Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis
magoutis@cse.uoi.gr
http://www.cse.uoi.gr/~magoutis

Motivation

e Provide support for Internet services

e Design for clusters of workstations connected by
high-performance network

e Improve over existing systems
— Parallel databases do not scale (heavyweight mechanisms)
— Scalable file systems offer a too low-level abstraction

High-level view of a DDS

cluster

Distributed hash-table architecture

~_ T

' SAN

7

client | [client | | client | | client | | client
. WAN
service service service hash table
. . , - APT
DDS lib DD5 lib DD5 lib

redundant, low

latency, high

BN

storage storage storage
"brick" "brick” "brick”
i 1 L
storage storage storage
"brick" “brick” "brick”

throughput
networx

« Dbrick =

single-node,

durakble hash
table

cluster

Assumptions

Unreachable nodes must have crashed
— Network partitions do not happen
— Network redundancy makes this a realistic assumption

Software components are fail-stop
— On deviation from correct behavior, terminate

Software failures are independent

Some degree of synchrony
— Task execution takes bounded amount of time
— Messages delivered in bounded amount of time

Metadata: DP and RG maps

key: 11010011
s IT

RGname | RG membership list
000 ddsl.cs, dds2.cs
100 dde3.cs, ddsd.cs

10 dds5.cs
01 dd=2.cas, ddsd.cs

000 100 011 111 011 dds5.cs, dds6.cs
| 111 ddsT7.cs

Step 1: lookup key in Step 2: lookup RGname in
DP map to find RGname RG map to find list of replicas

Metadata consistency

e DP and RG replicated across all DDS libs and bricks

e |azy updates
— Send metadata updates but do not wait until all in sync
— They do not use Paxos

e Each data update checks on metadata consistency
— Using 32-bit fingerprints
— All participating nodes must agree on metadata maps
— Any inconsistency fails the I/O, triggers a “repair” action

Failure- and reorganization-free path

put (ht, 11010011, byte[])

l

l

DDS lib

DDS lib

[

storage storage
“brick” “brick"
ddsb.cs ddsé.cs

put operations must:

1. Happen on all replicas or none

2. Be in the same order

key: 11010011
<-:

me | RG membership list

ddsl.cs, dds2.cs

Step 1: lookup key in Step 2: laokup RGname in

DP map to find RGname RG map to find list of replicas

N/

Replicated across
all DDS libs and
bricks

-> use atomic commit
-> use locks

Two-phase atomic commit

Coordinator sends prepare msg to Participants
— Participants respond commit/abort
— A Participant may decide to abort if they cannot obtain lock

If Coordinator fails
— Participants time out
— They contact each other to figure outcome (commit/abort)

If Participant fails
— Coordinator times out, excludes participant

Replicas consistent in cache, not necessarily on disk
— Data can be lost if entire RG goes down

Metadata updates

Node goes down (failure)
— RGs must be updated

Node rejoins (recovery)
— RGs must be updated
— Must get fresh copies of replicas

A partition is split (reorganization)
— DP and RG must be updated
— Nodes must get copies of new replicas

Two partitions are merged (reorganization)
— DP and RG must be updated
— Nodes must get copies of new replicas

Recovery (node rejoins)

e Obtain lock on entire partition
— Implemented as write lease on partition

e Copy entire partition (no log replays)
— Partition is about 100MB, takes 1 sec in 1Gbps network
— Tradeoff between recovery time and impact on throughput

e Hash table accesses fail during recovery
— DDS lib, service, or WAN client, will retry

What is left out

e Replica placement policy
— How is a node selected to host a partition replica

e Replica migration policy
— When does the system decide to migrate a replica

e Degree of replication

100000

max throughput (ops's)

throughput [writes!s)

Performance

1[0]1]1 SR

1000 -

100

{128,61432)

{128,13582)

10

of DDS bricks

7 iricks
g} Dricks |
=i | & Dricks

—8—712 bricks

hash table threughput (reads/s)

100 1000

(=]

6000

5 10 15 20 2
#service instances

o e + 100

120

CPU utilization (%)

throughput

100000
(

time (ms)

VIR BRI

1

*
»

150000

max througput (readsis)

100 1000

hash table value size (bytes)

10000

throughput (reads/s)

Availability and recovery

600

500 -

400 -

3004 &4]

200 -

0 -

0 20000 100000 150000 200000 250000 300000

time (ms)

