
Finding Dominators in Practice?

Loukas Georgiadis1, Renato F. Werneck1, Robert E. Tarjan1,2, Spyridon
Triantafyllis1, and David I. August1

1 Dept. of Computer Science, Princeton University, Princeton NJ, 08544, USA
2 Hewlett-Packard, Palo Alto, CA

Abstract. The computation of dominators in a flowgraph has applica-
tions in program optimization, circuit testing, and other areas. Lengauer
and Tarjan [17] proposed two versions of a fast algorithm for finding dom-
inators and compared them experimentally with an iterative bit vector al-
gorithm. They concluded that both versions of their algorithm were much
faster than the bit-vector algorithm even on graphs of moderate size.
Recently Cooper et al. [9] have proposed a new, simple, tree-based iter-
ative algorithm. Their experiments suggested that it was faster than the
simple version of the Lengauer-Tarjan algorithm on graphs representing
computer program control flow. Motivated by the work of Cooper et al.,
we present an experimental study comparing their algorithm (and some
variants) with careful implementations of both versions of the Lengauer-
Tarjan algorithm and with a new hybrid algorithm. Our results suggest
that, although the performance of all the algorithms is similar, the most
consistently fast are the simple Lengauer-Tarjan algorithm and the hy-
brid algorithm, and their advantage increases as the graph gets bigger
or more complicated.

1 Introduction

A flowgraph G = (V, A, r) is a directed graph with |V | = n vertices and |A| = m

arcs such that every vertex is reachable from a distinguished root vertex r ∈ V .
A vertex w dominates a vertex v if every path from r to v includes w. Our goal
is to find for each vertex v in V the set Dom(v) of all vertices that dominate v.
Certain applications require computing the postdominators of G, defined as the
dominators in the graph obtained from G by reversing all arc orientations.

Compilers use dominance information extensively during program analysis
and optimization, for such diverse goals as natural loop detection (which enables
a host of optimizations), structural analysis [20], scheduling [22], and the compu-
tation of dependence graphs and static single-assignment forms [10]. Dominators
are also used to identify pairs of equivalent line faults in VLSI circuits [7].

The problem of finding dominators has been extensively studied. In 1972
Allen and Cocke showed that the dominance relation can be computed iteratively
from a set of data-flow equations [5]. A direct implementation of this solution

? L. Georgiadis, R. F. Werneck and R. E. Tarjan partially supported by the Aladdin
project, NSF Grant No. CCR-9626862.



has O(mn2) worst-case time. Purdom and Moore [18] gave a straightforward
algorithm with complexity O(mn). It consists of performing a search in G − v

for all v ∈ V (v obviously dominates all the vertices that become unreachable).
Improving on previous work by Tarjan [23], Lengauer and Tarjan [17] proposed
an O(mα(m, n))-time algorithm, where α(m, n) is an extremely slow-growing
functional inverse of the Ackermann function. Alstrup et al. [6] gave a linear-
time solution for the random-access model; a simpler solution was given by
Buchsbaum et al. [8]. Georgiadis and Tarjan [12] achieved the first linear-time
algorithm for the pointer-machine model.

Experimental results for the dominators problem appear in [17, 8, 9]. In [17]
Lengauer and Tarjan found the almost-linear-time version of their algorithm
(LT) to be faster than the simple O(m log n) version even for small graphs.
They also show that Purdom-Moore [18] is only competitive for graphs with
fewer than 20 vertices, and that a bit-vector implementation of the iterative
algorithm, by Aho and Ullman [4], is 2.5 times slower than LT for graphs with
more than 100 vertices. Buchsbaum et al. [8] show that their claimed linear-
time algorithm has low constants, being only about 10% to 20% slower than
LT for graphs with more than 300 vertices. This algorithm was later shown to
have the same time complexity as LT [12], and the corrected version is more
complicated (see Corrigendum of [8]). Cooper et al. [9] present a space-efficient
implementation of the iterative algorithm, which they claimed to be 2.5 times
faster than the simple version of LT. However, a more careful implementation of
LT later led to different results (personal communication).

