
Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis

magoutis@cse.uoi.gr 

http://www.cse.uoi.gr/~magoutis



Kafka

• Data logged

– User activity (logins, page views, clicks, likes, sharing, 
comments, search queries)

– Operational metrics (call latency, errors, system metrics)

• Uses

– Search relevance

– Recommendations driven by item popularity or co-
occurrence in activity stream

– Ad targeting and reporting

– Security applications

– Newsfeed of user status for friends / connections to read



Challenges

• High event rates

– Search, recommendations, and advertising require 
computing granular click-through rates

– China Mobile 5-7TB of phone call records / day

– Facebook gathers ~6TB of various user activity events / day

• Traditional enterprise messaging systems too strict

– Unnecessarily rich set of delivery guarantees

• IBM WebSphere MQ: allow atomic inserts into multiple queues

• JMS spec: ack each individual message after consumption

– Performance issues: No API to batch messages (JMS)

– No easy way to partition and store msgs on many machines

– Assuming near-immediate consumption of messages



Kafka architecture



Kafka log

• Each partition of a topic corresponds to a logical log

• Flush to disk after configurable number of published messages



Efficiency of single partition

• Simple storage

– Consumer acknowledges message offsets

– Under the cover, consumer issues async pull requests

– Broker locates segment file, sends data back to consumer

• Efficient transfer

– No user-space caching by brokers, reduces JVM GC costs

– Direct transfer from files to network sockets

• Stateless broker

– Does not know whether all subscribers have consumed msg

– Automatic message deletions after 7 days

– Subscribers can rewind and replay messages



Consumer groups

• One or more consumers that jointly consume a set of 
subscribed topics

– Each message delivered to only one consumer within CG

• No coordination needed across CGs

• Goal is to divide messages stored in brokers evenly 
among consumers

• All messages from one partition consumed by single 
consumer in a CG

– Multiple consumers of a partition would need to coordinate

– To balance load, multiple partitions per consumer



Coordination service: ZooKeeper

• Simple file-like API on znodes

• Can register watcher on a path, get notified

• Ephemeral vs. persistent paths

• Highly available service

Image courtesy of https://zookeeper.apache.org



Kafka data structures in ZooKeeper

/

brokers

topics

[topic]

partitions

[partitionId]

state

ids

[brokerId]

consumers

[groupId]

ids

[consumerId]

Consumer registry
Broker registry

owners

[topic]

[partitionId]

consumerId

Ownership 
registry

offsets

[topic]

[partitionId]

offset

Offset registry

Broker hostname/port, set of topics/partitions it stores

CG consumer belongs to, 
set of topics it subscribes to

Offset of last consumed message per partition

Partition-to-consumer mapping



Rebalancing partitions

• Detect the addition or removal of brokers or consumers

• Trigger a re-balance process when that happens



Typical Kafka deployment


