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Abstract

A method based on the solution of the one-dimensional single channel inverse scattering is proposed for the design of quantum filters

having specific reflection and transmission properties. The inversion procedure allows one, via modifications of a prefabricated prototype

system, to reach the desired filter properties. The feasibility of the method is demonstrated on several examples, where filter properties are

requested in different energy ranges. The shape and range of the corresponding potential are smooth and therefore they render

themselves to applications in microelectronics, nanostractures and in quantum devices.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The inverse scattering problem on the line [1–4] was the
subject of several theoretical investigations in the past and
several questions concerning the inversion procedure were
successfully addressed. These include the numerical solu-
tion of the Marchenko integral equation [5–8], the handling
of bound states [9] and the successful solution of the
coupled channel problem in the presence of thresholds and
bound states [10–13].

With regard to applications, only limited use of inverse
scattering techniques in one dimension has been made
despite their huge prospects in a variety of fields including
reflection at atomic mirrors [14], construction of semicon-
ductor quantum devices [15] and in quantum structure
development in microelectronics [16]. The corresponding
lack of progress can be attributed to the fact that the
solution of the inverse scattering problem presupposes the
knowledge not only of the reflectivity (modulus of the
reflection coefficient) but also of the corresponding phase
at all incident momenta k, the measurement of which is
e front matter r 2006 Elsevier Ltd. All rights reserved.
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non-trivial. For the wide field of applications only a few
methods have been suggested for the complete experi-
mental determination of the reflection coefficient. For
example, in neutron reflectometry, promising procedures
were proposed [17–19], but to our knowledge the experi-
mental implementation has been limited to one rather
specific setup in neutron reflectometry [20]. The missing
phase information in standard scattering experiments
in one-dimensional systems is similar to the well known
and longstanding phase problem in diffraction analysis
[21–23].
In the present work we address the question of the design

of a single channel quantum filter in one dimension by
minimal modifications of an available prefabricated system
with given reflection and transmission properties. Such
designs could be of extreme interest in a variety of
questions related to structures on the nanometer scale
such as in the so-called frustrated total reflection of cold
neutrons in which the incident neutrons, due to their wave
nature, suffer a total reflection in a Ni–V–Ni Fabry–Perot
resonator [24]. The design of electron wave filters from
inverse scattering theory is also of interest and Bessis et al.
[25] illustrated this by giving specifications for the
construction of a two narrow band-pass 12-layer
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AlcGa1�cAs filter. However, we use the inverse scattering
techniques in a slightly different way than Bessis et al. Here
we are interested in the necessary modifications of a given
profile to accommodate certain requirements, such as full
transmission within a given energy range. The method is
applied to a variety of cases and the shape and the features
of the resulting quantum filters are discussed.

In Section 2 we briefly recall the inverse scattering
formalism and derive the required relations for the
determination of the required modifications. In Section 3
we present several numerically solved examples and
investigate the essential features of the profile which lead
to the filtering function. Conclusions and the outlook for
further applications is given in Section 4. In the appendix
we give the parametrized forms of the profiles used in the
examples and some details of the Obreshkov polynomials
used in a smoothing procedure.
2. Formalism

The formalism of the one-dimensional inverse scattering
problem and its solution is well known and for details we
refer the reader to standard text books (see e.g. [2–4]) for
the basic theory and to the work of Lipperheide et al. [6]
for its numerical implementation. Before entering the
central question of the filter design, we briefly recall for
convenience the most important aspects of inverse scatter-
ing theory.

We consider the Schrödinger equation in one dimension

y00 þ ½k2
� V ðxÞ�y ¼ 0; �1oxoþ1, (1)

where k is the momentum of the particle (using appro-
priate units k2 is equivalent to the energy) and the real
potential V ðxÞ satisfies V ðxÞ ¼ 0 for xo0 and in general
V ðxÞ ! V s for x!þ1. The corresponding Jost solutions
are [3,6,26]

f �ðk; xÞ ¼
½e�ik̄x þ RþðkÞe

þik̄x�=TþðkÞ; x!þ1;

e�ikx; xo0;

(

and

f þðk; xÞ ¼
eik̄x; x!þ1;

½e�ikx þ R�ðkÞe
þikx�=T�ðkÞ; xo0;

(

where k̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� V s

p
is the wave number in the semi-

infinite region x!1 and the potential goes to the
substrate V s.

