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Abstract

We present a linear-time algorithm that given a flowgraph

G = (V, A, r) and a tree T , checks whether T is the

dominator tree of G. Also we prove that there exist two

spanning trees of G, T1 and T2, such that for any vertex

v the paths from r to v in T1 and T2 intersect only at the

vertices that dominate v. The proof is constructive and our

algorithm can build the two spanning trees in linear time.

Simpler versions of our two algorithms run in O(mα(m, n))-

time, where n is the number of vertices and m is the number

of arcs in G. The existence of such two spanning trees implies

that we can order the calculations of the iterative algorithm

for finding dominators, proposed by Allen and Cocke [2], so

that it builds the dominator tree in a single iteration.

1 Introduction

We consider a flowgraph G = (V, A, r), which is a
directed graph such that every vertex is reachable from
a distinguished start vertex r ∈ V . Let n and m be,
respectively, the number vertices and arcs in G. A
vertex w dominates a vertex v if every path from r to v
includes w. Let dom(v) be the set of the vertices that
dominate v. Obviously, r and v, the trivial dominators
of v, are in dom(v). For v 6= r, the immediate dominator
of v, denoted by d(v), is the unique vertex w 6= v
that dominates v and is dominated by all the vertices
in dom(v) − v. The (immediate) dominator tree is a
directed tree I rooted at r which is formed by the arcs
{(d(v), v) | v ∈ V − r}. A vertex w dominates v if and
only if w is an ancestor of v in I [1]. Thus I is a compact
representation of the dominance relation.

Compilers use dominance information extensively
during program analysis and optimization, for nat-
ural loop detection (which enables several optimiza-
tions), structural analysis [18], scheduling [19], and the
computation of dependence graphs and static single-
assignment forms [9]. Dominators are also used to iden-
tify pairs of equivalent line faults in VLSI circuits [4].
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There is an O(mα(m, n))-time algorithm [16] to
compute dominators that has been used in many of
these applications. Here α is a functional inverse of
Ackermann’s function, which is very slow-growing; for
all practical purposes this algorithm runs in linear time.
Indeed, it runs fast in practice [13], even though it
has some conceptual complexities. There are even
more complicated truly linear-time algorithms that run
on random-access machines [3, 7] and on pointer ma-
chines [12].

The work described here was motivated by a ques-
tion Steven Weeks (private communication, 1999) asked
the second author: is there a simple way to verify the
correctness of a dominator tree computed by such a
complicated algorithm (or any algorithm)?

The relationship of verification to computation is
highly problem-dependent. It is interesting, for exam-
ple, to compare the situation for shortest path trees to
that of minimum spanning trees. There is a very simple
linear-time algorithm to verify a shortest path tree, but
no linear-time algorithm to compute shortest path trees
is known (for a comparison-based computation model).
On the other hand, minimum spanning trees can be ver-
ified in linear time [10, 15, 6], but the known methods
are complicated. By combining a linear-time verifica-
tion algorithm with random sampling, one can actually
find a minimum spanning tree in linear time [14].

In this paper we present a linear-time algorithm
to verify a dominator tree. This algorithm is simpler
than the known linear-time algorithms to find domina-
tor trees. Also, an O(mα(m, n))-time version of our
algorithm is simpler than the O(mα(m, n))-time algo-
rithm for finding dominators: it requires only a stan-
dard set union data structure instead of a link-eval data
structure [23]. Our work sheds light on the relation-
ship between verification and computation of domina-
tors, and we hope it will lead to a simpler linear-time
algorithm to find dominators.

The second part of this paper deals with a related
problem involving dominators. We give a linear-time
algorithm for constructing two spanning trees T1 and
T2 of G with the following ancestor-dominance property.
For any vertex v 6= r the paths from r to v in T1 and
T2 intersect only at the dominators of v. The existence
of such two spanning trees is an extension of a result of



Whitty [25] on vertex-disjoint paths in directed graphs.
Whitty gave a constructive proof for the case where
G has only trivial dominators (i.e., when d(v) = r for
all v 6= r); he claimed only a polynomial running time
for the algorithm implied by his construction. Here we
provide a surprisingly simple algorithm that constructs
such two spanning trees in O(mα(m, n))-time in the
general case where G may have nontrivial dominators.
Furthermore, by applying the techniques of Buchsbaum
et al. [6], we can construct a linear-time version of our
algorithm. (A more complicated linear-time algorithm
is also implied by the work of Alstrup et al. [3]). Finally,
we show that the existence of two spanning trees with
the ancestor-dominance property implies an optimal
ordering of the calculations in the iterative algorithm
of Allen and Cocke [2], so that it builds the dominator
tree in one iteration.

1.1 Notation. We assume that G is represented by
adjacency lists. In particular, for each vertex v ∈ V we
have a list of its predecessors pred(v) = {u | (u, v) ∈ A}
and of its successors succ(v) = {u | (v, u) ∈ A}. A tree
T is represented by parent pointers; pT (v) denotes the

parent of v in T . The notation “v
∗
→T u” means that

v is an ancestor of u in T , “v
+

→T u” means that v is
a proper ancestor of u in T , and “v →T u” means that
v = pT (u). We omit the subscript when we refer to a
depth-first search (DFS) tree D of G. We denote the
subtree of T rooted at v by Tv. The tree path from u
to v in T is denoted by T (u, v). If T is a spanning tree
of G, an arc a = (u, v) in G is a tree arc (with respect

to T ) if a ∈ T , a forward arc if u
+

→T v and a 6∈ T , a

back arc if v
+

→T u, and a cross arc otherwise (u and
v are unrelated in T ). Finally, for any subset U ⊆ V ,
NCA(T, U) denotes the nearest common ancestor of U
in T . If T = D then we use the notation ν(u, v) to stand
for NCA(D, {u, v}).

