
Computer Physics Communications 197 (2015) 190–211

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

p-MEMPSODE: Parallel and irregular memetic global optimization✩

C. Voglis a,∗, P.E. Hadjidoukas b, K.E. Parsopoulos a, D.G. Papageorgiou c, I.E. Lagaris a,
M.N. Vrahatis d

a Department of Computer Science and Engineering, University of Ioannina, P.O. BOX 1186, GR-45110 Ioannina, Greece
b Chair of Computational Science, ETH Zurich, Zurich CH-8092, Switzerland
c Department of Materials Science and Engineering, University of Ioannina, P.O. BOX 1186, GR-45110 Ioannina, Greece
d Department of Mathematics, University of Patras, GR-26110 Patras, Greece

a r t i c l e i n f o

Article history:
Received 24 June 2014
Received in revised form
28 June 2015
Accepted 16 July 2015
Available online 4 August 2015

Keywords:
Parallel global optimization
Multicores
OpenMP
Particle Swarm Optimization
Differential Evolution
Memetic Algorithms
Local search

a b s t r a c t

A parallel memetic global optimization algorithm suitable for shared memory multicore systems is pro-
posed and analyzed. The considered algorithm combines two well-known and widely used population-
based stochastic algorithms, namely Particle Swarm Optimization and Differential Evolution, with two
efficient and parallelizable local search procedures. The sequential version of the algorithmwas first intro-
duced asMEMPSODE (MEMetic Particle SwarmOptimization and Differential Evolution) and published in
the CPC program library. We exploit the inherent and highly irregular parallelism of the memetic global
optimization algorithm by means of a dynamic and multilevel approach based on the OpenMP tasking
model. In our case, tasks correspond to local optimization procedures or simple function evaluations.
Parallelization occurs at each iteration step of the memetic algorithmwithout affecting its searching effi-
ciency. The proposed implementation, for the same random seed, reaches the same solution irrespectively
of being executed sequentially or in parallel. Extensive experimental evaluation has been performed in
order to illustrate the speedup achieved on a shared-memory multicore server.

Program summary

Program title: p-MEMPSODE
Catalogue identifier: AEXJ_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEXJ_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 9950
No. of bytes in distributed program, including test data, etc.: 141503
Distribution format: tar.gz
Programming language: ANSI C.
Computer:Workstation.
Operating system: Developed under the Linux operating system using the GNU compilers v.4.4.3 (or
higher). Uses the OpenMP API and runtime system.
RAM: The code uses O(n×N) internal storage, n being the dimension of the problem and N themaximum
population size. The required memory is dynamically allocated.
Word size: 64
Classification: 4.9.
Nature of problem: Numerical global optimization of real valued functions is an indispensable methodol-
ogy for solving a multitude of problems in science and engineering. Many problems exhibit a number of

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author. Tel.: +30 2651008834.

E-mail address: voglis@cs.uoi.gr (C. Voglis).

http://dx.doi.org/10.1016/j.cpc.2015.07.011
0010-4655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2015.07.011
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2015.07.011&domain=pdf
http://cpc.cs.qub.ac.uk/summaries/AEXJ_v1_0.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:voglis@cs.uoi.gr
http://dx.doi.org/10.1016/j.cpc.2015.07.011

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 191

local and/or global minimizers, expensive function evaluations or require real-time response. In addition,
discontinuities of the objective function, non-smooth and deceitful landscapes constitute challenging ob-
stacles for most optimization algorithms.
Solution method: We implement a memetic global optimization algorithm that combines stochastic,
population-based methods with deterministic local search procedures. More specifically, the Unified
Particle SwarmOptimization and the Differential Evolution algorithms are harnessedwith the derivative-
free Torczon’s Multi-Directional Search and the gradient-based BFGS method. The produced hybrid
algorithms possess inherent parallelism that is exploited efficiently by means of the OpenMP tasking
model. Given the same randomseed, the proposed implementation reaches the same solution irrespective
of being executed sequentially or in parallel.
Restrictions: The current version of the software uses only double precision arithmetic. An OpenMP-
enabled (version 3.0 or higher) compiler is required.
Unusual features: The software requires bound constraints on the optimization variables.
Running time: The running time depends on the complexity of the objective function (and its derivatives
if used) as well as on the number of available cores. Extensive experimental results demonstrate that the
speedup closely approximates ideal values.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Numerical global optimization is an indispensable tool that has been widely applied on many scientific problems [1]. Usually, the
solution of a problem is translated to the detection of global minimizer(s) of a properly defined objective function. Also, suboptimal
solutions of acceptable quality can be obtained by closely approximating the actual global minimizers of the problem. In order to achieve
such solutionswithin reasonable time and resource constraints, optimization algorithms have tomaintain a proper trade-off between their
exploration (diversification) and exploitation (intensification) properties. Unfortunately, these two requirements are habitually conflicting
for most algorithms. For example, modern stochastic optimization approaches such as Evolutionary Algorithms (EAs) [2,3] and Swarm
Intelligence (SI) methods [4] are characterized by high exploration capabilities but lack the solution refinement properties of local search
approaches [5].

