
MYE017 Distributed Systems

Kostas Magoutis

magoutis@cse.uoi.gr

http://www.cse.uoi.gr/~magoutis

Message reception vs. delivery

The logical organization of a distributed system to distinguish
between message receipt and message delivery

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

FIFO message ordering

• Four processes in a group with two different senders

• A possible delivery order under FIFO multicasting

Process P1 Process P2 Process P3 Process P4

sends m1 delivers m1 delivers m3 sends m3

sends m2 delivers m3 delivers m1 sends m4

delivers m2 delivers m2

delivers m4 delivers m4

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

Versions of multicasting

Multicast Basic Message Ordering Total-ordered Delivery?

Reliable multicast None No

FIFO multicast FIFO-ordered delivery No

Causal multicast Causal-ordered delivery No

Atomic multicast None Yes

FIFO atomic multicast FIFO-ordered delivery Yes

Causal atomic multicast Causal-ordered delivery Yes

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

Reliable multicasting, basic schemes

A simple solution to reliable multicasting when all receivers
are known and assumed not to fail

a) Message transmission

b) Reporting feedback
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

Nonhierarchical feedback control

Several receivers have scheduled a request for retransmission,

but the first retransmission request leads to the suppression of

others

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

Hierarchical feedback control

The essence of hierarchical reliable multicasting

a) Each local coordinator forwards the message to its children

b) A local coordinator handles retransmission requests

Virtual Synchrony

The principle of virtual synchronous multicast

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

Implementing Virtual Synchrony (2)

• Process 4 notices that process 7 has crashed, sends a view change

• Process 6 sends out all its unstable messages, followed by a flush message

• Process 6 installs the new view when it has received a flush message from

everyone else
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

Two-phase commit

Coordinator

Participants

COMMIT

VOTE_REQUEST

VOTE_COMMIT VOTE_ABORTVOTE_COMMIT

Phase 1

Two-phase commit

Coordinator

Participants

GLOBAL_COMMIT | GLOBAL_ABORT

ACK ACKACK ACK ACK

Phase 2

2PC - State machines

a) The finite state machine for the coordinator in 2PC

b) The finite state machine for a participant

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

2PC – Operation under failures

Coordinator

Participants

timeout

GLOBAL_ABORT Coordinator is effectively
turned into a participant

A participant crashes, disconnects, or is too slow during a vote

VOTE_COMMIT VOTE_COMMITVOTE_COMMIT

2PC – Operation under failures

Coordinator

Participants

GLOBAL_COMMIT

Coordinator crashes after sending a few (but not all) commit messages

COMMIT COMMIT READY READY READY

timeout

Decision request

2PC – Coordinator crash

Actions taken by a participant P when residing in state
READY and having contacted another participant Q.

State of Q Action by P

COMMIT Make transition to COMMIT

ABORT Make transition to ABORT

INIT Make transition to ABORT

READY Contact another participant

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

2PC – What happens if all in READY state?

Coordinator

Participants

Coordinator crashes, disconnects, or is too slow

READY READY READY READY READY

timeout

Decision request

Depends on whether
coordinator is a participant

2PC – May block forever

Coordinator

Participants

Coordinator crashes, disconnects, or is too slow – but not a participant

READY READY READY

timeout

READY

A participant crashes, disconnects, or is too slow

Crashed participant may be the
only one that knows decision

2PC – Actions by coordinator

actions by coordinator:

while START _2PC to local log;

multicast VOTE_REQUEST to all participants;

while not all votes have been collected {

wait for any incoming vote;

if timeout {

while GLOBAL_ABORT to local log;

multicast GLOBAL_ABORT to all participants;

exit;

}

record vote;

}

if all participants sent VOTE_COMMIT and coordinator votes COMMIT{

write GLOBAL_COMMIT to local log;

multicast GLOBAL_COMMIT to all participants;