2 Dominator Tree Verification

2.1 Necessary Condition. It is known that the
proposed dominator tree T must satisfy the following
condition [17]:

pT (w) = NCA(T, pred(w)), ∀ w ∈ V − r.(2.1)

This condition is not sufficient in general but it is
sufficient for acyclic graphs. Figure 1 shows a counter-
example for a graph that contains a cycle. Nonetheless,
Condition (2.1) provides some useful information about
the location of the dominators of each vertex, as we
show in the next lemma.

Lemma 2.1. Let T be a tree that satisfies (2.1). Then
for any w 6= r, pT (w) dominates w.

Figure 1: Condition (2.1) is not sufficient for graphs
with cycles. (i) A flowgraph with 4 vertices. (ii) A tree
T (solid arcs) that satisfies Condition (2.1) but is not
the dominator tree of the graph, since vertices b and c
are also dominated by a. The dashed arcs are non-tree
arcs.

Proof. Let u = pT (w). Since T satisfies (2.1), for any
z in Tu − u we have pred(z) ⊆ Tu. Therefore any path
from r to w must pass through u. Also since w is
reachable from r there must be at least one such path,
so u dominates w.

Corollary 2.1. Let T be a tree that satisfies (2.1).
For any w 6= r, d(w) ∈ Tu, where u = pT (w). Moreover,
if u ∈ pred(w) then u = d(w).

Hence, in a tree that satisfies Condition (2.1), the
vertices on a path from the root to any vertex v are
dominators of v, although they may comprise only a
subset of dom(v). Then if G contains only trivial
dominators, Condition (2.1) is satisfied by a unique tree,
where every v ∈ V − r is a child of the root. The
main idea of our verification algorithm is based on the
previous observation and is the following: given G and
T we construct for each vertex v that is not a leaf in
T a subgraph GT (v), such that each GT (v) contains
only trivial dominators if and only if T is the dominator
tree of G. Thus we reduce the verification problem to
the problem of testing if a graph contains only trivial
dominators.

Our reduction is based on the idea of the derived
graph, which we denote by GT , and was introduced
in [24]. We give the definition of the derived graph
together with a linear-time procedure to construct it
in the following section.

2.1.1 Derived graph. Let GT = (V, AT , r). The set
AT contains an arc (u, v) in following two cases:

• (u, v) ∈ A and u = pT (v).

• u 6= v, pT (u) = pT (v) and (u′, v) ∈ A, where

u
∗
→T u′.

For any vertex w we define the derived subgraph GT (w)
to be the subgraph of GT induced by w and its children



Figure 2: (i) The flowgraph G = (V, A, r). (ii) The
proposed dominator tree T . In this example T = I.
The dashed arcs are non-tree arcs. (iii) The derived
flowgraph GT = (V, AT , r). The arcs (c, a) and (f, d)
of G are eliminated. The arcs (c, d) and (c, g) of G
correspond to (a, d) and (a, g) in GT . The arcs (f, a)
and (f, g) of G correspond to (d, a) and (d, g) in GT .
(iv) The derived subgraph GT (r).

in T . Figure 2 gives an example of these definitions.
We have two kinds of arcs in GT ; arcs that lead from a
parent to a child in T and arcs that lead from a vertex to
one of its siblings in T . Each arc in GT may correspond
to several arcs in G. Any arc (u, v) ∈ A such that

v
∗
→T u is ignored; this arc does not contribute any

dominance information since all the vertices on T (v, u)
should be dominated by v. Our definition also excludes
any arc (u, v) ∈ A such that NCA(T, {u, v}) 6= pT (v).
Note that if such an arc exists then T does not satisfy
the necessary Condition (2.1) and our algorithm exits
reporting that the input tree is not the dominator tree
of G.

The next lemma shows that it suffices to verify that
T is the dominator tree of GT .

Lemma 2.2. T is the dominator tree of G if and only
if T is the dominator tree of GT .

We omit the proof in this conference version of our
paper. Now we describe an algorithm that builds GT

after verifying that T satisfies Condition (2.1). First we
note that an equivalent way to state Condition (2.1) is
that for each x 6= r the following two properties must
hold:

(P1) For all z in pred(x), pT (x)
∗
→T z.

(P2) Either pT (x) is in pred(x) or there exist two
distinct children of pT (x) in T , y1 and y2, and
predecessors of x, z1 and z2, such that yi 6= x
and yi

∗
→T zi, where i = 1, 2.

