1) = VC2(1) + 1 : m* is the next message expected from P1

2. ts1 (0) ≤ VC2(0) : P2 has seen all messages seen by P1 when sending m*

vt()

vt()
Publishing an article

Publishing a response

Exercise 2

From Sukumar Ghosh, Distributed Systems: An Algorithmic Approach, Second Edition, CRC Press

(0, 1, 2)

(1, 2, 0)

P0

P1

m

P2

Exercise 2

(0, 1, 2)

P0

P1

m

P2

(1, 2, 0)
(0, 1, 0) (0, 2, 0)

Next expected from P0: 1

P2 must have seen what P0 has seen: (0, 2, 0)

(0, 0, 1)

(0, 0, 2)

(0, 1, 0)

Uses of vector clocks

(0, 2, 0)

P0

P1

P2

(1, 2, 0)
(0, 1, 0) (0, 2, 0)

(0, 1, 0)

(0, 1, 0)

w1 w2

w3

(0, 2, 0)(0, 1, 0)

P0

P1

P2

(1, 1, 0)(0, 1, 0)
(0, 2, 0)

(0, 1, 0)

w1 w2

w3

(1, 1, 0) w2 then w3

w3 then w2