The input in the inverse scattering procedure is the
reflection coefficient R�ðkÞ (or RþðkÞ) which must be
known for all momenta k 2� �1;þ1½. Since we are
dealing with real potentials V ðxÞ the reflection coefficient
for negative values of k is given by (see e.g. [6])

R�ð�kÞ ¼ R��ðkÞ. (2)

In the following we consider incidence from the left and
suppress the corresponding subscript (i.e. �).
Knowing the reflection coefficient RðkÞ one can perform
the Fourier transformation to obtain the input kernel

BðxÞ ¼
1

2p

Z þ1
�1

dke�ikxRðkÞ (3)

to the Marchenko integral equation [2]

Kðx; yÞ ¼ �Bðxþ yÞ �

Z þx

�y

dz Kðx; zÞBðzþ yÞ (4)

with xX0, �xoyox; BðxÞ ¼ 0 for xo0. Solving (4) yields
the kernel Kðx; yÞ and thus the potential

V ðxÞ ¼ 2
dKðx; xÞ

dx
for x40. (5)

Formally, the solution of the inverse scattering problem is
seemingly straightforward. However, its numerical imple-
mentation is sometimes tedious because of the oscillatory
behavior of the integrand in the Fourier transform. Details
on the numerical treatment are given in [6]. Additional
numerical difficulties might also arise in the presence of
bound states. Although this problem has also been solved
[9], in this work we consider profiles that do not sustain
bound states.
With the tools of inverse scattering theory we are now

able to tackle the problem of the design of a quantum filter
which provides full transmission or reflection in the
momentum interval k 2 ½ka; kb�. Firstly, we assume that
we have a prefabricated system with well-known profile
V0ðxÞ and reflection coefficient RðkÞ. Hence, we know the
input kernel B0ðxÞ and the corresponding transformation
kernel K0ðx; yÞ for all x; y with x4y. Looking for the
profile V ðxÞ with, for example, vanishing reflectivity, in the
momentum range k 2 ½ka; kb� requires the solution of the
Marchenko integral (4) with the appropriate input kernel
BðxÞ.
However, in the design problem considered here, we

already have an existing device and we only want to modify
its profile to obtain the desired filter properties i.e. we want
to change the reflection coefficient, within a specific energy
region ½ka; kb�, from its original value R0ðkÞ to a new one
RðkÞ. It is straightforward to develop an integral equation
for the required modification of the profile. Subtracting the
corresponding Marchenko equations (4) for the new and
the prefabricated profile leads to

DKðx; yÞ ¼ � DBðxþ yÞ �

Z þx

�y

dz K0ðx; zÞDBðzþ yÞ

�

Z þx

�y

dzDKðx; zÞBðzþ yÞ, ð6Þ

where

DBðxÞ ¼ �
1

2p

Z kb

ka

dk½DRðkÞe�ikx þ DR�ðkÞeikx� (7)

accounts for the desired change of the reflection coefficient
DRðkÞ ¼ R0ðkÞ � RðkÞ in the interval ½ka; kb�. The required
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modification of the profile is then given by

DV ðxÞ ¼ 2
d

dx
DKðx;xÞ (8)
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Fig. 1. The original potential and its reproduction by the Marchenko

inversion procedure. The two potentials are indistinguishable.
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Fig. 2. (a) The input jRðkÞj2 (—) and the one obtained from the modified

potential (- - -). The two vertical lines show the strip in which we demand

rðkÞ ¼ 0. (b) The input potential (—) and the modified one obtained by the

Marchenko inversion procedure (- - -).
and thus

V ðxÞ ¼ V 0ðxÞ þ DV ðxÞ. (9)

The assumption that RðkÞ has a specific value in the region
½ka; kb� generates discontinuities at the end points which
must be healed. In the present work, we assume that the
reflectivity rðkÞ is either zero (full transmission) or one (full
reflection) within a wave number region k 2 ½ka; kb� and
thus the continuity can be restored inside thin slices ½ka �

da; ka� and ½kb; kb þ db� before the inversion procedure is
implemented. The healing procedure followed is different
for the two cases considered.