Hybridization of optimizationmethods of different nature has proved to be valuable in addressing the aforementioned shortcomings [6].
In this context, an important family of global optimization algorithms has been developed, namely the Memetic Algorithms [7–9]. They
stemmed from the necessity for powerful algorithms where the global exploration capability of EAs and SI approaches [2,4,10–15] is
complemented with the efficiency and accuracy of standard Local Search (LS) techniques [5,16,17]. The combination and interaction
between the two types of algorithms promotes the diffusion of their achievements by harnessing their strengths and generates algorithmic
schemes that can tackle complex objective functions [18].

Another important issue in optimization problems is the running time of the algorithms. Demanding problems are usually accompanied
by long execution times, attributed to their high computational demands and the complexity of the objective function. There are several
applications where the time for a single function call is substantial, not to mention applications where real-time response is required.
Such applications are frequently met in molecular biology, computational chemistry, engineering, aircraft design, and space trajectory
planning [1,19–21].

Parallelization can drastically reduce the required processing time to find a solution. Parallelism in optimization methods can be found
at various levels, including,

(i) function and gradient evaluations,
(ii) linear algebra computations,
(iii) operators of the optimization algorithms.

Global optimization algorithms that take advantage of parallel and distributed architectures are particularly suitable for solving problems
with high computational requirements. The emerging multi-core architectures provide a cost-effective solution for high-performance
optimization. Notwithstanding the large number of parallel global optimization algorithms in the literature, there are only a few
practical implementations. Among the most representative are NOMAD [22,23], PaGMO/PyGMO [24,25], PGO [26], VTDIRECT95 [27], and
pCMALib [28].

In this framework, the present paper introduces a parallel version of the recently proposed MEMPSODE software [29]. MEMPSODE
implements a global optimization algorithm that falls into the category of Memetic Algorithms. It combines the exploration properties of
two very popular population-based algorithms, namely Unified Particle Swarm Optimization (UPSO) and Differential Evolution (DE), with
the strong convergence properties of the local search procedures implemented in theMerlin optimization environment [30]. The searching
efficiency of MEMPSODE has been extensively examined in [31–34]. The proposed Parallel MEMPSODE (p-MEMPSODE) implementation
adopts UPSO andDE as global search components, and integrates a quasi-Newton line searchmethod that employs BFGS [5] updates aswell
as the Torczon’s Multi-Directional Search (MDS) method [35]. Inheriting all convergence and exploration properties from its predecessor,
p-MEMPSODE aims to reduce the execution time on multicore servers.

The decision for using BFGS was based on its efficiency and popularity for smooth functions optimization, as well as its requirement
for only first order derivatives that can be numerically approximated in parallel. On the other hand, MDS is an efficient, well studied,
derivative-free method suitable for discontinuous functions, while it is inherently parallel. Both these methods satisfy our basic incentive
to create a powerful hybrid optimization schemewith parallelizable components that can tackle the large runtime of various optimization

192 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

problems. In order to achieve this on shared-memory multicore platforms, we used the OpenMP tasking model [36], which allows for
efficient exploitation of multiple levels of parallelism. Moreover, the choice of OpenMP offers portability and straightforward usage of our
software.

Parallelization occurs at each iteration step of MDS and BFGS with numerical derivatives without modifying their internal operations.
Therefore, for a given starting point, the same minimum is retrieved executing the same number of iterations and function evaluations
and irrespectively of the software being executed sequentially or in parallel. The same stands for the global components of the algorithm
(UPSO and DE), where parallelization is also applied at their iteration level without affecting their outcome.

