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Abstract

We present two sequential and one parallel global optimization codes, that belong to the stochastic class, and an
routine that enables the use of the Merlin/MCL environment as a non-interactive local optimizer. This interface proved e
important, since it provides flexibility, effectiveness and robustness to the local search task that is in turn employed by t
procedures. We demonstrate the use of the parallel code to a molecular conformation problem.

Program summary

Title of program: PANMIN
Catalogue identifier: ADSU
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADSU
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer for which the program is designed and others on which it has been tested: PANMIN is designed for UNIX machines
The parallel code runs on either shared memory architectures or on a distributed system. The code has been tested
Microsystems ENTERPRISE 450 with four CPUs, and on a 48-node cluster under Linux, with both the GNU g77
Portland group compilers. The parallel implementation is based on MPI and has been tested with LAM MPI and MPIC
Installation: University of Ioannina, Greece
Programming language used: Fortran-77
Memory required to execute with typical data: Approximately O(n2) words, wheren is the number of variables
No. of bits in a word: 64
No. of processors used: 1 or many
Has the code been vectorised or parallelized?: Parallelized using MPI
No. of bytes in distributed program, including test data, etc.: 147163
No. of lines in distributed program, including the test data, etc.: 14366
Distribution format: gzipped tar file

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on Sc
(http://www.sciencedirect.com.science/journal/00104655).
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Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a fu
of many variables. There are instances that a local optimum does not correspond to the desired physical solution and
search for a better solution is required. Local optimization techniques can be trapped in any local minimum. Global Opti
is then the appropriate tool. For example, solving a non-linear system of equations via optimization, one may encoun
local minima that do not correspond to solutions, i.e. they are far from zero
Method of solution: PANMIN is a suite of programs for Global Optimization that take advantage of the Merlin/M
optimization environment [1,2]. We offer implementations of two algorithms that belong to the stochastic class and u
searches either as intermediate steps or as solution refinement
Restrictions on the complexity of the problem: The only restriction is set by the available memory of the hardware configura
The software can handle bound constrained problems. The Merlin Optimization environment must be installed. Availa
an MPI installation is necessary for executing the parallel code
Typical running time: Depending on the objective function
References: [1] D.G. Papageorgiou, I.N. Demetropoulos, I.E. Lagaris, Merlin-3.0. A multidimensional optimiz
environment, Comput. Phys. Commun. 109 (1998) 227–249.
[2] D.G. Papageorgiou, I.N. Demetropoulos, I.E. Lagaris, The Merlin Control Language for strategic optimization, C
Phys. Commun. 109 (1998) 250–275.
 2004 Elsevier B.V. All rights reserved.

PACS: 02.60.Pn; 02.60.Ed; 07.05.Tp; 07.05.Mh

Keywords: Global and local optimization; Modeling; Curve-fitting; Neural network training
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1. Introduction

Optimization has proved to be an invaluable to
in many scientific fields. Its strength comes in p
from the fact that a plethora of diverse scienti
as well as practical problems, can be reduced
optimization problems, and in part from the existen
of robust and effective optimization methods.
this point we would like to make the distinctio
between local optimization and global optimizatio
A function may have more than one points whe
the optimality conditions are satisfied, i.e. many lo
minima. Any of these is an acceptable solution as
as local optimization is concerned. Among the lo
minima, the one with the lowest value, i.e. the glo
minimum, is the solution that global optimizatio
seeks for. Note also that there may exist sev
global minima, i.e. minima at different positions wi
the same, globally lowest, function value. Vario
global optimization methods have been develo
rather recently, many of them being of stochas
nature. These methods recover the global minim
with a probability tending to one, in the asympto
limit. Deterministic methods that would guarant
the recovery of the global minimum, face at pres
various computational difficulties. We describe tw
methods that belong to the stochastic class and
present their implementation. The first aims to loc
only one global minimum, while the second to colle
all the existing local minima. Specifically we prese
a modification of the “Controlled Random Searc
(CRS), originally introduced by Price [3], and th
“Healed Topographical Multilevel Single Linkage
(HTMLSL) that is based on the Multi Level Sing
Linkage (MLSL) method of Kan and Timmer [6–8
with topographical modifications inspired from th
articles by Ali and Storey [9] and by Törn and Viitane
[10]. The above two codes are sequential and
not take advantage of environments with multip
processors. Note also that CRS can hardly benefit f
such a computational environment due to the na
of its algorithmic structure. HTMLSL lends itself t
parallel processing and is reprogrammed using
Message Passing Interface (MPI) to take advantag
either a shared memory architecture or a distribu
environment with interconnected computers.