We start by constructing for each vertex v that is not a
leaf in T a list of its children in T , which we denote by
chdT (v). Then we perform a preorder walk of T . The
first time we visit a vertex v we assign to it a preorder
number and the last time (after visiting all the vertices
in Tv) we compute the size of the subtree rooted at v; to
do so, we assign size(v) =

∑
u∈chdT (v) size(u) + 1. For

simplicity, we will refer to the vertices of T by their
preorder numbers. Then v < u means that v was
visited before u during the preorder walk. Since the
vertices of a subtree are assigned consecutive numbers,
v

∗
→T u if and only if v ≤ u ≤ v + size(v) − 1. So,

Property (P1) can be tested in constant time per edge.
In order to test Property (P2) we need some additional
information, which can also be collected during the
preorder walk of T . When we visit a vertex v, for each
u ∈ succ(v) such that v 6= pT (u) ≡ w and u 6

∗
→T v

we insert v at the end of a list predom(w). This list
stores the predecessors v of the vertices u for which
we want to verify that w is their immediate dominator.
Figure 3 illustrates these definitions. Notice that since
we visit the vertices in preorder, predom(w) is sorted
in ascending order. Moreover the list that represents
chdT (w) = {w1, w2, . . . , wk} is also sorted with respect
to the preorder numbering if we visit the children of
v in the order given by the list. For each vertex
v ∈ predom(w) we want to find the child of w that
is an ancestor of v, denoted by aT (w, v). Since the lists
that represent both chdT (w) and predom(w) are sorted
in ascending order, we can find each aT (w, v) in time
O(|predom(w)| + |chdT (w)|). Clearly aT (w, v) is the
vertex wi in the list chdT (w) that satisfies wi ≤ v and
wi+1 > v if 1 ≤ i < k, or wk ≤ v ≤ w + size(w) − 1.
(If v does not satisfy any of these inequalities then
Property (P1) does not hold.) Thus, we are essentially
merging the two sorted lists that represent chdT (w) and
predom(w). Furthermore, a vertex v can be inserted
in at most |succ(v)| lists predom. Hence, the total
time that will take us to compute aT (w, v) for all
w ∈ T and all v ∈ predom(w) is proportional to∑

w∈T (|predom(w)| + |chdT (w)|) ≤ |A| + |V |. After
calculating aT (w, v) for each v ∈ pred(u) such that
w = pT (u), testing Property (P2) takes linear time.

As we mentioned earlier, if a test for (P1) or (P2)
fails for some vertex, then our algorithm reports that
T 6= I and terminates. Otherwise, it uses the aT (w, v)
information to construct the derived graph. The arcs
(pT (v), v) in A are copied to AT . For any other arc
(u, v) in A, we include in AT the corresponding arc



Figure 3: (i) A flowgraph with 10 vertices. (ii) The
proposed dominators tree T . In this example T = I.
The dashed arcs are non-tree arcs. The values inside
the brackets correspond to the preorder number of a
vertex and the size of its subtree. Also the nonempty
lists predom are shown.

(z, v) where z = aT (pT (v), u). Note that if we store
the aT (w, v) values as we compute them in a linked list
associated with v (which will be the list of predecessors
of v in GT ), then these values will be sorted in ascending
order because the vertices are visited in preorder in T .
This fact enables us to avoid introducing multiple arcs
in GT .

2.2 Acyclic graphs. As we mentioned earlier, Con-
dition (2.1) is necessary and sufficient for acyclic graphs.
Hence, the verification procedure can accept T if it suc-
cessfully completes the tests for (P1) and (P2) at each
vertex.

2.3 Reducible graphs. If G is reducible [21] then
for every back arc (u, v) with respect to a fixed depth-
first search tree D of G, we have that v dominates u.
Such arcs do not contribute any dominance information,
and hence can be removed. The resulting graph is
acyclic and has the same dominators as G, so we
can apply the verification procedure we use for acyclic
graphs.

2.4 General graphs. In the general case, for each
derived sub-flowgraph GT (w) = (VT (w), AT (w), w), we
have to check if all the vertices in GT (w) have only
trivial dominators. If this is true then Corollary 2.1
implies that dGT

(v) = w for all v ∈ VT (w) − w, and by
Lemma 2.2 we have d(v) = w. In the next section we
see how to verify in linear time that a graph has only
trivial dominators.

2.4.1 Verifying Trivial Dominators. We will de-
scribe a subroutine that given a flowgraph G = (V, E, r)

checks whether r is the immediate dominator of every
vertex v ∈ V − r. Initially we perform a DFS on G,
which produces a DFS tree D and a preorder number-
ing for the vertices of G. We refer to the vertices by
their preorder numbers in D, so v < u means that v
was visited before u during the DFS. Our verification
procedure is based on the next simple observation.

Lemma 2.3. Let v be a vertex such that d(v) 6= r. Then
there exists a vertex u such that d(u) = p(u) 6= r.

Proof. Let u be the vertex that satisfies d(v)→ u
∗
→ v.

Then we must have d(u) = d(v). Otherwise there exists
a path from r to u that avoids d(v), which concatenated
with the path D(u, v) gives a path from r to v that
avoids d(v).

As the previous lemma implies, in order to verify
that G has no nontrivial dominators it suffices to verify
that there does not exist any vertex w ∈ V − r that is
dominated by p(w) 6= r. We can do so by computing
for each vertex w the maximal strongly connected
component S(G, w) in G that contains only descendants
of w in D. Formally, let C(G, w) be the set of vertices z
such that (z, w) is a cycle arc entering w. By convention
w ∈ C(G, w). We define

S(G, w) = {v | w
∗
→ v and ∃ z ∈ C(G, w) such that

∃ path from v to z containing only descendants of w}.

