
MYE017 Distributed Systems

Kostas Magoutis

magoutis@cse.uoi.gr

http://www.cse.uoi.gr/~magoutis

Clock Synchronization

When each machine has its own clock, an
event that occurred after another event may
nevertheless be assigned an earlier time.

Physical Clocks

Computation of the mean solar day.

Atomic vs. solar clocks

TAI seconds are of constant length, unlike solar seconds.
Leap seconds are introduced when necessary to keep in

phase with the sun.

Hardware clocks

• Quartz crystal, oscillates at certain freq.

• 60Hz = 60 interrupts (ticks) per second

• Every 60 ticks add 1 second to h/w clock

• Clocks in different computers runs at
different rates

• Clock skew

• Relative error ~10-5

• For 60Hz, between 215,998 and 216,002 ticks
per hour (maximum drift rate)

Clock Synchronization Algorithms

The relation between clock time and UTC when clocks
tick at different rates

For two clocks never to diverge by more than θ, the

clocks must be re-synchronized at least once every θ/2ρ

Cristian's Algorithm

Getting the current time from a time server.

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values

b) The machines answer

c) The time daemon tells everyone how to adjust their clock

Lamport’s Logical Clocks

Three processes, each with its own clock
The clocks run at different rates

Lamport’s Logical Clocks (1)

• The "happens-before" relation → can be
observed directly in two situations:

• If a and b are events in the same process,
and a occurs before b, then a → b is true.

• If a is the event of a message being sent by
one process, and b is the event of the
message being received by another process,
then a → b

Lamport’s Logical Clocks (2)

Three processes, each with its own clock

The clocks run at different rates

Lamport’s Logical Clocks (3)

Lamport’s algorithm corrects the clocks

Lamport’s Logical Clocks (4)

The positioning of Lamport’s logical clocks in

distributed systems.

Lamport’s Logical Clocks (5)

• Updating counter Ci for process Pi

1.Before executing an event Pi executes
Ci ← Ci + 1.

2.When process Pi sends a message m to Pj, it sets
m’s timestamp ts (m) equal to Ci after having
executed the previous step

3.Upon the receipt of a message m, process Pj
adjusts its own local counter as
Cj ← max{Cj , ts (m)}, after which it then executes
the first step and delivers the message to the
application.