For a review with detailed bibliography and com
parisons among various methods, we refer to [11].
the recent developments in the area of global o
mization we refer to the article by Pardalos et al. [1
Our implementation is based on the Merlin [1] op
mization environment and its programming langua
MCL [2]. Merlin offers several local optimization a
gorithms and many useful tools. MCL is a progra
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ming language for implementing optimization stra
gies in the context of the Merlin environment.1

This article is organized as follows. In Section
we present the implemented algorithms and we m
some relevant comments. In Section 3 we presentOP-
TIMA, the routine that interfaces the Merlin packa
so that it can be used directly from a user’s progr
as a local optimization routine. In Section 4 we lay o
the documentation of the corresponding software.

In the user’s manual, we apply the implemen
methods to the standard “Six-hump Camel-Back” t
function and we list the output of the test runs. In t
examples section, we present a code that makes u
the subroutine OPTIMA to implement the simplis
multistart approach for global optimization, i.e. w
generate a number of points at random and from e
one we start a local search.

2. Algorithmic description

In the following the descriptions of the two a
gorithms are given. First in Section 2.1 we ske
the CRS, and in Section 2.2 the HTMLSL metho
The parallel version of HTMLSL is described in Se
tion 2.3.

2.1. Controlled random search

This is a modification of Price’s [3] algorithm
similar but not identical to the one described
[4]. The method seeks for one global minimum
a given domainD. Here the feasible domainD is
considered to be a rectangular hyperbox. The step
the procedure are given (in a Fortran-like fashion) b

Input data:

• M, an integer such thatM > N + 1, whereN

is the space dimension. (Suggested value:M =
25N )

• ε, a small positive constant. (Suggested val
ε = 10−6)

• ω, a rather large positive constant. (Sugges
value:ω = 1000)

1 We maintain the sitehttp://merlin.cs.uoi.gr, where updated
versions of the Merlin/MCL software and its manual can be fou
as well as installation scripts, compiler specific issues, developm
info etc.
f

Step 0:

• Setk = 0. Form the initial setSk = {xk
1, xk

2, . . . ,

xk
M} by pickingM points randomly fromD

• Evaluate:f k
i = f (xk

i ) for i = 1,2, . . . ,M

Step 1:

• f k
max = max{f k

i }, and let the corresponding poi
be denoted asxk

max. Similarly
• f k

min = min{f k
i }, and the corresponding point

denoted asxk
min

• IF f k
max− f k

min � ε, polishxk
min via a local search

procedure and STOP

Step 2:

• Choose at randomN +1 points{xk
i0

, xk
i1

, . . . , xk
iN

}
from Sk

• Calculate the weighted centroids:

ck
w =

N∑
j=1

wk
j xk

ij
, f k

w =
N∑

j=1

wk
j f

(
xk

ij

)

where:

wk
j = nk

j∑N
j=1 nk

j

,

nk
j = 1

f (xk
ij

) − f k
min + φk

,

φk = ω
(f k

max− f k
min)2

f 0
max− f 0

min

• Calculate a trial point̄xkas:

x̄k = (xk
i0

− ck
w)

f (xk
i0

) − f k
w

f k
max− f k

min + φk
+ ∆k

w

• where∆k
w = 2ck

w − xk
i0

if f k
w � f (xk

i0
) and∆k

w =
2xk

i0
− ck

w if f k
w > f (xk

i0
)

• IF x̄k /∈ D REPEAT step 2
• Computef (x̄k)

Step 3:

• IF f (x̄k) � f k
max THEN

http://merlin.cs.uoi.gr
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– Calculate the success rate (the fraction of fu
tion evaluations that led to a new lower upp
bound)