2.1. Total reflection

The reflection coefficient is written as

RðkÞ ¼ aðkÞ þ ibðkÞ

� rðkÞ cosfðkÞ þ irðkÞ sinfðkÞ, ð10Þ

where fðkÞ is the phase and
ffiffiffiffiffiffiffiffi
rðkÞ

p
the reflectivity. In order

to have total reflection we have to set rðkÞ ¼ 1,
8k 2 ½ka; kb�. The choice of phase, however, is in this case
non-unique. One way to choose it, is to require that the
path of the modified fðkÞ in the region ½ka; kb� corresponds
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Fig. 3. Same as in Fig. 2 but with rðkÞ ¼ 0 for k 2 ð0:01; 0:1Þ.
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to the minimum deviation of the reflection coefficient from
the original one. To achieve this we assume that f depends
on some adjustable parameters ~v, fðkÞ � fðk;~vÞ, chosen so
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Fig. 4. The real part of RðkÞ for the potentials shown in Fig. 3 for

k 2 ð2; 5Þ. The two curves are indistinguishable.
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Fig. 5. Same as in Fig. 2 but with rðkÞ ¼ 1 for k 2 ð0:01; 0:1Þ and cut-off

radius of V ðxÞ at x ¼ 40.
as to minimize the quantityX
k2½ka;kb�

ða0ðkÞ � aðkÞÞ2 þ ðb0ðkÞ � bðkÞÞ2

i.e.X
k2½ka;kb�

½a0ðkÞ � cosðfðk;~vÞÞ�2 þ ½b0ðkÞ � sinðfðk;~vÞÞ�2, (11)

where a0 ¼ cosðf0ðkÞÞ and b0 ¼ cosðf0ðkÞÞ corresponds to
the original phase and the summation is taken over all
mesh k-points of the region under consideration.
The healing of the generated discontinuities is done using

Obreshkov polynomials of degree three [27], to smoothly
interpolate in the thin slices k 2 ½ka � da; ka� and
k 2 ½kb; kb þ db�. For aðkÞ (and similarly for bðkÞ) we have

aðkÞ ¼

a0ðkÞ; k 2 ½0; ka � da�;

p3ðkÞ; k 2 ½ka � da; ka�;

cosðfðkÞÞ; k 2 ½ka; kb�;

q3ðkÞ; k 2 ½kb; kb þ db�;

a0ðkÞ; k 2 ½kb þ db;1�;

8>>>>>><
>>>>>>:

(12)

where a0ðkÞ is the real part of the reflection coefficient
obtained from the prefabricated profile, p3ðkÞ and q3ðkÞ are
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Fig. 6. Same as in Fig. 2 but with rðkÞ ¼ 1 for k 2 ð0:01; 0:1Þ and cut-off

radius of V ðxÞ at x ¼ 22.
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Obreshkov polynomials that at both ends have prescribed
function and derivative values so as to make RðkÞ and its
first derivative continuous. Using the notation of the
Appendix we have

p3ðkÞ ¼ P1;1
ka�da;ka

ðr0; kÞ,

q3ðkÞ ¼ P1;1
kb;kbþdb

ðr0; kÞ.

In practice, for fðk;~vÞ a sigmoidal perceptron [28] has been
used with one hidden layer incorporating five neurons,
namely,

fðk;~vÞ ¼
X5
i¼1

v3i�2

1þ expð�v3i�1k � v3iÞ
.

The analytic form of this function guarantees that the new
phase is smooth in the region considered. The minimization
of the objective function in (11) has been performed using
the Merlin optimization environment [29].

2.2. Zero reflection

In the case rðkÞ ¼ 0 for k 2 ½ka; kb� and the choice of f
does not play any role. Hence for aðkÞ (and similarly for
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Fig. 7. Same as in Fig. 2 but with rðkÞ ¼ 0 for k 2 ð0:1; 0:2Þ.
bðkÞ) we have to take care only of the continuity at the
edges,

aðkÞ ¼

a0ðkÞ; k 2 ½0; ka � da�;

p3ðkÞ; k 2 ½ka � da; ka�;

0; k 2 ½ka; kb�;

q3ðkÞ; k 2 ½kb; kb þ db�;

a0ðkÞ; k 2 ½kb þ db;1�:

8>>>>>><
>>>>>>:

(13)

3. Applications

Solving (1) we may calculate the reflection coefficient
RðkÞ from k ¼ 0 up to a maximum value k ¼ Kmax for
which the real and imaginary parts of RðkÞ are of the order
of �1� 10�5. In most examples considered here this is
attained at Kmax�10 (in appropriate units). Inclusion of
values beyond the Kmax has no visible effects on the
reconstructed potential via inversion, and therefore they
can be ignored. This can be seen in Fig. 1 where we
employed, as input, a Babylonian zigurat shape potential.
The original and the inverted potential are, for all practical
purposes, indistinguishable. The quality of the reproduc-
tion is similar for all examples considered and from now on
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Fig. 8. Same as in Fig. 2 but with rðkÞ ¼ 1 for k 2 ð0:1; 0:2Þ.
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the potential obtained by inversion without modification
on the reflection coefficient, will not be shown.