In this paper we cast the iterative algorithm into a more general framework
and explore the effects of different initializations and processing orderings. We
also discuss implementation issues that make both versions of LT faster in prac-
tice and competitive with simpler algorithms even for small graphs. Furthermore,
we describe a new algorithm that combines LT with the iterative algorithm and
is very fast in practice. Finally, we present a thorough experimental analysis
of various algorithms using real as well as artificial data. We did not include
linear-time algorithms in our study; they are significantly more complex and
thus unlikely to be faster than LT in practice.

2 Algorithms

The immediate dominator of a vertex v, denoted by idom(v), is the unique vertex
w 6= v that dominates v and is dominated by all vertices in Dom(v) − v. The
(immediate) dominator tree is a directed tree I rooted at r and formed by the
edges {(idom(v), v) | v ∈ V − r}. A vertex w dominates v if and only if w is a
proper ancestor of v in I [3], so it suffices to compute the immediate dominators.

Throughout this paper the notation “v
∗
→F u” means that v is an ancestor of u

in the forest F and “v
+

→F u” means that v is a proper ancestor of u in F . We
omit the subscript when the context is clear. Also, we denote by pred(v) the set
of predecessors in G of vertex v. Finally, for any subset U ⊆ V and a tree T ,
NCA(T, U) denotes the nearest common ancestor of U ∩ T in T .



2.1 The Iterative Algorithm

Clearly Dom(r) = {r}. For each of the remaining vertices, the set of dominators
is the solution to the following data-flow equations:

Dom′(v) =
(

⋂

u∈pred(v)

Dom′(u)
)

∪ {v}, ∀ v ∈ V − r. (1)

Allen and Cocke [5] showed that one can iteratively find the maximal fixed-
point solution Dom′(v) = Dom(v) for all v. Typically the algorithm either ini-
tializes Dom′(v)← V for all v 6= r, or excludes uninitialized Dom′(u) sets from
the intersection in (1). Cooper et al. [9] observe that the iterative algorithm
does not need to keep each Dom′ set explicitly; it suffices to maintain the tran-
sitive reduction of the dominance relation, which is a tree T . The intersection
of Dom′(u) and Dom′(w) is the path from NCA(T, {u, w}) to r. Any spanning
(sub)tree S of G rooted at r is a valid initialization for T , since for any v ∈ S

only vertices in r
∗
→S v can dominate v.

It is known [19] that the dominator tree I is such that if w is a vertex in
V − r then idom(w) = NCA(I, pred(w)). Thus the iterative algorithm can be
interpreted as a process that modifies a tree T successively until this property
holds. The number of iterations depends on the order in which the vertices (or
edges) are processed. Kam and Ullman [15] show that certain dataflow equations,
including (1), are solved in up to d(G, D) + 3 iterations when the vertices are
processed in reverse postorder with respect to a DFS tree D. Here d(G, D) is
the loop connectedness of G with respect to D, the largest number of back edges
found in any cycle-free path of G. When G is reducible [13] the dominator tree
is built in one iteration, because v dominates u whenever (u, v) is a back edge.

The running time per iteration is dominated by the time spent on NCA
calculations. If they are performed näıvely (ascending the tree paths until they
meet), then a single iteration costs O(mn) time. Because there may be up to
O(n) iterations, the running time is O(mn2). The iterative algorithm runs much
faster in practice, however. Typically d(G, D) ≤ 3 [16], and it is reasonable to
expect that few NCA calculations will require O(n) time. If T is represented as
a dynamic tree [21], the worst-case bound per iteration is reduced to O(m log n),
but the implementation becomes much more complicated.

Initializations and vertex orderings. Our base implementation of the itera-
tive algorithm (IDFS) starts with T ← {r} and processes the vertices in reverse
postorder with respect to a DFS tree, as done in [9]. This requires a preprocessing
phase that executes a DFS on the graph and assigns a postorder number to each
vertex. Initializing T as a DFS tree is bad both in theory and in practice because
it causes the back edges to be processed, even though they contribute nothing to
the NCAs. Intuitively, a much better initial approximation of the dominator tree
is a BFS tree. We implemented a variant of the iterative algorithm (which we
call IBFS) that starts with such a tree and processes the vertices in BFS order.
As Section 4 shows, this method is often (but not always) faster than IDFS.