} else {

write GLOBAL_ABORT to local log;

multicast GLOBAL_ABORT to all participants;

}

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

write

write

Ensure that state is recoverable

2PC – Actions by participant

actions by participant:

write INIT to local log;

wait for VOTE_REQUEST from coordinator;

if timeout {

write VOTE_ABORT to local log;

exit;

}

if participant votes COMMIT {

write VOTE_COMMIT to local log;

send VOTE_COMMIT to coordinator;

wait for DECISION from coordinator;

if timeout {

multicast DECISION_REQUEST to other participants;

wait until DECISION is received; /* remain blocked */

write DECISION to local log;

}

if DECISION == GLOBAL_COMMIT

write GLOBAL_COMMIT to local log;

else if DECISION == GLOBAL_ABORT

write GLOBAL_ABORT to local log;

} else {

write VOTE_ABORT to local log;

send VOTE ABORT to coordinator;

}

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

2PC – Handling incoming decision requests

actions for handling decision requests: /* executed by separate thread */

while true {

wait until any incoming DECISION_REQUEST is received; /* remain blocked */

read most recently recorded STATE from the local log;

if STATE == GLOBAL_COMMIT

send GLOBAL_COMMIT to requesting participant;

else if STATE == INIT or STATE == GLOBAL_ABORT

send GLOBAL_ABORT to requesting participant;

else

skip; /* participant remains blocked */

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

Three-phase commit

Coordinator

Participants

COMMIT

VOTE_REQUEST

VOTE_COMMIT VOTE_ABORTVOTE_COMMIT

Phase 1

Three-phase commit

Coordinator

Participants

PREPARE_COMMIT | GLOBAL_ABORT

Phase 2
READY_COMMIT | ACK

PRECOMMIT PRECOMMIT PRECOMMITPRECOMMITPRECOMMIT

Three-phase commit

Coordinator

Participants

GLOBAL_COMMIT

Phase 3
ACK ACKACK ACK ACK

COMMIT COMMIT COMMITCOMMITCOMMIT

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Three-phase commit (2)

(a) The finite state machine for the coordinator in 3PC

(b) The finite state machine for a participant

3PC is non-blocking

Coordinator

Participants

Coordinator crashes, disconnects, or is too slow – but not a participant

PRECOMMIT READY READY

timeout

READY

A participant crashes, disconnects, or is too slow

Crashed participant may not have voted
abort or aborted, thus can commit

3PC is non-blocking

Coordinator

Participants

Coordinator crashes, disconnects, or is too slow – but not a participant

READY READY READY

timeout

READY

A participant crashes, disconnects, or is too slow

Coordinator cannot have issued a
commit, thus they can abort

3PC is non-blocking

Coordinator

Participants

Coordinator crashes, disconnects, or is too slow – but not a participant

PRECOMMIT PRECOMMIT PRECOMMIT

timeout

PRECOMMIT

A participant crashes, disconnects, or is too slow

Crashed participant may not have voted
abort or aborted, thus can commit

3PC is non-blocking

Coordinator

Participants

Coordinator crashes, disconnects, or is too slow – but not a participant

PRECOMMIT PRECOMMIT PRECOMMIT

timeout

READY

A participant crashes, disconnects, or is too slow

Coordinator cannot have issued an
abort, thus can commit

3PC – partitions are problematic

Coordinator

Participants

Coordinator crashes, disconnects, or is too slow – but not a participant

PRECOMMIT PRECOMMIT PRECOMMIT

timeout

READY

Coordinator cannot have issued an
abort, thus they can commit

READY

timeout

Coordinator cannot have issued a
commit, thus they can abort

Recovery Stable Storage

a) Stable Storage

b) Crash after drive 1 is updated

c) Bad spot

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

Checkpointing

A recovery line

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

Independent Checkpointing

The domino effect

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms (c) 2002 Prentice-Hall, Inc. All rights reserved. 0-13-088893-1