The first question addressed concerns the preferred form
of the profile that generates a transparency at low energies
which extend beyond its height. For this we consider a
‘pillar’ barrier of height 0.1 shown in Fig. 2(b) and impose
the condition rðkÞ ¼ 0 for k 2 ðka; kbÞ � ð0:02; 0:3Þ. The
resulting low-energy transparent potential exposes two
attractive wells in either side of a triangular-type repulsion
as well as a quickly diminishing oscillation beyond this
range. This potential generates the reflection coefficient
shown in Fig. 2(a). It is seen that within the prescribed
energy region the reflection coefficient is indeed insignif-
icant. The appearance of the triangular-type attractions
and repulsions is a general trend exhibited in all cases
considered with repulsive barriers. We note that the quickly
diminishing small oscillations appearing beyond such a
form depend on the choice of the range k 2 ðka; kbÞ and the
way the discontinuities have been healed. It was found that
the inclusion of the high energy small oscillations have
insignificant effects on rðkÞ and therefore they can be
ignored. We also note that to retain the boundary
condition at k ¼ 0, i.e. rð0Þ ¼ 1, ka should never be zero.
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Fig. 9. Same as in Fig. 2 but with rðkÞ ¼ 1 for k 2 ð0:1; 0:3Þ.
We corroborate the above results by considering the
potential shown in Fig. 3 in which triangular attractions
are introduced on either side of the barrier that also has a
triangular form. Prior to the modifications, the potential
shape generates a reflectivity rðkÞ which is already small
and therefore with slight modifications in the shape, the
resulting rðkÞ becomes zero within the energy window
ð0:01; 0:1Þ. We stress here that the high energy character-
istics of RðkÞ are not affected by the modified potential.
This is shown in Fig. 4 where the input and the output real
part of the reflection coefficient are shown in the region
k 2 ð2; 5Þ. Using the same potential but with the require-
ment that rðkÞ ¼ 1 within the same energy range, we obtain
results exhibited in Figs. 5 and 6. In the former figure, we
see that the second attraction has been removed and
replaced by a small substrate of the order of k ¼ 0:008. By
extending this substrate beyond x�50 the reflectivity in the
region k 2 ð0:01; 0:1Þ becomes one. It is interesting to notice
that by not including the asymptotic shape, the modifica-
tions are such that the rðkÞ is already quite high. This is
shown in Fig. 6.
Another interesting structure to consider, is the one

shown in Fig. 7. By slightly shifting the edges of the
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Fig. 10. Same as in Fig. 2 but with rðkÞ ¼ 0 for k 2 ð0:1; 0:3Þ.
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potential towards negative values a transparency is
generated in the region ð0:1; 0:2Þ. In contrast, the introduc-
tion of a small hump together with a small attractive
components in the potential, generates full reflection in the
same energy region. This is shown in Fig. 8.

Consider now a profile that consists of two barriers. By
shifting the distance between the two barriers one generates
either a full reflection or a relatively narrow resonance. One
such double barrier profile exhibiting a resonance behavior
around k ¼ 0:21 , which is lower that the height of the first
barrier, is shown in Fig. 9. It is interesting to observe how
this resonance is removed by requiring that rðkÞ ¼ 1 up to
the height of the first barrier, i.e. up to k ¼ 0:3. As can be
seen in Fig. 9 this is achieved by adding small repulsive
parts in the first barrier region and by transforming the
second barrier to have transparent characteristics shown in
the previous examples. The requirement rðkÞ ¼ 0 for k 2

ð0:1; 0:3Þ provides the profile shown in Fig. 10.
As a next example, we consider again the two barrier

case but with the second profile being a small attractive
well as shown in Fig. 11. Although the well is quite weak
and does not sustain a bound state, it, nevertheless, causes
the reflectivity to be less than one in the whole energy
region. The requirement that rðkÞ ¼ 0 in k 2 ð0:1; 0:25Þ can
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Fig. 11. Same as in Fig. 2 but with rðkÞ ¼ 0 for k 2 ð0:1; 0:25Þ.
be achieved by adding an attractive and repulsive part to
the potential in similar fashion to Fig. 2. In contrast the
requirement rðkÞ ¼ 1 in the same energy region,
k 2 ð0:1; 0:25Þ, can be achieved by combining a repulsion
and attraction as shown in Fig. 12.
A purely quantum mechanical case is the one in which