– IF success rate> 50%, setSk+1 = Sk , k =
k + 1 and GOTO step 2

– Calculateyk = ck
w+xk

iN

2 , computefy = f (yk)

– IF fy � f k
max, set Sk+1 = Sk , k = k + 1 and

GOTO step 2
– SetSk+1 = Sk ∪ {yk} − {xk

max}, k = k + 1 and
GOTO step 1

• ENDIF

Step 4:

• SetSk+1 = Sk ∪ {x̄k} − {xk
max}

• Increment:k = k + 1 and GOTO step 1

2.1.1. Comments
The above algorithm (as quoted in [4]) has be

designed for problems where the objective funct
is affected by the presence of noise and its grad
is not analytically available. Such problems, in t
case of local optimization are treated with reasona
success by the irregular Simplex method [5]. T
presented global algorithm is inspired in part by
tactic followed in that method. (Maintaining, i.e.
population of points and performing operations su
as reflection with respect to a centroid, etc.). Note t
if more than one global minima exist, this method w
locate only one of them.

2.2. Healed topographical multilevel single linkage

In the present article we describe a stocha
method based on the MLSL algorithm [7], integrat
with ideas from [9] and [10]. A healing techniqu
along with a threshold on the number of iteratio
is used, to prevent premature termination at the e
stages of the algorithm. The algorithm attempts to fi
all local minima of an objective functionf (x) inside
a bounded setS ⊂ Rn, that are potentially globa
These local minima are obtained by a local-sea
procedure, starting from suitably chosen points i
properly maintained sample. Stochastic algorithm
the framework of multistart suffer from the proble
of recovering the same local minima repeatedly, a
that diminishes their efficiency. MLSL is devised
such a way so as to avoid this undesirable repetit
Here again the bounded setS ⊂ Rn is the rectangula
hyperbox[a1, b1] ⊗ [a2, b2] ⊗ · · · ⊗ [an, bn].

At the kth iteration:

(1) Construct a sample by picking at randomN points
from S. At each point evaluate the objectiv
function.

(2) Choose from the sample a subset of points to
used as start points for local searches.

(3) Perform a local search from each start point.
new minimum is discovered store it.

(4) Determine whether to stop or not. If not, repe
from step 1.

From the stored local minima the one with the low
value may be regarded to be the global minimum.

Steps 2 and 4 require further description. Step
and 3 are straightforward, however a few comme
may be helpful.

Step 1
The points are drawn from a uniform distributio

In [9] the Halton sequence is used instead, which
the asymptotic limit produces uniformly distribute
points. This may reduce the number of functi
evaluations by a few percent. (A 15% reducti
is reported in [9].) Maintaining asymptotically th
uniform distribution is important, since the stron
theoretical (asymptotic) results in [6] and [7], are on
proved for the uniform distribution. In [10] uniform
sampling is used. However if a new point is too clo
to another, is rejected in an attempt to coverS in a
more evenly manner.

Step 2
This is the step that characterizes the method

“Topographical MLSL”. In this step we first add t
the sample the already found (initially none) loc
minima. So the sample containsN + w points, w

being the number of the local minima found so f
For every pointri ∈ S we find itsc closest neighbor
bij , j = 1, . . . , c. If f (ri) � f (bij ), ∀j = 1, . . . , c,
then the pointri is called a graph minimum. The sta
points for the local searches are chosen from wit
the set of the graph minima. A point from that set i
start point as long as:
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1. It is not a local minimum found earlier, and
2. There is no other point within a critical distan

R, with a lower function value.

The critical distance is the one used and in the p
MLSL algorithm, depends on the iteration numbek
and is given by:

(1)Rk = 1√
π

[
�

(
1+ n

2

)
m(S)σ

log(kN)

kN

]1/n

,

wherem(S) is the Lebesgue measure ofS, andσ is a
user supplied positive parameter. Ifσ > 4 then, even
if the sampling continues for ever, the total numb
of local searches has been proved to be finite w
probability one. See [7] and [8].