Note that if C(G, w) = ∅ then S(G, w) = {w}. In order
to compute and represent the S(G, v) sets efficiently
we define the operation collapse(S, v), that collapses a
set S ⊆ V to a vertex v /∈ S, as follows. For each
x ∈ S and w /∈ S ∪ {v}, if (x, w) exists we replace
it with (v, w). Similarly, if (w, x) exists we replace it
with (w, v). Finally we remove S. Let G(n) = G and
I(n) = S(G, n) = {n}. For k = n−1, . . . , 1, we compute
I(k) = S(G(k + 1), k) and G(k) = collapse(I(k)− k, k).
Notice that the sets I(k)−k partition the set of vertices
{i | 2 ≤ i ≤ n}. The sets I(k) are called the intervals
of G and can be found by computing ν(u, v) for all
(u, v) ∈ A and using disjoint-set union operations [22].
A simple implementation of these computations runs in
O(mα(m, n))-time [23]. Using the results of [11] and [6]
they can be performed in linear time.

Lemma 2.4. Let k be any vertex such that p(k) 6= 1.
Then d(k) 6= p(k) if and only if there exists j ∈ I(k)
such that j has a predecessor in G(k + 1) that is not
dominated by p(k) in G(k + 1).

Proof. Obviously d(k) 6= p(k) if and only if there exists
j ∈ S(G, k) such that j has a predecessor that is not



TVerify()

for k = n, n− 1, . . . , 2 do

label(k)← min{label((j, k)) | j ∈ pred(k)}
label(k)← min{label(j) | j ∈ I(k)}
if label(k) = p(k) then

return false

endif

done

return true

Figure 4: Procedure TVerify returns false if it finds a
vertex that is dominated by its parent. It assumes that
each arc a = (u, v) is labeled so that label(a) = v if it is
a back arc, label(a) = p(ν(u, v)) if it is a cross arc, and
label(a) = u if it is a tree or a forward arc.

dominated by p(k). Note that if i ∈ S(G, j) then
i ∈ S(G, k). Thus, S(G, k) =

⋃
j∈I(k) S(G, j) and the

Lemma follows from the definition of collapse(S, v).

Figure 4 gives the outline of our algorithm. It
assumes that we have already computed the intervals
of G and that for each arc a = (u, v) we have computed
a label such that

label(a) =






v, a is a back arc
u, a is a forward or a tree arc
p(ν(u, v)), a is a cross arc

.

The algorithm processes the vertices in reverse preorder.
For each vertex k it computes label(k), which is the
minimum of the labels of the incoming arcs of k and
of the labels of the vertices in I(k). It is important
to note that this is equivalent to labeling vertex k in
G(k) by setting label(k) equal to the minimum label of
all the arcs entering k in G(k). If label(k) equals p(k)
the algorithm exits and reports that k is dominated by
p(k). It is clear that algorithm TVerify runs in linear
time given the intervals of G and the arc labels. Figure
5 gives an example of the execution of this algorithm.

Lemma 2.5. Algorithm TVerify is correct.

Proof. We show by induction on k that if the algorithm
does not return false after processing k then k is
not dominated by j = p(k). The basis k = n
is straightforward: the only arcs that may enter n,
excluding the tree arc, are forward arcs. Assuming that
j 6= 1, label(n) < j if and only if there exists a forward
arc entering n. Suppose that the algorithm has correctly
verified the dominators of the vertices n, n−1, . . . , k+1.
By Lemma 2.4 it suffices to show that for any z ∈ I(k)

Figure 5: Example of the execution of TVerify. (i)
The input graph with the arcs already labeled. The
dashed arcs do not belong to the DFS tree. (ii) The
graph after labeling each vertex by the minimum label
of its incoming arcs. (For more clarity we present this
step as being performed separately.) (iii) The situation
when we process vertex 4. All the vertices with higher
preorder numbers have already passed the test. We
have I(4) = {4, 5, 6, 7} (black nodes), so the new label
of 4 is 2 < p(4). (iv) The situation when we process
vertex 3. We have collapsed I(4) − 4 to 4 and now
I(3) = {3, 4, 8, 9, 10, 11, 12}, so the new label of 3 is
1 < p(3).

we have label(z) < j if and only if z is not dominated
by j in G(k + 1). Clearly if no such z exists then I(k)
is dominated by j and the algorithm correctly reports
failure. (Remember that for each vertex z ∈ I(k) − k
there can only exist tree, forward or cross arcs entering z
in G(k+1).) Now assume that there is such a z. If there
exists an arc (x, z) such that ν(z, x) < j then by Lemma
2.4, k is not dominated by j in G and the algorithm sets
label(k) < j. Next assume that ν(z, x) = j. Let l be the
sibling of k that is an ancestor of x in D. Since l passed
the test we already know that it is not dominated by j,
and therefore z is not dominated by j. The algorithm
will set label(k) < j and k correctly passes the test.



3 Two Spanning Trees

Let G = (V, A, r) be a flowgraph. The
paths (v0, v1, . . . , vk−1, vk) and (u0, u1, . . . , , vl−1, ul) are
vertex-disjoint if vi 6= uj for 1 ≤ i ≤ k − 1 and
1 ≤ j ≤ l − 1. The following theorem is a special case
of a result shown by Whitty in [25].

Theorem 3.1. [25] Let G = (V, A, r) be a flowgraph
such that d(v) = r for all v ∈ V − r. There exist two
spanning trees of G, T1 and T2, such that for any v ∈ V
the paths T1(r, v) and T2(r, v) are vertex-disjoint.