we require that no reflection should exist for energies
higher than the height of the barrier while the short
k-behavior of rðkÞ remains the same. One such example is
shown in Fig. 13 for which we assume that rðkÞ ¼ 0 for
kX0:7. It is seen that indeed no reflection exists at high
energies. This is caused by a ‘round off’ of the edges of the
potential, which effectively becomes of Gaussian shape,
and the appearance of a small attraction beyond the
profile. In general, it was found that the presence of round
off edges always reduce the reflectivity at high energies.
Finally, we consider the somewhat more realistic profile

similar to the one used by Mâaza et al. [24] in their studies
on neutron tunneling in a Ni–Co–Ni Fabry–Perot reso-
nator. The profile may consist of two Ni barriers and a Co
well as shown in Fig. 14. The depth of the well is quite
weak ð�0:025Þ and does not sustain bound states. The
whole combination generates a reflectivity which is
practically one up to energies corresponding to the height
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Fig. 12. Same as in Fig. 2 but with rðkÞ ¼ 1 for k 2 ð0:1; 0:25Þ.
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of the barriers. The necessary alterations needed to achieve
rðkÞ ¼ 0 in the region kb 2 ð0:01; 0:05Þ as well as in the
wider region kc 2 ð0:01; 0:3Þ exhibit the same trends,
namely the necessity to have attractive and repulsive parts
in the potential of similar form to those shown in Fig. 10.
4. Summary and outlook

The one-dimensional inverse scattering problem may be
used to reconstruct the potential from the knowledge of the
reflection coefficient at all incident momenta. However, its
application to physical problems is practically non-existent.
The reason is that in experiments only the reflectivity is
measured (this is the famous phase problem) and this for
only a very limited range of momenta. The results up until
now are frustrating and without much use in predicting the
underlying potential. In the present work, we proceeded by
assuming that the RðkÞ has certain desirable reflection and
transmission properties, such as a full transmission or
reflection within an energy window or full transmission of
all high energy waves. Then by using the one-dimensional
Marchenko inversion procedure, we extracted the corre-
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Fig. 13. Same as in Fig. 2 but with rðkÞ ¼ 0 for kX0:7. The rðkÞ in this

region, is to all practical purposes, zero.
sponding shape and strength of the potential which
generates the required properties.
The main conclusion is that in order to achieve certain

filtering properties and other desired characteristics, one
may need to change only the shape of the prefabricated
prototype system. The form of the modified profiles are
smooth and definitely render themselves to application in
microelectronics, nanostractures and other quantum de-
vises.
The reconstructed potentials depend, of course, on the

shape of the generator potential and therefore the problem
is by no means exhausted with this communication whose
main emphasis was to exhibit the usefulness of inverse
scattering techniques in constructing and designing quan-
tum filters. Other questions concerning various aspects of
the problem can also be addressed with the present
procedure. These include the construction of profiles with
definite resonance structure and tunneling characteristics,
the possibility of generating standing waves between two or
more profiles as well as the use of real or complex
potentials to control the flux of the incident waves, etc.
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Fig. 14. A typical Ni–Co–Ni profile similar to the one used in Ref. [24]

The energy ranges for which we require that rðkÞ ¼ 0 are kb 2 ð0:01; 0:05Þ
and kc 2 ð0:01; 0:3Þ. The corresponding potential behavior is shown in the

lower figure.
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Appendix A. Form of the potentials used

An N-layer barrier potential VN can be constructed
using

UNðxÞ ¼
XN

i¼1

V 0i

1þ expððxi � xÞ=aiÞ

�

�
V0i � V s

1þ expððxi þ di � xÞ=aiÞ

�
, ðA:1Þ

where xi is the starting point for the barrier, di is the
thickness and ai the diffuseness parameter which for values
ai�0:01 gives a square barrier while for higher values the
edges of the barriers are trimmed and become eventually of
bell-shape (aiX1). The V s corresponds to the substrate
potential.

