Wilson Hsieh
representing a host of authors
OSDI 2012

What is Spanner?

* Distributed multiversion database
* General-purpose transactions (ACID)
e SQL query language
e Schematized tables
* Semi-relational data model

* Running in production

e Storage for Google’s ad data
 Replaced a sharded MySQL database

0SDI 2012 0

Santiago
Buenos Aires

San Francisco
Seattle
Arizona

— Moscow
Paris Berlin
Berlin Krakow
Madrid
Lisbon Russia

Spain

0" IC

Overview

e Feature: Lock-free distributed read transactions

* Property: External consistency of distributed
transactions

— First system at global scale

* Implementation: Integration of concurrency
control, replication, and 2PC

— Correctness and performance

* Enabling technology: TrueTime
— Interval-based global time

0SDI 2012 0

— Consistent view of friend list and their posts

Why consistency matters
1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive...”

0" IC

Friend1 post
Friend2 post

Friend999 post
Friend1000 post

OSDI 2012

Single Machine

Generate my page

l

Multiple Machines

Friend1 post

Friend2 post

N\

Generate my page

e

v

Friend999 post
Friend1000 post

0SDI 2012 O

Friend1 post
us

Friend2 post
Spain

Friend999 post

Brazil

Friend1000 post
Russia

N

Generate my page

b

— Each transaction T is assigned a timestamp s

— Data written by T is timestamped with s

Time <8 8 15
My friends [X] []
My posts [P]
X’s friends [me] 1

Synchronizing Snapshots

Global wall-clock time

External Consistency:
Commit order respects global wall-time order

Timestamp order respects global wall-time order
given
timestamp order == commit order

0SDI 2012 qgle 10

e Assign timestamp while locks are held

Acquired locks Release locks

Pick s = now()

 Timestamp order respects global wall-time order

TT.now()

> time

2*e

- ¢
Pick s = TT.now().latest s Wait until TT.now().earliest > s

Commit wait

average € average €

Acquired locks Releasd locks
Pick s Commit wait done

y

A

Acquired lock$

Acquired locks

y

T

Compute s for each

l

A

v

v

Prepared
Send s

Committed

Notify participants of s
lease locks

y

Relgase locks

l

Commit wait done

Compute overall s

0" IC

Sp=

Remove myself

from X’s friend list

s=8
Time <8 8 15
My friends [X] []
My posts [P]
X’s friends [me] (]

GO gle

What Have We Covered?

 Lock-free read transactions across datacenters
e External consistency
* Timestamp assignment

* TrueTime
— Uncertainty in time can be waited out

0SDI 2012 qgle 18

What Haven’t We Covered?

* How to read at the present time

 Atomic schema changes
— Mostly non-blocking
— Commit in the future

* Non-blocking reads in the past
— At any sufficiently up-to-date replica

0SDI 2012 0

19

TrueTime Architecture

GPS

Atomic-clock GPS
timemaster timemaster timemaster

Datacenter 1 Datacenter 2 Datacenter n

Client

Compute reference [earliest, latest] = now + €

0SDI 2012 0

20

+6ms A

200 ps/sec

reference |
uncertainty > time

Osec 30sec 60sec 90sec

Go gle

What If a Clock Goes Rogue?

* Timestamp assignment would violate external
consistency

 Empirically unlikely based on 1 year of data
— Bad CPUs 6 times more likely than bad clocks

0SDI 2012 qgle 22

Network-Induced Uncertainty

“

Epsilon (ms)

— 2

«MMWMI =
nwPONlemTpgtth oo Aty ey
I]]]] I]]]] I]] T T I] | I I | I] I
Mar 29 Mar 30 Mar 31 Apr 1 6AM 8AM 1OAM 12PM
Date Date (April 13)

0SDI 2012 O

23

* Distributed databases
* Concurrency control

* Replication

 Time (NTP, Marzullo)

— Lowere <1 ms

e Building out database features
— Finish implementing basic features
— Efficiently support rich query patterns

Conclusions

* Reify clock uncertainty in time APIs

— Known unknowns are better than unknown
unknowns

— Rethink algorithms to make use of uncertainty

e Stronger semantics are achievable

— Greater scale = weaker semantics

0SDI 2012 0

26

* To our shepherd and reviewers

* To lots of Googlers for feedback
* To you for listening!

e Questions?

