
Infrastructure Technologies for Large-
Scale Service-Oriented Systems

Kostas Magoutis

magoutis@cse.uoi.gr

http://www.cse.uoi.gr/~magoutis

Motivation

• Provide support for Internet services

• Design for clusters of workstations connected by
high-performance network

• Improve over existing systems

– Parallel databases do not scale (heavyweight mechanisms)

– Scalable file systems offer a too low-level abstraction

High-level view of a DDS

Distributed hash-table architecture

Assumptions

• Unreachable nodes must have crashed

– Network partitions do not happen

– Network redundancy makes this a realistic assumption

• Software components are fail-stop

– On deviation from correct behavior, terminate

• Software failures are independent

• Some degree of synchrony

– Task execution takes bounded amount of time

– Messages delivered in bounded amount of time

Metadata: DP and RG maps

Metadata consistency

• DP and RG replicated across all DDS libs and bricks

• Lazy updates

– Send metadata updates but do not wait until all in sync

– They do not use Paxos

• Each data update checks on metadata consistency

– Using 32-bit fingerprints

– All participating nodes must agree on metadata maps

– Any inconsistency fails the I/O, triggers a “repair” action

DDS lib

Failure- and reorganization-free path

storage
“brick”

DDS lib

storage
“brick”

Replicated across
all DDS libs and

bricks

put (ht, 11010011, byte[])

dds5.cs dds6.cs

put operations must:
1. Happen on all replicas or none
2. Be in the same order

-> use atomic commit
-> use locks

Two-phase atomic commit

• Coordinator sends prepare msg to Participants
– Participants respond commit/abort

– A Participant may decide to abort if they cannot obtain lock

• If Coordinator fails
– Participants time out

– They contact each other to figure outcome (commit/abort)

• If Participant fails
– Coordinator times out, excludes participant

• Replicas consistent in cache, not necessarily on disk
– Data can be lost if entire RG goes down

Metadata updates

• Node goes down (failure)
– RGs must be updated

• Node rejoins (recovery)
– RGs must be updated

– Must get fresh copies of replicas

• A partition is split (reorganization)
– DP and RG must be updated

– Nodes must get copies of new replicas

• Two partitions are merged (reorganization)
– DP and RG must be updated

– Nodes must get copies of new replicas

Recovery (node rejoins)

• Obtain lock on entire partition

– Implemented as write lease on partition

• Copy entire partition (no log replays)

– Partition is about 100MB, takes 1 sec in 1Gbps network

– Tradeoff between recovery time and impact on throughput

• Hash table accesses fail during recovery

– DDS lib, service, or WAN client, will retry

What is left out

• Replica placement policy

– How is a node selected to host a partition replica

• Replica migration policy

– When does the system decide to migrate a replica

• Degree of replication

Performance

Availability and recovery

