# Spanner: Google's Globally-Distributed Database

Wilson Hsieh representing a host of authors OSDI 2012



#### What is Spanner?

- Distributed multiversion database
  - General-purpose transactions (ACID)
  - SQL query language
  - Schematized tables
  - Semi-relational data model

- Running in production
  - Storage for Google's ad data
  - Replaced a sharded MySQL database

## Example: Social Network





#### Overview

- Feature: Lock-free distributed read transactions
- Property: External consistency of distributed transactions
  - First system at global scale
- Implementation: Integration of concurrency control, replication, and 2PC
  - Correctness and performance
- Enabling technology: TrueTime
  - Interval-based global time

#### Read Transactions

- Generate a page of friends' recent posts
  - Consistent view of friend list and their posts

#### Why consistency matters

- 1. Remove untrustworthy person X as friend
- 2. Post P: "My government is repressive..."

## Single Machine



# Multiple Machines



## Multiple Datacenters



#### Version Management

- Transactions that write use strict 2PL
  - Each transaction T is assigned a timestamp s
  - Data written by T is timestamped with s

| Time        | <8   | 8  | 15  |
|-------------|------|----|-----|
| My friends  | [X]  | [] |     |
| My posts    |      |    | [P] |
| X's friends | [me] | 0  |     |



## Synchronizing Snapshots

Global wall-clock time

==

External Consistency:
Commit order respects global wall-time order

==

Timestamp order respects global wall-time order given

timestamp order == commit order

## Timestamps, Global Clock

- Strict two-phase locking for write transactions
- Assign timestamp while locks are held



# Timestamp Invariants

Timestamp order == commit order



Timestamp order respects global wall-time order



#### TrueTime

"Global wall-clock time" with bounded uncertainty



## Timestamps and TrueTime





# Commit Wait and Replication



#### Commit Wait and 2-Phase Commit



# Example





#### What Have We Covered?

- Lock-free read transactions across datacenters
- External consistency
- Timestamp assignment
- TrueTime
  - Uncertainty in time can be waited out

#### What Haven't We Covered?

- How to read at the present time
- Atomic schema changes
  - Mostly non-blocking
  - Commit in the future
- Non-blocking reads in the past
  - At any sufficiently up-to-date replica

#### TrueTime Architecture



Compute reference [earliest, latest] = now  $\pm \epsilon$ 

## TrueTime implementation

now = reference now + local-clock offset  $\varepsilon$  = reference  $\varepsilon$  + worst-case local-clock drift





## What If a Clock Goes Rogue?

- Timestamp assignment would violate external consistency
- Empirically unlikely based on 1 year of data
  - Bad CPUs 6 times more likely than bad clocks

## **Network-Induced Uncertainty**



#### What's in the Literature

- External consistency/linearizability
- Distributed databases
- Concurrency control
- Replication
- Time (NTP, Marzullo)

#### **Future Work**

- Improving TrueTime
  - Lower  $\varepsilon$  < 1 ms
- Building out database features
  - Finish implementing basic features
  - Efficiently support rich query patterns

#### Conclusions

- Reify clock uncertainty in time APIs
  - Known unknowns are better than unknown unknowns
  - Rethink algorithms to make use of uncertainty
- Stronger semantics are achievable
  - Greater scale != weaker semantics

#### **Thanks**

- To the Spanner team and customers
- To our shepherd and reviewers
- To lots of Googlers for feedback
- To you for listening!

Questions?