Finally, we note that there is an ordering σ of the edges which is optimal
with respect to the number of iterations that are needed for convergence. If we
initialize T = {r} and process the edges according to σ, then after one iteration
we will have constructed the dominator tree. We are currently investigating if
such an ordering can be found efficiently.

2.2 The Lengauer-Tarjan Algorithm

The Lengauer-Tarjan algorithm starts with a depth-first search on G from r and
assigns preorder numbers to the vertices. The resulting DFS tree D is represented
by an array parent. For simplicity, we refer to the vertices of G by their preorder
number, so v < u means that v has a lower preorder number than u. The algo-
rithm is based on the concept of semidominators, which give an initial approxi-
mation to the immediate dominators. A path P = (u = v0, v1, . . . , vk−1, vk = v)
in G is a semidominator path if vi > v for 1 ≤ i ≤ k − 1. The semidominator of
v is defined as sdom(v) = min{u | there is a semidominator path from u to v}.

Semidominators and immediate dominators are computed by finding min-
imum sdom values on paths of D. Vertices are processed in reverse preorder,
which ensures that all the necessary values are available when needed. The algo-
rithm maintains a forest F such that when it needs the minimum sdom(u) on a

path p = w
+

→ u
∗
→ v, w will be the root of a tree in F containing all vertices on

p (in general, the root of the tree containing v is denoted by rootF (v)). Every
vertex in V starts as a singleton in F . Two operations are defined on F : link(v)
links the tree rooted at v to the tree rooted at parent[v]; eval(v) returns a vertex

u of minimum sdom among those satisfying rootF (v)
+

→ u
∗
→ v.

Every vertex w is processed three times. First, sdom(w) is computed and w is
inserted into a bucket associated with vertex sdom(w). The algorithm processes
w again after sdom(v) has been computed, where v satisfies parent[v] = sdom(w)

and v
∗

→ w; then it finds either the immediate dominator or a relative dominator

of w (an ancestor of w that has the same immediate dominator as w). Finally,
immediate dominators are derived from relative dominators in a preorder pass.

With a simple implementation of link-eval (using path compression but not
balancing), the LT algorithm runs in O(m log n) time [25]. With a more sophisti-
cated linking strategy that ensures that F is balanced, LT runs in O(mα(m, n))
time [24]. We refer to these two versions as SLT and LT, respectively.

Implementation issues. Buckets have very specific properties in the Lengauer-
Tarjan algorithm: (1) every vertex is inserted into at most one bucket; (2) there is
exactly one bucket associated with each vertex; (3) vertex i can only be inserted
into some bucket after bucket i itself is processed. Properties (1) and (2) ensure
that buckets can be implemented with two n-sized arrays, first and next : first [i]
represents the first element in bucket i, and next [v] is the element that succeeds
v in the bucket it belongs to. Property (3) ensures that these two arrays can be
combined into a single array bucket.



In [17], Lengauer and Tarjan process bucket [parent[w]] at the end of the
iteration that deals with w. A better alternative is to process bucket [w] in the
beginning of the iteration; each bucket is now processed exactly once, so it need
not be emptied explicitly. Another measure that is relevant in practice is to avoid
unnecessary bucket insertions: a vertex w for which parent[w] = sdom(w) is not
inserted into any bucket because we already know that idom(w) = parent[w].

2.3 The SEMI-NCA algorithm

SEMI-NCA is a new hybrid algorithm for computing dominators that works
in two phases: the first computes sdom(v) for all v ∈ V − r (as in LT), and
the second builds I incrementally, using the fact that for any vertex w 6= r,
idom(w) = NCA(I, {parent[w], sdom(w)}) [12]. In the second phase, for every
w in preorder we ascend the I-tree path from parent[w] to r until we meet the
first vertex x such that x ≤ sdom(w). Then we have x = idom(w). With this
implementation, the second phase runs in O(n2) worst-case time. However, we
expect it to be much faster in practice, since our empirical results indicate that
sdom(v) is usually a good approximation to idom(v).

