
Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis

magoutis@cse.uoi.gr 

http://www.cse.uoi.gr/~magoutis



Samza

• Efficient support for state

• Fast failure recovery and job restart

• Reprocessing and lambda-less architecture

• Scalability



General principles: Stateless operators

Courtesy of Borealis Application Programmer’s Guide, Brown Univ. Computer Science Department



General principles: Aggregate operator

Courtesy of Borealis Application Programmer’s Guide, Brown Univ. Computer Science Department



General principles: Join operator

Courtesy of Borealis Application Programmer’s Guide, Brown Univ. Computer Science Department



Stateful processing

Email digestion system (read-only, read-write state)



Stream processing pipeline at LinkedIn



Samza job to find trending tags



Trending tags job



Internal structure of a job



Samza-based applications at LinkedIn



Layout of local state – fault tolerance



Lambda architecture

Samza is lambda-less:
• Unified model: treats batch data as finite data stream
• Processing late events: Avoid reprocessing entire stream
• Reprocessing: leverage Kafka/Databus replaying capability

• Block real-time computation until reprocessing complete
• Reprocess in parallel with real-time processing

Accuracy is first class

Latency is first class



Scalable design

• Scaling resources

– Job split into independent and identical tasks

– Input/state partitioning

– Tasks allocated on containers, can be migrated

• Scaling state

– Leverage independent partitioned local stores

– Recovery in parallel across tasks

• Scaling input sources

– Treat each input stream autonomously from other inputs

– Works with variety of systems

• Scaling number of jobs

– No system-wide master

– Jobs are independent, placed on their own set of containers



Checkpointing vs changelog



Checkpointing vs changelog

10 trillion changes/sec

Realistic estimate for 
change rate

Uncommon in practice

Changelog worse 
than checkpointing



Experimental setup

• Small (6-node) and large (500-node) clusters

• ReadOnly job (Data enriching, Exception tracing)

– Join between a database and an input stream

• Extract embedded id from each message

• Read (id, val) from database

• Join val with input message

• Output result as new message

• ReadWrite job (EDS, Call graph, Site speed)

– Map ids to counters:

• Extract embedded id from each message

• Read count for id

• Increment counter

• Write counter back



Experimental setup

• Single input stream

• Infinite tuples (id, padding)

– id is randomly generated in range [1, 10k]

– padding is randomly generated string of size m

• k and m are tuning knobs

– k trades off state size for locality

– m is used to tune CPU/network usage

• Choose m such that the system is under stress

– 100 bytes for ReadWrite, 130 bytes for ReadOnly



In-mem vs local disk vs remote disk

Network b/w divided 
by message size



Network (inbound), CPU utilization



Latency



Failure recovery