Whitty’s proof is constructive and computes T1

and T2 in polynomial time. Anthony Wirth gave a
simple construction for the case where G is acyclic [26].
His algorithm initially computes a topological order
of the vertices and arranges the successor lists from
deepest to shallowest successor, with respect to the
topological order. Then with a second DFS it builds
T1, and afterwards it constructs the residual graph H
by deleting the edges of T1 that are not adjacent to the
root. Finally the algorithm can pick any spanning tree
of H to be T2.

We can extend Theorem 3.1 to get the following
result:

Theorem 3.2. Let G = (V, A, r) be a flowgraph. There
exist two spanning trees of G, T1 and T2, such that for
any v ∈ V the paths T1(r, v) and T2(r, v) intersect only
at the vertices of dom(v).

This theorem can be proved by using the derived graph
of Section 2.1.1 together with Theorem 3.1. We omit
this proof from the conference version of our paper.
Instead, we give a direct proof of Theorem 3.2, by
providing an algorithm that computes two spanning
trees that have the ancestor-dominance property for any
flowgraph.

3.1 Construction of the Two Spanning Trees.

In this section we present a simple algorithm that
constructs two spanning trees with the property of
Theorem 3.2. Our algorithm uses the concept of
semidominators, which was introduced by Lengauer and
Tarjan [16].

3.1.1 Semidominators. Let D be a depth-first
search tree of G. We assign to each vertex a preoder
number with respect to D and refer to the vertices by
these numbers. An important property of DFS, which
we will use repeatedly later, is stated in the next lemma.

Lemma 3.1. [20] If v and w are vertices of G such that
v ≤ w, then any path from v to w must contain a
common ancestor of v and w in D.

A path P = (u = v0, v1, . . . , vk−1, vk = v) is a
semidominator path (abbreviated s-path) if vi > v for
1 ≤ i ≤ k − 1. The semidominator of vertex v is
s(v) = min{u | there is an s-path from u to v}. For any

vertex w 6= r, we have d(w)
∗

→ s(w)
+

→ w [16]. The next
lemma describes some properties of the semidominators
that will be useful in our construction.

Lemma 3.2. [16] Let w 6= r and let u be a vertex
for which s(u) is minimum among vertices u satisfying

s(w)
+

→ u
∗
→ w. Then s(u) ≤ s(w) and d(u) = d(w).

Moreover, if s(u) = s(w) then d(w) = s(w).

For any v ∈ V −r, we define t(v) to be a predecessor
of v that belongs to an s-path from s(v) to v. Such
vertices can be found easily during the computation of
the semidominators. Using the previous lemma, we can
show the following (the proof is omitted):

Lemma 3.3. Let w be a vertex such that s(w) is not a
predecessor of w. Then there exists a vertex h(w) such

that ν(w, t(w))
+

→ h(w)
∗
→ t(w) and s(h(w)) = s(w).

Now we consider the flowgraph Gmin = (V, Amin, r),
where Amin is the multiset {(p(v), v) | v ∈ V − r} ∪
{(t(v), v) | v ∈ V − r}. Notice that Amin contains two
copies of (p(v), v) for each v that satisfies t(v) = p(v).
Also every vertex has in-degree 2 except for r, which
has in-degree 0. We can show that G and Gmin have the
same dominators. Then, since any spanning tree of Gmin

is also a spanning tree of G, it suffices to construct T1

and T2 for Gmin. Henceforth we will assume Gmin ≡ G.

3.2 Algorithm. For any v 6= r, we define Σ(v) =

{x | s(v)
+

→ x
∗
→ v} and E(v) = {x | x ∈

Σ(v) and s(x) ≤ s(y) for all y ∈ Σ(v)}. Also we de-
fine e(v) to be the minimum vertex in E(v). Note that
by Lemma 3.2 we have s(e(v)) = s(v) if and only if
s(v) = d(v).

Figure 6 shows the method we use to build the two
spanning trees; a blue tree B and a red tree R. We call a
vertex v 6= r blue if (t(v), v) ∈ B and red otherwise. An
equivalent way to state the construction is: color v blue
if s(e(v)) = s(v) or e(v) is red; color v red otherwise.
Figure 7 gives an example of the construction. Even
though this construction is simple (given the function
s), verifying its correctness is intricate. We prove first
that B and R are acyclic and hence are trees, and second
that corresponding paths in B and R are disjoint. Both
of these steps require some preliminary ground work.

3.3 Properties of B and R. We begin with two
lemmas that relate the colors of certain vertices.



STrees()

for k = 2, 3, . . . , n do

if s(e(k)) = s(k) or (t(e(k)), e(k)) ∈ R then

{ add (t(k), k) to B;

add (p(k), k) to R }
else

{ add (t(k), k) to R;

add (p(k), k) to B }
endif

done

Figure 6: Procedure STrees constructs two spanning
trees B and R such that for any v 6= r the paths B(r, v)
and R(r, v) intersect only at the vertices in dom(v).

Lemma 3.4. Let v and w be vertices such that v
∗
→ w,

s(v) = s(w), and s(x) ≥ s(v) for all x such that

v
+

→ x
+

→ w. Then v and w are the same color.

Proof. The hypotheses of the Lemma and the definition
of the function e imply that e(v) = e(w). This and
s(v) = s(w) imply that v and w are the same color.

Lemma 3.4 implies that B and R remain the same
if, for each v 6= r, we let e(v) be any vertex x ∈ E(v).

