Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis
magoutis@cse.uoi.gr
http://www.cse.uoi.gr/~magoutis

Kafka

Data logged

— User activity (logins, page views, clicks, likes, sharing,
comments, search queries)

— Operational metrics (call latency, errors, system metrics)

Uses
— Search relevance

— Recommendations driven by item popularity or co-
occurrence in activity stream

— Ad targeting and reporting
— Security applications
— Newsfeed of user status for friends / connections to read

Challenges

e High event rates

— Search, recommendations, and advertising require
computing granular click-through rates

— China Mobile 5-7TB of phone call records / day
— Facebook gathers ~6TB of various user activity events / day

e Traditional enterprise messaging systems too strict

— Unnecessarily rich set of delivery guarantees
o IBM WebSphere MQ: allow atomic inserts into multiple queues
e JMS spec: ack each individual message after consumption

— Performance issues: No API to batch messages (JMS)
— No easy way to partition and store msgs on many machines
— Assuming near-immediate consumption of messages

Sample producer code:

Kafka architecture

producer = new Producer(...);

message = new Message(“test message str”.getBytes());

set = new MessageSet(message);

producer.send{“topicl”, set);

producer

BROKER 1

topic1/partl
/part2
topic2/partl

Sample consumer code:

N

producer
BROKER 2 BROKER 3
topicl/partl topic1/partl
/part2 /part2
topic2/partl topic2/partl
consumer

streams| | = Consumer.createMessageStreams(“topicl”, 1)

for (message : streams[0]) {
bytes = message.payload()

El

// do something with the bytes

h

Kafka log

segment file 1
msg-00000000000
in-memory index msg-00000000215
delete —» | msg-00000000000 .
msg-00014517018
msg-00030706778

reads _ msg-00014516809

\

append—p msg-02050706778

segment file N
msg-02050706778
msg-02050706945

msg-02614516809

e Each partition of a topic corresponds to a logical log
e Flush to disk after configurable number of published messages

Efficiency of single partition

e Simple storage
— Consumer acknowledges message offsets
— Under the cover, consumer issues async pull requests
— Broker locates segment file, sends data back to consumer

e Efficient transfer
— No user-space caching by brokers, reduces JVM GC costs
— Direct transfer from files to network sockets

o Stateless broker
— Does not know whether all subscribers have consumed msg
— Automatic message deletions after 7 days
— Subscribers can rewind and replay messages

Consumer groups

One or more consumers that jointly consume a set of
subscribed topics
— Each message delivered to only one consumer within CG

No coordination needed across CGs

Goal is to divide messages stored in brokers evenly
among consumers

All messages from one partition consumed by single
consumer in a CG
— Multiple consumers of a partition would need to coordinate
— To balance load, multiple partitions per consumer

Coordination service: ZooKeeper

Simple file-like API on znodes

Can register watcher on a path, get notified
Ephemeral vs. persistent paths

Highly available service

/app2

fapp1/p_ 1 fappil/p 2 /app1/p_3

Image courtesy of https://zookeeper.apache.org

Offset of last consumed message per partition Qffget registry

Kafka data structures in ZooKeeper e
[partitionId] :

[topic]y ™
consumers i
é{ "version": 1, toplcs I.r _______________________
| "partitions": {"e": [@, 1, 3] } } ii Owners
! T~)
[topic] - L [topic]
partitions i
" Coversion 1 ' [consumerId] I ;
[partitionId] st 1o 161,14 t \ ! [IpartitionId]
"jmx_port": 9999 ! ! {) X !
; Py versen A N oo !
state |1 edbseription™s {tapici®s 1, "topica®s 2) ii CQ\
.
(-: ----------------------------- - consumer_/'d
- onsumer regis
Broker registry oG gistry.
___ consumer belongs to, Ownershlp
Broker hostname/port, set of topics/partitions it stores set of topics it subscribes to registry

Partition-to-consumer mapping

Rebalancing partitions

Detect the addition or removal of brokers or consumers
Trigger a re-balance process when that happens

[]
[]
producer producer
BROKER 1 BROKER 2 BROKER 3
topicl/partl topicl/partl topic1/partl
/part2 fpart2 /part2
topic2/partl topic2/partl topic2/partl

\/

consumer

consumer

Algorithm 1: rebalance process for consumer C; in group G

For each topic T that C; subscribes to {
remove partitions owned by C; from the ownership registry
read the broker and the consumer registries from Zookeeper
compute Pt = partitions available in all brokers under topic T
compute Cr = all consumers in G that subscribe to topic T
sort Pt and Crp
let j be the index position of C; in Ct and let N = |Py|/|Cy|
assign partitions from j*N to (j+1)*N - 1 in Pt to consumer C;
for each assigned partition p {
set the owner of p to C; in the ownership registry
let O, = the offset of partition p stored in the offset registry
invoke a thread to pull data in partition p from offset O,

5
j

Typical Kafka deployment

main datacenter analysis datacenter
frontend frontend frontend
Load balancer
‘
Reslees: broker
Crm—
realtime realtime DWH Hadoop
service service