SEMI-NCA is simpler than LT in two ways. First, eval can return the min-
imum value itself rather than a vertex that achieves that value. This elimi-
nates one array and one level of indirect addressing. Second, buckets are no
longer necessary because the vertices are processed in preorder in the second
phase. With the simple implementation of link-eval (which is faster in practice),
this method (SNCA) runs in O(n2 + m log n) worst-case time. We note that
Gabow [11] presents a rather complex procedure that computes NCAs in total
linear time on a tree that grows by adding leaves. This implies that the second
phase of SEMI-NCA can run in O(n) time, but it is unlikely to be practical.

3 Worst-Case Behavior

This section briefly describes families of graphs that elicit the worst-case behavior
of the algorithms we implemented. Figure 1 shows graph families that favor
particular methods against the others. Family itworst(k) is a graph with O(k)
vertices and O(k2) edges for which IDFS and IBFS need to spend O(k4) time.
Family idfsquad(k) has O(k) vertices and O(k) edges and can be processed in
linear time by IBFS, but IDFS needs quadratic time; ibfsquad(k) achieves the
reverse effect. Finally sncaworst(k) has O(k) vertices and O(k) edges and causes
SNCA, IDFS and IBFS to run in quadratic time. Adding any (yi, xk) would make
SNCA and IBFS run in O(k) time, but IDFS would still need O(k2) time. We
also define the family sltworst(k), which causes worst-case behavior for SLT [25].
Because it has O(k) back edges, the iterative methods run in quadratic time.

4 Empirical Analysis

Based on worst-case bounds only, the sophisticated version of the Lengauer-
Tarjan algorithm is the method of choice among those studied here. In practice,



r

w
1

wk

x
1

x
k

y1

y
k

z
1

zk

r

x
1

x
k

y
1

y
k

. . .

y1

x
11

x12

r

y2

yk

x
k,1

x
k,2

x21

x
22

y1

r

x
1

x
k

y2

itworst(k) idfsquad(k) ibfsquad(k) sncaworst(k)

w

w
2

x
2

y
2

z
2

Fig. 1. Worst-case families.

however, “sophisiticated” algorithms tend to be harder to code and to have
higher constants, so one might prefer other alternatives. The experiments re-
ported in this section shed some light on this issue.

Implementation and Experimental Setup. We implemented all algorithms
in C++. They take as input the graph and its root, and return an n-element
array representing immediate dominators. Vertices are assumed to be integers 1
to n. Within reason, we made all implementations as efficient and uniform as we
could. The source code is available from the authors upon request.

The code was compiled using g++ v. 3.2.2 with full optimization (flag -O4).
All tests were conducted on a Pentium IV with 256 MB of RAM and 256 kB
of cache running Mandrake Linux at 1.7 GHz. We report CPU times measured
with the getrusage function. Since its precision is only 1/60 second, we ran each
algorithm repeatedly for at least one second; individual times were obtained
by dividing the total time by the number of runs. To minimize fluctuations
due to external factors, we used the machine exclusively for tests, took each
measurement three times, and picked the best. Running times do not include
creating the graph, but they do include allocating and deallocating the arrays
used by each particular algorithm.

Instances. We used control-flow graphs produced by the SUIF compiler [14]
from benchmarks in the SPEC’95 suite [2] and previously tested by Buchsbaum
et al. [8] in the context of dominator analysis. We also used control-flow graphs
created by the IMPACT compiler [1] from six programs in the SPEC 2000 suite.
The instances were divided into series, each corresponding to a single bench-
mark. Series were further grouped into three classes, SUIF-FP, SUIF-INT, and
IMPACT. We also considered two variants of IMPACT: class IMPACTP con-
tains the reverse graphs and is meant to test how effectively the algorithms



compute postdominators; IMPACTS contains the same instances as IMPACT,
with parallel edges removed.3 We also ran the algorithms on circuits from VLSI-
testing applications [7] obtained from the ISCAS’89 suite [26] (all 50 graphs were
considered a single class).

