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What is Spanner?

* Distributed multiversion database
* General-purpose transactions (ACID)
e SQL query language
e Schematized tables
* Semi-relational data model

* Running in production

e Storage for Google’s ad data
 Replaced a sharded MySQL database
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Overview

e Feature: Lock-free distributed read transactions

* Property: External consistency of distributed
transactions

— First system at global scale

* Implementation: Integration of concurrency
control, replication, and 2PC

— Correctness and performance

* Enabling technology: TrueTime
— Interval-based global time
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— Consistent view of friend list and their posts

Why consistency matters
1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive...”
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Multiple Machines
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— Each transaction T is assigned a timestamp s

— Data written by T is timestamped with s

Time <8 8 15
My friends [X] []
My posts [P]
X’s friends [me] 1




Synchronizing Snapshots

Global wall-clock time

External Consistency:
Commit order respects global wall-time order

Timestamp order respects global wall-time order
given
timestamp order == commit order

0SDI 2012 qgle 10



e Assign timestamp while locks are held

Acquired locks Release locks

Pick s = now()



 Timestamp order respects global wall-time order




TT.now()

> time
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Pick s = TT.now().latest s Wait until TT.now().earliest > s

Commit wait
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Sp=

Remove myself

from X’s friend list

s=8
Time <8 8 15
My friends [X] []
My posts [P]
X’s friends [me] (]
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What Have We Covered?

 Lock-free read transactions across datacenters
e External consistency
* Timestamp assignment

* TrueTime
— Uncertainty in time can be waited out
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What Haven’t We Covered?

* How to read at the present time

 Atomic schema changes
— Mostly non-blocking
— Commit in the future

* Non-blocking reads in the past
— At any sufficiently up-to-date replica
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TrueTime Architecture

GPS

Atomic-clock GPS
timemaster timemaster timemaster

Datacenter 1 Datacenter 2 Datacenter n

Client

Compute reference [earliest, latest] = now + €
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What If a Clock Goes Rogue?

* Timestamp assignment would violate external
consistency

 Empirically unlikely based on 1 year of data
— Bad CPUs 6 times more likely than bad clocks
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Network-Induced Uncertainty
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* Distributed databases
* Concurrency control

* Replication

 Time (NTP, Marzullo)




— Lowere <1 ms

e Building out database features
— Finish implementing basic features
— Efficiently support rich query patterns



Conclusions

* Reify clock uncertainty in time APIs

— Known unknowns are better than unknown
unknowns

— Rethink algorithms to make use of uncertainty

e Stronger semantics are achievable

— Greater scale = weaker semantics
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* To our shepherd and reviewers

* To lots of Googlers for feedback
* To you for listening!

e Questions?