In the following sections, we describe in detail the parallelization properties and implementation of the proposed p-MEMPSODE. Two
levels of parallelism are exploited in order to achieve high performance and acceleration in execution time. Task spawning raises several
issues due to its stochastic and irregular nature. Since we cannot foresee how many computational tasks may emerge at each iteration of
the algorithm, task spawning and execution is self-adaptive to the specific instance of the algorithm.

2. Description of the algorithms

The general algorithmic scheme implemented in p-MEMPSODE is based on a modified version of the serial algorithm implemented
in [29]. It belongs to the category of Memetic Algorithms and combines the UPSO and DE algorithms with deterministic local searches
that further exploit the best detected solutions. The hybridization strategy is essentially the same as presented in [29]. However, due to
its sequential structure, the Merlin optimization environment is no longer employed in p-MEMPSODE. Instead, two local optimization
algorithms that admit high parallelization are used. All algorithms as well as the hybrid scheme are described in the following sections.

2.1. Unified particle swarm optimization

Particle SwarmOptimization (PSO)was originally introduced by Eberhart and Kennedy [37,38]. The algorithm employs a swarm of search
agents, called particles, which iteratively probe the search space by changing their position according to an adaptable velocity (position
shift). Also, the best position detected by each agent is stored in memory and it is exchanged among particles that belong in the same
neighborhood.

Putting it formally, consider the n-dimensional continuous optimization problem,

min
x∈X⊂Rn

f (x), (1)

where the search space X is an orthogonal hyperbox in Rn, i.e., X ≡ [l1, r1] × [l2, r2] × · · · × [ln, rn]. A swarm is a group of N particles
(search agents), S = {x1, x2, . . . , xN}. Each particle assumes a current position,

xi = (xi1, xi2, . . . , xin)⊤ ∈ X, i ∈ I,

an adaptable velocity (position shift),

vi = (vi1, vi2, . . . , vin)
⊤ , i ∈ I,

and a memory of the best position it has visited so far,

pi = (pi1, pi2, . . . , pin)⊤ ∈ X, i ∈ I,

where I = {1, 2, . . . ,N}. The swarm and velocities are usually initialized randomly and uniformly within the search space.
Also, each particle assumes a neighborhood, which is defined as a set indices of other particles with which it exchanges information,

Ni = {i−m, . . . , i− 1, i, i+ 1, . . . , i+m} .

This is the well known ring neighborhood topology [39], which assumes that the two ends of the ring coincide, i.e., the indices recycle at
the ends. If all neighborhoods include the whole swarm, the gbest PSOmodel is defined. Otherwise, we have the case of the lbest PSOmodel.
Let gi denote the best particle in Ni, i.e.,

gi = argmin
j∈Ni

f (pj),

and t denote the algorithm’s iteration counter. Then, the particle positions and velocities are updated at each iteration as follows [40]:

v
(t+1)
ij = χ


v

(t)
ij + c1r1


p(t)
ij − x(t)

ij


+ c2r2


p(t)
gij
− x(t)

ij


, (2)

x(t+1)
ij = x(t)

ij + v
(t+1)
ij , (3)

where i ∈ I , j = 1, 2, . . . , n; χ is the constriction coefficient; c1 and c2 are positive constants called cognitive and social parameter,
respectively; and r1, r2, are random numbers drawn from a uniform distribution in the range [0, 1]. The best position of each particle
is also updated at each iteration as follows,

p(t+1)
i =


x(t+1)
i , if f


x(t+1)
i


< f


p(t)
i


,

p(t)
i , otherwise.

(4)

Clerc and Kennedy [40] provided a stability analysis of the PSO model described above, resulting in a relation among its parameters,

χ =
2

|2− ϕ −


ϕ2 − 4ϕ|
, (5)

for ϕ = c1 + c2 > 4, from which the default parameter set, χ = 0.729, c1 = c2 = 2.05, was derived.