The potential shown in Fig. 2 can be easily constructed:

UðxÞ ¼

V0ðx� xaÞ=xLa
; x 2 ½xa;xb�;

U1ðxÞ; x 2 ½xb;xc�;

V0ðxd � xÞ=xLc
; x 2 ½xc; xd �;

0 elsewhere;

8>>><
>>>:

(A.2)

where the xi’s correspond to the starting and ending points
for each branch of the potential, and xLa

is the length xb �

xa and xLc
the length xd � xc. The U1ðxÞ is a one-layer

potential as defined in (A.1).
Shapes of the form shown in Fig. 3 can be obtained

using,

UðxÞ ¼

�V 1ðx� xaÞ=xL; x 2 ½xa;xb�;

V0 þ V 0ðxb � xÞ=xL; x 2 ½xb;xc�;

�V 1ðxd � xÞ=xL;

0 elsewhere:

8>>><
>>>:

(A.3)

Similarly the potential of Fig. 7 can be constructed using

UðxÞ ¼

�
V0

B

ðx� xaÞ

xL

; x 2 ½xa;xb�;

V0 � V 0 exp½�Aðx� xb � xLÞ
2
�; x 2 ½xc;xd �;

�
V0

B

ðxd � xÞ

xL

;

0 elsewhere;

8>>>>>>><
>>>>>>>:

(A.4)

where A and B are constants and L an appropriate length
(in our case A ¼ 0:1, B ¼ 5 and L ¼ 2:5).

Appendix B. Obreshkov polynomials and related operators

Consider a continuously differentiable function f ðxÞ,
with x 2 ½a; b�, and a polynomial Pk;m

a;b ðf ;xÞ with the
properties

dj

dxj
Pk;m

a;b ðf ; aÞ ¼
dj

dxj
f ðxÞ

����
x¼a

� f ðjÞðaÞ 8 j ¼ 0; 1; . . . ; k,

dj

dxj
Pk;m

a;b ðf ; bÞ ¼
dj

dxj
f ðxÞ

����
x¼b

� f ðjÞðbÞ 8 j ¼ 0; 1; . . . ;m.

Obreshkov [27], obtained the following result for the
unique polynomial of minimal degree k þmþ 1 satisfying
the above properties:

Pk;m
a;b ðf ; xÞ ¼

Xk

j¼0

f ðjÞðaÞ
x� b

a� b

� �mþ1
ðx� aÞj

j!

�
Xk�j

i¼0

mþ i

i

� �
x� a

b� a

� 	i

þ
Xm

j¼0

f ðjÞðbÞ
x� a

b� a

� 	kþ1 ðx� bÞj

j!

�
Xm�j

i¼0

k þ i

i

� �
x� b

a� b

� �i

.

We may then define the ‘Obreshkov operator’ Lk;m
x2½a;b�

applied to function f ðxÞ via the following relation:

Lk;m
x2½a;b�f ðxÞ ¼ Pk;m

a;b ðf ; xÞ. (B.1)

We define for x 2 ½a; b� the spline-like function

Sk;m
a;b ðf ;xÞ � f ðxÞ � Pk;m

a;b ðf ;xÞ

¼ ð1� Lk;m
x2½a;b�Þf ðxÞ. ðB:2Þ

Sk;m
a;b ðf ;xÞ has the property that at x ¼ a, (x ¼ b) vanishes

along with all its derivatives up to the kth (mth) order, and
hence it behaves like a spline. We also define for x 2 ½a; b�

Bk;m
a;b ðf ;xÞ � f ðxÞ � Sk;m

a;b ðf ;xÞ

¼ ½1� ð1� Lk;m
x2½a;b�Þ� f ðxÞ

¼ Lk;m
x2½a;b� f ðxÞ ¼ Pk;m

a;b ðf ;xÞ. ðB:3Þ

Note that Bk;m
a;b ðf ; xÞ resembles f on the boundary, and

hence it may be called a ‘boundary match’. In two
dimensions where the sub-domain becomes ½a1; b1� 	

½a2; b2� the above definitions may generalize as

Sðf ;x1;x2Þ � ð1� Lk1;m1

x12½a1;b1�
Þ

�ð1� Lk2;m2

x22½a2;b2�
Þ f ðx1;x2Þ ðB:4Þ

and

Bðf ; x1; x2Þ ¼ f ðx1;x2Þ � Sðf ; x1; x2Þ

¼ ðLk1;m1

x12½a1;b1�
þ Lk2;m2

x22½a2;b2�

� Lk1;m1

x12½a1;b1�
Lk2;m2

x22½a2;b2�
Þf ðx1; x2Þ ðB:5Þ

and similarly for higher dimensions. A corresponding
generalization for polynomial splines in two dimensions,
known as ‘Spline-blended functions’ has been developed for
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