Lemma 3.5. Let x, y and z be vertices that satisfy the
following conditions:

(i) x
+

→ y
+

→ z or x
+

→ z
+

→ y,

(ii) s(x) < s(y) < s(z) < x,

(iii) s(w) ≥ s(x), for all w such that min{y, z}
∗
→ w

∗
→

max{y, z}, and

(iv) x and z are the same color.

Then y is the same color as x and z.

Proof. Suppose that the Lemma is false. Choose three
vertices x, y and z that violate the Lemma and such that
x is minimum. Since x ∈ Σ(z), s(e(z)) ≤ s(x) < s(z).
So e(z) and z have different colors, which implies that
e(z) 6= x. If s(e(z)) = s(x) then Lemma 3.4 implies that
e(z) and x have the same color, a contradiction. Thus

s(e(z)) < s(x) and (iii) implies that e(z)
+

→ min{y, z}.
Since y and z have different colors and e(z) ∈ Σ(y),

it must be the case that e(y)
∗
→ s(z) and s(e(y)) <

s(e(z)). But then e(y), e(z) and x violate the Lemma,
contradicting the choice of x.

Next we prove that B and R are trees.

Figure 7: Example of the execution of STrees. (i) The
input graph with the vertices already numbered with
respect to a DFS tree D (solid arcs). The values inside
the brackets correspond to s(v) and e(v). (ii) The blue
spanning tree B. (iii) The red spanning tree R.

Lemma 3.6. Neither B nor R contains a cycle.

Proof. We shall derive a contradiction to the assump-
tion that B contains a cycle; the same argument applies
to R. Given a cycle in B, let v be the minimum vertex
on the cycle. Then v 6= r (since r contains no incoming
arcs), and s(v) < v. Also, by Lemma 3.1, (t(v), v) is
a cycle arc, v is blue and all vertices on the cycle are
descendants of v. Let w be the first vertex after v on
the cycle such that w is blue and s(w) < v. (If v is
the only such vertex on the cycle, then w = v.) Then

v
+

→ t(w), since v = t(w) would imply s(w) = t(w) = v,
which contradicts s(w) < v. By Lemma 3.3, u = h(w)

satisfies v
+

→ u
∗
→ t(w) and s(u) = s(w) < v. We claim



that u is blue. Indeed, v is a candidate for both e(u) and
e(w), which means that max{s(e(u)), s(e(w))} ≤ s(v).
Also, the definition of s(v) implies that s(x) ≥ s(v) for
any vertex x that is a descendant of v and an ancestor of
either u or w. It follows that e(u) = e(w) is an ancestor
of v, and hence u is the same color as w; namely, blue.
Let z be the vertex on the cycle such that all vertices
on the cycle from z to t(w) (inclusive) are descendants
of u, but the predecessor y of z on the cycle is not a
descendant of u. There must be such a vertex z, since v
is on the cycle but not a descendant of u. Furthermore,
starting from v, z precedes w on the cycle. It cannot
be the case that z = u, for then u would be on the cy-
cle after v but before w, contradicting the choice of w.
Thus u

+

→ z, z is blue, and t(z) = y is not a descendant
of u. But t(z) not a descendant of u implies s(z) < u.
It cannot be the case that s(z) < v, for this would con-

tradict the choice of w. Thus v
∗
→ s(z)

+

→ u
+

→ z.
Then s(e(z)) ≤ s(u) < v < z and e(z) is red. There-
fore, by Lemma 3.4 and the fact e(z) ∈ S(v), we have
s(v) < s(e(z)) < s(u). By Lemma 3.5, e(z) must be
blue, contradicting the fact that e(z) is red.

To prove disjointness of paths in B and R, we
need one technical lemma in addition to Lemmas 3.4
and 3.5. This lemma requires some more definitions.
For each vertex v 6= r, define ŝ(v) as follows: if v
is blue (red) ŝ(v) is the nearest ancestor x of v in
B (R) such that x < v. By Lemma 3.6, B and R
are trees rooted at r, which implies that ŝ(v) is well-
defined. By Lemma 3.1 and the definition of function s,
s(v)

∗
→ ŝ(v)

+

→ v. Let Σ̂(v) = {x | ŝ(v)
+

→ x
∗
→ v} and

Ê(v) = {x | x ∈ Σ̂(v) and s(x) ≤ s(y) for all y ∈ Σ̂(v)}.

Let ê(v) be the minimum vertex in Ê(v).

Lemma 3.7. For any vertex v 6= r, either ŝ(v) = s(v),
or s(ê(v)) < s(v) and ê(v) and v are different colors.

Proof. The proof is by induction on v in decreasing
order. If ŝ(v) = s(v) then the Lemma holds for v.
Thus suppose s(v) < ŝ(v). If (t(v), v) is a forward arc,
ŝ(v) = t(v) = s(v), a contradiction. Thus (t(v), v) is a
cycle arc or a cross arc. Let ν = ν(t(v), v) and w = h(v).

By Lemma 3.3, ν
+

→ w
∗
→ t(v) and s(w) = s(v).

Lemma 3.1 implies that ŝ(v)
∗
→ ν. If ν

+

→ e(v) and
s(e(v)) < s(v), then ê(v) = e(v) and the Lemma holds
for v by the construction of B and R. Thus suppose
e(v)

∗
→ ν or s(e(v)) = s(v). We claim that in either

case v and w are the same color. The definition of s(v)

implies that s(x) ≥ s(v) for all x such that ν
+

→ x
∗
→ w.