Finally, we tested eight instances that do not occur in any particular ap-
plication related to dominators. Five are the worst-case instances described in
Section 3, and the other three are large graphs representing speech recognition
finite state automata (also used by Buchsbaum et al. [8]).

Test Results. We start with the following experiment: read an entire series into
memory and compute dominators for each graph in sequence, measuring the total
running time. For each series, Table 1 shows the total number of graphs (g) and
the average number of vertices and edges (n and m). As a reference, we report
the average time (in microseconds) of a simple breadth-first search (BFS) on
each graph. Times for computing dominators are given as multiples of BFS.

In absolute terms, all algorithms are reasonably fast: none was more than
seven times slower than BFS. Furthermore, despite their different worst-case
complexities, all methods have remarkably similar behavior in practice. In no
series was an algorithm twice as fast (or slow) as any other. Differences do exist,
of course. LT is consistently slower than SLT, which can be explained by the
complex nature of LT and the relatively small size of the instances tested. The
iterative methods are faster than LT, but often slower than SLT. Both variants
(IDFS and IBFS) usually have very similar behavior, although one method is
occasionally much faster than the other (series 145.fppp and 256.bzip2 are good
examples). Always within a factor of four of BFS, SNCA and SLT are the most
consistently fast methods in the set.

By measuring the total time per series, the results are naturally biased to-
wards large graphs. For a more complete view, we also computed running times
for individual instances, and normalized them with respect to BFS. For each
class, Table 2 shows the geometric mean and the geometric standard deviation
of the relative times. Now that each graph is given equal weight, the aggre-
gate measures for iterative methods (IBFS and IDFS) are somewhat better than
before, particularly for IMPACT instances. Deviations, however, are higher. To-
gether, these facts suggest that iterative methods are faster than other methods
for small instances, but slower when size increases.

Figure 2 confirms this. Each point represents the mean relative running times
for all graphs in the IMPACT class with the same value of dlog2(n + m)e. It-
erative methods clearly have a much stronger dependence on size than other
algorithms. Almost as fast as a single BFS for very small instances, they be-
come the slowest alternatives as size increases. The relative performance of the
other methods is the same regardless of size: SNCA is slightly faster than SLT,
and both are significantly faster than LT. A similar behavior was observed for

3 These edges appear in optimizing compilers due to superblock formation, and are
produced much more often by IMPACT than by SUIF.



Table 1. Complete series: number of graphs (g), average number of vertices (n) and
edges (m), and average time per graph (in microseconds for BFS, and relative to BFS
for other methods). The best result in each row is marked in bold.