Step 3
The local search is of key importance. It is invok

many times during the course toward the global m
mum, and hence its efficiency and robustness influe
the overall performance dramatically. Methods that
quire the Hessian matrix or the Gradient vector, c
not treat satisfactorily functions that are not contin
ously differentiable. On the other hand, methods t
use only function values are comparatively inefficie
when applied to smooth, continuously differentia
functions. Unfortunately there is no single method
plicable to all cases as a panacea. Therefore the
procedure has to be either an intelligent system ca
ble of making decisions as to which method is suita
to apply, or easily replaceable without the need to ta
per with the source code. This is precisely the rea
we have chosen the Merlin/MCL system in our im
plementation. Merlin offers many optimization alg
rithms. The information instructing which one to us
is read from a text file. This file can be easily edit
each time accordingly and there is absolutely no n
to change the source code. Alternatively, an intellig
minimization strategy can be coded in MCL, and M
lin can be instructed to execute it every time a lo
search is invoked. Such an example is provided in
user’s manual. By using Merlin/MCL we satisfy the
crucial requirements of flexibility, efficiency and ro
bustness.

Step 4
This is the final step, where a decision is ma

based upon a Bayesian criterion, concerning the c
l

tinuation or the termination of the iterations. A Ba
esian estimate of the total number of local minimiz
[6] is given by:

(2)west= w(t − 1)

t − w − 2
.

Similarly an estimate for the covered portion ofS

by the regions of attraction of the local minimize
already found is expressed as:

(3)pcov = 1− w(w + 1)

t (t − 1)

where t in [6] stands for the total number of poin
used in the sample after a cut-off level reduction. H
the reduction is implicitly performed by selecting t
start points from the set of the graph minima. Henc
iterationk we take:

(4)t =
k∑

i=1

[
Li + αi(Gi − Li)

]
,

Li , Gi stand for the number of start points and t
number of graph minima at theith iteration, andαi ∈
(0,1) is given by:

(5)αi = 1− exp(−i/h)

1+ exp(−i/h)
,

h being a positive healing parameter. Note that as
iteration count increasesαi → 1 (healing), and then
the summand in Eq. (4) becomes equal to the num
of graph minima. Two conditions must be satisfied
order to terminate the algorithm.

(1) west< w + 1
2, or equivalently, 2w2 + 3w + 2 < t ,

and
(2) pcov > 1 − ε, or equivalently,w(w + 1) < ε(t −

1)t ,

ε being a small positive number. As it can be re
ily realized, healing, protects the algorithm from p
mature termination, by delaying the growth of t
t-values for a number of initial iterations. As an a
ditional control parameter, a thresholdIt on the mini-
mum number of iterations is used. This forces the
gorithm to iterate for at leastIt times.

2.3. Parallel HTMLSL

For heavy tasks parallelization is of great imp
tance. For example the determination of the con
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mational structure of molecules can be an exceedin
time consuming application. The parts of the alg
rithm that are parallelized are the nearest neighbor
cedures and the local searches.

We employ the “one master+ n workers” scheme
Therefore one needs at least two processors to exe
this version of the program. The workers perform t
actions:
a) Determination of the nearest neighbors of a sam
point
b) Local minimization of the objective function.

The master processor creates the random po
inside the hyperbox, evaluates the objective func
at every point and communicates this informat
to all workers. Each sample point is assigned t
worker for nearest neighbor determination. After t
the master selects the start points. Each start poi
then assigned to a worker for local optimization.
both of the above actions, load balancing is achie
via a round-robin tactic among the workers. Fina
the master accepts only the truly new minima reject
the rest. The accepted minimizers are passed to
workers.

The implementation is based on MPI which is
widely accepted standard for parallel and distribu
computing and is available for most computers a
operating systems.