If e(v)
∗
→ ν, then e(v) = e(w) and v and w are the

same color. If s(e(v)) = s(v), then s(x) ≥ s(v) for

all x such that s(v)
+

→ x
∗
→ ν, which means that

s(e(w)) = s(v) = s(w), and again v and w are the same
color.

Suppose v and w are both blue; the symmetric
argument applies if they are both red. Let z be the
nearest ancestor of t(v) in B such that the parent y of z
in B is not a descendant of w. Vertex z is blue, since w is
blue and if z 6= w the blue arc (y, z) entering z cannot
be a tree arc. Also z > v (follows from Lemma 3.1),
so the Lemma holds for z by the induction hypothesis.
The definition of s(v) implies that s(z) ≥ s(v), because
z is on B(ŝ(v), v). If s(z) = s(v) and ŝ(z) = s(z),
then ŝ(v) = ŝ(z) = s(v), and the Lemma is true.
Thus suppose s(z) > s(v) or ŝ(z) > s(z). We claim
that s(ê(z)) < s(v) and ê(z) is red. If s(z) = s(v)
and ŝ(z) > s(z), the claim follows since the Lemma
holds for z. Suppose s(z) > s(v). Then z 6= w and

ŝ(v)
+

→ w
+

→ z by the existence of the arc (y, z). Thus
s(e(z)) ≤ s(ê(z)) ≤ s(w) = s(v) < s(z), and by the
construction of B and R, e(z) is red. If ŝ(z) > s(z), ê(z)
is red since the Lemma holds for z. Also s(ê(z)) < s(v),
since s(ê(z)) = s(v) = s(w) implies ê(z) is blue by

Lemma 3.4. Since s(ê(z)) < s(v), ê(z)
∗
→ ν, which

implies ŝ(z)
∗
→ ν and ŝ(v) = ŝ(z). Either ê(v) = ê(z),

in which case the Lemma holds for v, or ν
+

→ ê(v) and
s(ê(v)) < s(ê(z)). In this case if s(e(v)) = s(ê(v)) then
ê(v) is red by Lemma 3.4 and the Lemma holds for v; if
s(e(v)) < s(ê(v)) then ê(v) is red by Lemma 3.5 applied
to e(v), ê(v), and ê(z), and the Lemma holds for v.

3.4 Vertex-disjointness. Now we are ready to
prove vertex-disjointness. First we argue that it
suffices to prove that for each v the paths B(d, v)
and R(d, v) contain no common vertex other than
d and v, where d = d(v). Indeed, let dom(v) =
{d1 = r, d2, . . . , dk−1 = d, dk = v}, where di = d(di+1)
for 1 ≤ i ≤ k − 1. Then, di is an ancestor of di+1 in
both B and R, so the dominators of v appear in the same
order in B(r, v) and R(r, v). Suppose now that B(r, v)
and R(r, v) intersect at a vertex x such that dB is the
closest dominator of v in B that is an ancestor of x, and
similarly dR is the closest dominator of v in R that is an
ancestor of x. Without loss of generality assume that dB

is an ancestor of dR (in both B and R). If dB 6= dR then
the path B(r, x) followed by R(x, v) avoids dR which is
a contradiction. Hence dB = dR = di, and the paths
B(di, di+1) and R(di, di+1) intersect at x.

Lemma 3.8. Let v be any vertex other than r, and let
d = d(v). Then the paths B(d, v) and R(d, v) contain
no common vertex other than d and v.

Proof. Suppose to the contrary that B(d, v) and R(d, v)
both contain a vertex w /∈ {d, v}. Let xB and xR be the



minimum vertices on B(w, v) and R(w, v) respectively.
Neither B(w, v) nor R(w, v) contains d, since B(d, v)
and R(d, v) are simple paths. In particular d /∈
{xB, xR}. Assume xB ≤ xR; the symmetric argument

applies if xR ≤ xB . We have that d
+

→ xB and, by
Lemma 3.1, xB

∗
→ xR

∗
→ v. If xB 6= w then xB is blue

since then it is entered by a blue nontree arc. Similarly
if xR 6= w then xR is red. We have xB

+

→ v, since
xB = v implies xR = v and v is both blue and red since
w 6= v, a contradiction.

Let u be a vertex of minimum s(u) such that xB
+

→

u
∗
→ v. Since xB does not dominate v, Lemma 3.2

implies s(u)
+

→ xB . By Lemma 3.7, either ŝ(u) = s(u),

in which case ŝ(u)
+

→ xB , or s(ê(u)) < s(u), which

implies by the choice of u that ê(u)
∗
→ xB , and again

ŝ(u)
+

→ xB . We claim that u is red. Suppose to
the contrary that u is blue. Then u cannot be on
B(xB , v); if it were, ŝ(u) would be on B(xB , v), since

xB
+

→ u; but every vertex on B(xB , v) is no less than

xB, contradicting ŝ(u)
+

→ xB . Let x be the first vertex

on B(xB , v) such that u
+

→ x
∗

→ v. Then x is blue

and xB
∗
→ ŝ(x)

+

→ u
+

→ x
∗
→ v. The definition of u

implies ê(x) = u. If ŝ(x) = s(x), then e(x) = u, and u
is red by the construction of B and R since x is blue. If
ŝ(x) > s(x), then u = ê(x) is red by Lemma 3.7 since x
is blue.