instance dimensions bfs relative total times

class series g n m time IDFS IBFS LT SLT SNCA

CIRCUITS circuits 50 3228.8 5027.2 228.88 5.41 6.35 4.98 3.80 3.48

IMPACT 181.mcf 26 26.5 90.3 1.41 4.75 4.36 5.20 3.33 3.25

197.parser 324 16.8 55.7 1.22 4.22 3.66 4.39 3.09 2.99

254.gap 854 25.3 56.2 1.88 3.12 2.88 3.87 2.71 2.61

255.vortex 923 15.1 35.8 1.27 4.04 3.84 4.30 3.24 3.13

256.bzip2 74 22.8 70.3 1.26 4.81 3.97 4.88 3.36 3.20

300.twolf 191 39.5 115.6 2.52 4.58 4.13 5.01 3.51 3.36

IMPACTP 181.mcf 26 26.5 90.3 1.41 4.65 4.34 5.09 3.41 3.21

197.parser 324 16.8 55.7 1.23 4.13 3.40 4.21 3.01 2.94

254.gap 854 25.3 56.2 1.82 3.32 3.44 3.79 2.69 2.68

255.vortex 923 15.1 35.8 1.26 4.24 4.03 4.19 3.32 3.32

256.bzip2 74 22.8 70.3 1.28 5.03 3.73 4.78 3.23 3.07

300.twolf 191 39.5 115.6 2.52 4.86 4.52 4.88 3.38 3.33

IMPACTS 181.mcf 26 26.5 72.4 1.30 4.36 4.04 5.22 3.30 3.24

197.parser 324 16.8 42.1 1.10 4.10 3.56 4.67 3.42 3.32

254.gap 854 25.3 48.8 1.75 3.02 2.82 4.00 2.80 2.66

255.vortex 923 15.1 27.1 1.16 2.59 2.41 3.50 2.45 2.34

256.bzip2 74 22.8 53.9 1.17 4.25 3.53 4.91 3.33 3.24

300.twolf 191 39.5 96.5 2.23 4.50 4.09 5.12 3.50 3.41

SUIF-FP 101.tomcatv 1 143.0 192.0 4.23 3.42 3.90 5.78 3.67 3.66
102.swim 7 26.6 34.4 1.04 2.77 3.00 4.48 2.97 2.82
103.su2cor 37 32.3 42.7 1.29 2.82 2.99 4.68 3.01 3.03
104.hydro2d 43 35.3 47.0 1.39 2.79 3.05 4.64 2.94 2.86
107.mgrid 13 27.2 35.4 1.12 2.58 3.01 4.25 2.82 2.77
110.applu 17 62.2 82.8 2.03 3.28 3.58 5.36 3.45 3.41
125.turb3d 24 54.0 73.5 1.51 3.57 3.59 6.31 3.66 3.44

145.fpppp 37 20.3 26.4 0.82 3.00 3.43 4.83 3.19 3.19
146.wave5 110 37.4 50.7 1.43 3.09 3.11 5.00 3.22 3.15

SUIF-INT 009.go 372 36.6 52.5 1.72 3.12 3.01 4.71 3.00 3.07
124.m88ksim 256 27.0 38.7 1.17 3.35 3.10 4.98 3.16 3.18
126.gcc 2013 48.3 69.8 2.35 3.00 3.01 4.60 2.91 2.99
129.compress 24 12.6 16.7 0.66 2.79 2.46 3.76 2.60 2.55
130.li 357 9.8 12.8 0.54 2.59 2.44 3.92 2.67 2.68
132.ijpeg 524 14.8 20.1 0.78 2.84 2.60 4.35 2.84 2.82
134.perl 215 66.3 98.2 2.74 3.77 3.76 5.43 3.44 3.50
147.vortex 923 23.7 34.9 1.35 2.69 2.67 3.92 2.59 2.52



Table 2. Times relative to BFS: geometric mean and geometric standard deviation.
The best result in each row is marked in bold.

IDFS IBFS LT SLT SNCA

class mean dev mean dev mean dev mean dev mean dev

CIRCUITS 5.89 1.19 6.17 1.42 6.71 1.18 4.62 1.15 4.40 1.14
SUIF-FP 2.49 1.44 2.34 1.58 3.74 1.42 2.54 1.36 2.96 1.38
SUIF-INT 2.45 1.50 2.25 1.62 3.69 1.40 2.48 1.33 2.73 1.45
IMPACT 2.60 1.65 2.24 1.77 4.02 1.40 2.74 1.33 2.56 1.31
IMPACTP 2.58 1.63 2.25 1.82 3.84 1.44 2.61 1.30 2.52 1.29
IMPACTS 2.42 1.55 2.05 1.68 3.62 1.33 2.50 1.28 2.61 1.45

IMPACTS and IMPACTP; for SUIF, which produces somewhat simpler graphs,
iterative methods remained competitive even for larger sizes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 3  4  5  6  7  8  9  10  11  12

m
ea

n 
re

la
tiv

e 
ru

nn
in

g 
tim

e 
(w

.r
.t.

 B
F

S
)

logarithm of instance size

BFS
IDFS
IBFS

LT
SLT

SNCA

Fig. 2. Times for IMPACT instances within each size. Each point represents the mean
relative running time (w.r.t. BFS) for all instances with the same value of dlog

2
(n+m)e.