3. The OPTIMA interface

The Merlin/MCL-3.0 package, offers a powerf
environment for optimization. Merlin expects suitab
instructions from an available repertoire, to search
the minimum of a user-prepared objective functi
This procedure has an interactive character, whic
fine when the central issue is to obtain the optimum
a function. However when the minimization is only
intermediate task, required in the course of a calc
tion, a single call to a routine that returns a minimu
point is more appropriate and far more convenient
meet this need, we devised an interface, that per
one to call from within his own program the Merlin o
timization environment and use it without having to
struct it interactively. One may wonder if such an int
face is worthwhile and ask if it is any different from th
so many library optimization routines that operate i
similar way. The answer to this will become appar
e

after the description is read, but let us say a few wo
in advance. Merlin [1] supports many optimization
gorithms, not just one. Some of them use derivati
and are suitable for smooth functions, some oth
use only function values and are appropriate for no
functions with, maybe, discontinuous derivatives e
Merlin can also handle combinations of different alg
rithms, i.e. optimization strategies, which have prov
to be important. On the other hand, library routin
usually implement a single algorithm and hence e
time a different requirement is to be met, one wo
have to change the call to another optimization r
tine, that implements the proper algorithm, and so
so forth. Tampering with the source code too often
both unpleasant and error prone. By assigning the
timization task to Merlin, one has the immediate be
fit that the customization (i.e. which method to use
performed without changing the source code, but o
an entry to an input text file. In addition, using MC
[2] directives, one can employ an intelligent strate
instead of a single method. It is understood that
objective function must be written in the form that
required by the Merlin package.

4. Documentation of the software

There are three Global Optimization modules a
theOPTIMA Interface subroutine, as listed below.

• ProgramPRICE.
The implementation of the Price algorithm f
Global Optimization, as presented in Section 2

• ProgramTML.
The implementation of the HTMLSL, as pr
sented in Section 2.2.

• ProgramPTML.
The parallel implementation of HTMLSL, as pr
sented in Section 2.3.

• SubroutineOPTIMA.
The user-interface to theMerlin [1,2] optimization
package.

Detailed instructions concerning installation and
age for the PRICE, TML and PTML modules, are
cluded in the accompanying manual. The docume
tion of theOptima subroutine follows.
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4.1. The OPTIMA interface

The interface is implemented as aFORTRAN-77
subroutine. Its syntax and argument description
lows.

SUBROUTINE OPTIMA ( N, M, XP, XV, XLL,
XRL, IXAT, ICODE,

& FINP, FOUT, GRMS,
NF, NG, NH, NJ )

4.1.1. Argument description
• N is the space dimension (i.e. the number

parameters).
• M is the number of terms in a Sum of Squares

jective function. For a general functionM must be
set to zero. Namely whenFUNCTION FUNMIN
is prepared thenM is set to zero. Alternatively i
SUBROUTINE SUBSUM is prepared for a sum o
squares case,M is set to be the number of term
considered.

• XP is an array that on input it may conta
a starting point, and upon return contains
minimizer.

• XV upon return contains the value of the min
mum.

• XLL, XRL, IXAT are arrays that on inpu
may contain the lower bounds, the upper bou
and the fix-status of the parameters.

• ICODE is an input integer array with four ele
ments. Each element may take the values 0 or
1. If ICODE(1) = 1 then the (input) content

of XP will be used to initialize the parameter
2. If ICODE(2) = 1 then the contents of XLL

will be used to set the lower bounds for t
parameters.

3. If ICODE(3) = 1 then the contents of XRL
will be used to set the upper bounds for t
parameters.

4. If ICODE(4) = 1 then the contents of IXAT
will be used to set the fix-status of the param
ters.

If any of theICODE elements is zero, the corre
sponding action is not taken.

• FINP is an input character string, containing t
name of a file that contains Merlin instructions
alternatively the object code of an MCL progra

• FOUT is an input character string, containing t
name of a file where Merlin’s output will be dis
posed. This file has no use (other than deb
ging) and in Unix systems can be set to eq
/dev/null to suppress it. The settingFOUT =
’ ’, corresponds to the standard output devic

• GRMS upon return contains the value of the ro
mean square gradient, at the returned pointXP.

• NF upon return contains the number of the p
formed function evaluations.

• NG upon return contains the number of t
performed gradient evaluations, i.e. the ca
to the (optionally) user-supplied,SUBROUTINE
GRANAL.

• NH upon return contains the number of the p
formed calls to the (optionally) user-supplie
SUBROUTINE HANAL.

• NJ upon return contains the number of the p
formed calls to the (optionally) user-supplie
SUBROUTINE JANAL.
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