Since u is red, u
∗
→ xR, because if xR

+

→ u an
argument symmetric to that in the previous paragraph
shows that u is blue. Since xB

+

→ u
∗
→ xR, xB 6= w,

which implies that xB is blue.
We claim that s(u) ≤ ŝ(xB). Vertex w is on

B(ŝ(xB), xB). Consider the path B(ŝ(xB), w) followed
by R(w, v). This path avoids xB . Let y be the first

vertex along this path such that xB
+

→ y
∗
→ v. The part

of the path from ŝ(xB) to y is an s-path for y. Hence
s(y) ≤ ŝ(xB). By the choice of u, s(u) ≤ s(y) ≤ ŝ(xB).

Next we claim that s(u) < s(xB). If s(u) =
s(xB), u and xB are the same color by Lemma 3.4, a
contradiction. If s(u) > s(xB), then since s(u) ≤ ŝ(xB),
Lemma 3.7 gives s(ê(xB)) < s(xB) and ê(xB) is red.
But then ê(xB), xB and u violate Lemma 3.5.

Now we claim that w is not a descendant of u.
Suppose to the contrary that u

∗
→ w. Then the path

from s(u) to xB consisting of the s-path from s(u) to u,
followed by the tree path to w, followed by B(w, xB) is
an s-path for xB , giving s(u) ≥ s(xB), a contradiction.

Since w is not a descendant of u, w 6= xR. Hence
xR is red. Furthermore it cannot be the case that
u

∗
→ ŝ(xR), since w is on R(ŝ(xR), xR), which implies

ŝ(xR)
∗
→ w. Thus ŝ(xR)

+

→ u, and s(ê(xR)) ≤ s(u).
Also the path R(ŝ(xR), w) followed by B(w, xB) is
an s-path for xB, which implies s(xB) ≤ ŝ(xR). If

s(xR) = ŝ(xR) then s(xB) ≤ s(xR), and since s(u) <
s(xB), we have s(e(xR)) ≤ s(u) < s(xR). So, by the
construction of B and R, e(xR) is blue and Lemma 3.4

gives s(e(xR)) < s(u), which implies e(xR)
+

→ xB . But
then Lemma 3.5 for e(xR), u and xB implies that u is
blue, a contradiction. Hence s(xR) < ŝ(xR). Then
ê(xR) is blue by Lemma 3.7, and Lemma 3.4 implies
s(ê(xR)) < s(u). But then Lemma 3.5 for ê(xR), u and
xB implies that u is blue, again a contradiction.

3.5 Running Time. The Lengauer-Tarjan algo-
rithm computes all s(v) and e(v) in O(mα(m, n))-time,
which implies that we can implement algorithm STrees
with the same time complexity. We can get a linear-
time algorithm by using the techniques of Buchsbaum
et al. [6]. (The details will appear separately [5].) Fi-
nally we note that the result of Alstrup et al. [3] implies
a linear-time implementation of our algorithm, but it is
much more complicated.

3.6 Iterative Algorithm. Allen and Cocke [2]
showed that the dominance relation of a flowgraph is
the maximal fixed point of the following set of equa-
tions:

dom′(v) =
( ⋂

u∈pred(v)

dom′(u)
)
∪ {v}, ∀ v ∈ V − r,

where dom′(r) = {r}. This fixed point can be com-
puted iteratively. The iterative algorithm either initial-
izes dom′(v) ← V for all v 6= r, or excludes uninitial-
ized dom′(u) sets from the intersections in the above
equations. Cooper et al. [8] observed that the algo-
rithm does not need to keep each dom′ set explicitly;
it suffices to maintain the transitive reduction of the
dominance relation, which is a tree T . Then, the inter-
section of dom′(u) and dom′(w) consists of the vertices
on the path from NCA(T, {u, w}) to r. Since the dom-
inator tree must satisfy Condition (2.1), the iterative
algorithm can be viewed as a process that modifies a
tree T successively until (2.1) holds for all w ∈ V − r.
The tree changes as the algorithm processes the arcs of
the flowgraph. An arc (u, v), such that u ∈ T , is pro-
cessed by computing x = NCA(T, {u, v}) and setting
pT (v) ← x if x is an ancestor of pT (v) in T . (If v /∈ T
then we simply set pT (v) = u.) Reference [13] states
that there is an optimal ordering of the computations
for the iterative algorithm. This is formalized in the
following lemma.

Lemma 3.9. There exists an ordering σ of the arcs of
G such that if the iterative algorithm processes the arcs
according to σ, then it will construct the dominator tree
of G in a single iteration.



The proof is given in the full version of this paper. We
note, however, that it is straightforward after defining
σ, which we do next. Let T1 and T2 be two spanning
trees of G that satisfy Theorem 3.2. We construct σ
by concatenating a list σ1 of the arcs of T1 with a
list σ2 of the arcs of T2. The arcs in σi are sorted
lexicographically in ascending order with respect to a
preorder numbering of Ti (i = 1, 2). For acyclic graphs
we can construct an optimal ordering after a single DFS;
it suffices to order the arcs with respect to a topological
order. This follows immediately from the fact that
Condition (2.1) is necessary and sufficient for acyclic
graphs. Experimental results show that the topological
order is a good choice in practice [8, 13]. An interesting
question is whether there are similar results that can
speed up iterative algorithms for more general dataflow
problems.
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