The results for IMPACT and IMPACTS indicate that the iterative methods
benefit the most by the absence of parallel edges. Because of path compression,
Lengauer-Tarjan and SEMI-NCA can handle repeated edges in constant time.

Table 3 helps explain the relative performance of the methods with three
pieces of information. The first is sdp%, the percentage of vertices (excluding
the root) whose semidominators are their parents in the DFS tree. These vertices



are not inserted into buckets, so large percentages are better for LT and SLT.
On average, far more than half of the vertices have this property. In practice,
avoiding unnecessary bucket insertions resulted in a 5% to 10% speedup.

Table 3. Percentage of vertices that have their parents as semidominators (sdp%),
average number of iterations and number of comparisons per vertex.

sdp iterations comparisons per vertex

class (%) IDFS IBFS IDFS IBFS LT SLT SNCA

CIRCUITS 76.7 2.8000 3.2000 32.6 39.3 12.0 9.9 8.9
IMPACT 73.4 2.0686 1.4385 30.9 28.0 15.6 12.8 11.1
IMPACTP 88.6 2.0819 1.5376 30.2 32.2 15.5 12.3 10.9
IMPACTS 73.4 2.0686 1.4385 24.8 23.4 13.9 11.2 9.5
SUIF-FP 67.7 2.0000 1.6817 12.3 15.9 10.3 8.3 6.8
SUIF-INT 63.9 2.0009 1.6659 14.9 17.2 11.2 8.6 7.2

The next two columns show the average number of iterations performed by
IDFS and IBFS. It is very close to 2 for IDFS: almost always the second iteration
just confirms that the candidate dominators found in the first are indeed correct.
This is expected for control-flow graphs, which are usually reducible in practice.
On most classes the average is smaller than 2 for IBFS, indicating that the
BFS and dominator trees often coincide. Note that the number of iterations for
IMPACTP is slightly higher than for IMPACT, since the reverse of a reducible
graph may be irreducible.

The last five columns show how many times on average a vertex is compared
to other vertices (the results do not include the initial DFS or BFS). The number
of comparisons is always proportional to the total running time; what varies is the
constant of proportionality, much smaller for simpler methods than for elaborate
ones. Iterative methods need many more comparisons, so their competitiveness
results mainly from smaller constants. For example, they need to maintain only
three arrays, as opposed to six or more for the other methods. (Two of these
arrays translate vertex numbers into DFS or BFS labels and vice-versa.)

We end our experimental analysis with results on artificial graphs. For each
graph, Table 4 shows the number of vertices and edges, the time for BFS (in
microseconds), and times for computing dominators (as multiples of BFS). The
first five entries represent the worst-case familes described in Section 3. The last
three graphs have no special adversarial structure, but are significantly larger
than other graphs. As previously observed, the performance of iterative methods
tends to degrade more noticeably with size. SNCA and SLT remain the fastest
methods, but now LT comes relatively close. Given enough vertices, the asymp-
totically better behavior of LT starts to show.



Table 4. Individual graphs (times for BFS in microseconds, all others relative to BFS).
The best result in each row is marked in bold.

instance bfs relative running times

name vertices edges time IDFS IBFS LT SLT SNCA

idfsquad 1501 2500 28 2735.3 21.0 8.6 4.2 10.5
ibfsquad 5004 10003 88 4.9 9519.4 8.8 4.5 4.3

itworst 401 10501 34 6410.5 6236.8 9.2 4.7 4.7

sltworst 32768 65534 2841 283.4 288.6 7.9 11.0 10.5
sncaworst 10000 14999 179 523.2 243.8 12.1 8.3 360.7
atis 4950 515080 2607 8.3 12.8 6.5 3.5 3.3

nab 406555 939984 49048 17.6 15.6 12.8 11.6 10.2

pw 330762 823330 42917 18.3 15.1 13.3 12.1 10.4

5 Final Remarks

We compared five algorithms for computing dominators. Results on three classes
of application graphs (program flow, VLSI circuits, and speech recognition) in-
dicate that they have similar overall performance in practice. The tree-based
iterative algorithms are the easiest to code and use less memory than the other
methods, which makes them perform particularly well on small, simple graphs.
Even on such instances, however, we did not observe the clear superiority of the
original tree-based algorithm reported by Cooper et al. (our variants were not
consistently better either). Both versions of LT and the hybrid algorithm are
more robust on application graphs, and the advantage increases with graph size
or graph complexity. Among these three, the sophisticated version of LT was the
slowest, in contrast with the results reported by Lengauer and Tarjan [17]. The
simple version of LT and hybrid were the most consistently fast algorithms in
practice; since the former is less sensitive to pathological instances, it should be
the method of choice.

