MYEQ17 Distributed Systems

Kostas Magoutis
magoutis@cse.uoi.gr
http://www.cse.uoi.gr/~magoutis

Transmission control protocol (TCP)

« Connection oriented
* Point-to-point
 Byte stream

* Reliable

 |n-order

Conventional Procedure Call

Stack pointer

Main program's Main program's
local variables local variables

nbytes

buf

fd

return address
read's local
variables

(a) (b)

(a) Parameter passing in a local procedure call: the stack before
the call to read. (b) The stack while the called procedure is
active.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Client and Server Stubs

Wait for result

Cliont se— o immimiig
/ 2
Call remote Return
procedure from call
Request Reply
SN om0 et

Call local procedure Time ——»
and return results

Principle of RPC between a client and server program.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Passing Value Parameters (1)

Client machine Server machine
Client process . Server process
1. Client call to .
procedure Implementation 6. Stub makes
of add local call to "add"
Server stub
— k=add(i,j) :] { k=addi)) —
_ Client stub M
L} n / . N "
proc: "add proc: "add Stub K
int:_val() 2. Stub builds int__val() S-DUFHNREGHS
int:_val()) message int:__val(j) essage
A
. proc: "add" 4. Server OS
Client OS int val(i) Server OS hands message
X int.__valfj) Y, to server stub

3. Message is sent
across the network

The steps involved in a doing a remote computation
through RPC.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Parameter Specification

] foobar's local
and Stub Generation 2rigbles
y
5
z[0]
foobar(char x; float y; int z[5]) =
{ z[1
} 213
z[4]

(b)
(a) A procedure. (b) The corresponding message.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Fallure Models

Type of failure Description

Crash failure A server halts, but is working correctly until it halts
Omission failure A server fails to respond to incoming requests

Receive omission A server fails to receive incoming messages

Send omission A server fails to send messages
Timing failure A server's response lies outside the specified time interval
Response failure The server's response is incorrect

Value failure The value of the response is wrong

State transition failure The server deviates from the correct flow of control
Arbitrary failure A server may produce arbitrary responses at arbitrary times

Different types of failures.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

RPC behavior under failures

Client

User process

TCP/IP

|
|
|
|
|
|
|
|
|
: Stubs
|
|
|
|
|
|
|
|
|
|

fm———— === ./ crash

User process

Stubs

Link failure

TCP/IP

\

RPC response

State
update

Server machine
crash

Message / packet omission failures handled by TCP

Server Crashes

REQ Server REQ Server
> Receive > Receive
Execute Execute
< REP Reply N&E?B_ Crash
(a) (b)
REQ Server
A server In client-server communication > Receive
(a) The normal case. Crash
(b) Crash after execution. No REP
(c) Crash before execution. s GRtEs

(C)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

RPC semantics

e Atleast once

« Retry after an exception until successful
« Good choice with idempotent operations

At most once
* Do not retry after an exception

« Exactly once
« Return error if not possible

Towards exactly once

Client Server
=== ——=———== l [m=————=—=—== |
I
| :
User process User process Atomic
| State
updates

| |
| |
| |
| |
| |
| |
| |
| |
| |
: Stubs :
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

I

I

TCP/IP TCP/IP :

|

I

I

—————————————— RPC request s

Retransmissions

RPC response cache
(RPC,,, result)

|
|
|
|
|
|
|
|
|
: Stubs
|
|
|
|
|
|
|
|
|
|

Client crashes after sending request

* Problem: Creates orphan server-side work
 Wastes CPU, ties-up locks or other resources

* Possible solutions
« Log request, clean up during client recovery
« Client epochs: Servers discard orphans after receiving
new-epoch broadcast
« Discard only if owner cannot be located
 Give each RPC time T to do the job; if not done by that
time, ask for extension T or die

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