Acknowledgements. We thank Adam Buchsbaum for providing us the SUIF
and speech recognition graphs and Matthew Bridges for his help with IMPACT.
We also thank the anonymous referees for their helpful comments.

References

1. The IMPACT compiler. http://www.crhc.uiuc.edu/IMPACT.
2. The Standard Performance Evaluation Corp. http://www.spec.org/.
3. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, MA, 1986.
4. A. V. Aho and J. D. Ullman. Principles of Compilers Design. Addison-Wesley,

1977.
5. F. E. Allen and J. Cocke. Graph theoretic constructs for program control flow

analysis. Technical Report IBM Res. Rep. RC 3923, IBM T.J. Watson Research
Center, 1972.



6. S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear time.
SIAM Journal on Computing, 28(6):2117–32, 1999.

7. M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppana. Fault equivalence
identification using redundancy information and static and dynamic extraction. In
Proceedings of the 19th IEEE VLSI Test Symposium, March 2001.

8. A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. A new, simpler
linear-time dominators algorithm. ACM Transactions on Programming Languages

and Systems, 20(6):1265–96, 1998. Corrigendum to appear.
9. K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm.

Available online at http://www.cs.rice.edu/∼keith/EMBED/dom.pdf.
10. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently

computing static single assignment form and the control dependence graph. ACM

Transactions on Programming Languages and Systems, 13(4):451–490, 1991.
11. H. N. Gabow. Data structures for weighted matching and nearest common ances-

tors with linking. In Proceedings of the first annual ACM-SIAM symposium on

Discrete algorithms, pages 434–443, 1990.
12. L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Proc. 15th

ACM-SIAM Symp. on Discrete Algorithms, pages 862–871, 2004.
13. M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs. Journal

of the ACM, 21(3):367–375, 1974.
14. G. Holloway and C. Young. The flow analysis and transformation libraries of

Machine SUIF. In Proceedings of the 2nd SUIF Compiler Workshop, 1997.
15. J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms.

Journal of the ACM, 23:158–171, 1976.
16. D. E. Knuth. An empirical study of FORTRAN programs. Software Practice and

Experience, 1:105–133, 1971.
17. T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow-

graph. ACM Transactions on Programming Languages and Systems, 1(1):121–41,
1979.

18. P. W. Purdom, Jr. and E. F. Moore. Algorithm 430: Immediate predominators in
a directed graph. Communications of the ACM, 15(8):777–778, 1972.

19. G. Ramalingam and T. Reps. An incremental algorithm for maintaining the dom-
inator tree of a reducible flowgraph. In Proceedings of the 21st ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 287–296, 1994.
20. M. Sharir. Structural analysis: A new approach to flow analysis in optimizing

compilers. volume 5, pages 141–153, 1980.
21. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of

Computer and System Sciences, 26:362–391, 1983.
22. P. H. Sweany and S. J. Beaty. Dominator-path scheduling: A global scheduling

method. In Proceedings of the 25th International Symposium on Microarchitecture,
pages 260–263, 1992.

23. R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing,
3(1):62–89, 1974.

24. R. E. Tarjan. Applications of path compression on balanced trees. Journal of the

ACM, 26(4):690–715, 1979.
25. R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.

Journal of the ACM, 31(2):245–81, 1984.
26. The CAD Benchmarking Lab, North Carolina State University. ISCAS’89 bench-

mark information. http://www.cbl.ncsu.edu/www/CBL Docs/iscas89.html.