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 193

Unified PSO (UPSO) generalizes the basic PSO scheme by combining the lbest and gbest models, in order to harness their exploration/
exploitation properties. Let G(t+1)

i and L(t+1)
i denote the velocity of xi in the gbest and lbest PSO model, respectively [41,42], i.e.,

G(t+1)
ij = χ


v

(t)
ij + c1r1


p(t)
ij − x(t)

ij


+ c2r2


p(t)
gj − x(t)

ij


, (6)

L(t+1)
ij = χ


v

(t)
ij + c1r1


p(t)
ij − x(t)

ij


+ c2r2


p(t)
gij
− x(t)

ij


, (7)

where g is the index of the overall best particle, i.e.,

g = arg min
j=1,...,N

f (pj).

Then, UPSO updates the particles and velocities as follows [41,42],

U (t+1)
ij = u G(t+1)

ij + (1− u) L(t+1)
ij , (8)

x(t+1)
ij = x(t)

ij + U (t+1)
ij , (9)

where i ∈ I , j = 1, 2, . . . , n, and the parameter u ∈ [0, 1] is called the unification factor and it balances the trade-off between the two
models. Obviously, the standard lbest PSO model corresponds to u = 0, and the gbest PSO model is obtained for u = 1. All intermediate
values u ∈ (0, 1) produce combinations with diverse convergence properties.

UPSO can also assume a mutation operator that resembles mutation in EAs, inducing further diversity in the swarm. The reader is
referred to the main MEMPSODE software [29] for further details.

2.2. Differential evolution

Differential Evolution (DE) was introduced by Storn and Price [43,44]. It works similarly to PSO, assuming a population P = {x1, x2,
. . . , xN} of search points, called individuals, that probe the search space X ⊂ Rn. Again, the population is randomly initialized following a
uniform distribution within the search space.

Each individual is an n-dimensional vector (candidate solution),

xi = (xi1, xi2, . . . , xin)⊤ ∈ X, i ∈ I,

where I = {1, 2, . . . ,N}. The population P is iteratively evolved by applying themutation and recombination operators on each individual.
Mutation produces a new vector vi for each individual xi, by combining some of the rest individuals of the population. There are various
operators for this task. Some of the most popular are the following:

OP1: v
(t+1)
i = x(t)

g + F

x(t)
r1 − x(t)

r2


, (10)

OP2: v
(t+1)
i = x(t)

r1 + F

x(t)
r2 − x(t)

r3


, (11)

OP3: v
(t+1)
i = x(t)

i + F

x(t)
g − x(t)

i + x(t)
r1 − x(t)

r2


, (12)

OP4: v
(t+1)
i = x(t)

g + F

x(t)
r1 − x(t)

r2 + x(t)
r3 − x(t)

r4


, (13)

OP5: v
(t+1)
i = x(t)

r1 + F

x(t)
r2 − x(t)

r3 + x(t)
r4 − x(t)

r5


, (14)

where t denotes the iteration counter; F ∈ (0, 1] is a fixed user-defined parameter; g denotes the index of the best individual in the
population; and rj ∈ {1, 2, . . . ,N}, j = 1, 2, . . . , 5, are mutually different randomly selected indices that differ also from the index i. All
vector operations in Eqs. (10)–(14) are performed componentwise.

After mutation, recombination is applied to produce a trial vector,

ui = (ui1, ui2, . . . , uin) , i = 1, 2, . . . ,N,

for each individual. This vector is defined as follows:

u(t+1)
ij =


v

(t+1)
ij , if Rj 6 CR or j = RI(i),

x(t)
ij , if Rj > CR and j ≠ RI(i),

(15)

where j = 1, 2, . . . , n; Rj is a random variable uniformly distributed in the range [0, 1]; CR ∈ [0, 1] is a user-defined crossover constant;
and RI(i) ∈ {1, 2, . . . , n}, is a randomly selected index.

Finally, each trial vector ui is compared against its original individual xi and the best between them comprise the new individual in the
next generation, i.e.,

x(t+1)
i =


u(t+1)
i , if f


u(t+1)
i


< f


x(t)
i


,

x(t)
i , otherwise.

(16)

DE is a relatively greedy algorithm that can be very efficient under proper parameter setting. The reader is referred to [29] for further
implementation details.

194 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

2.3. Local search

As already mentioned, the Merlin optimization environment, which was the main local search provider for the MEMPSODE software,
was abandoned in the presentwork due to its serial nature. Instead, two LS approacheswere selected such that nested parallelization could
be achieved. The first level corresponds to the individual particles of the swarm and the second level to the execution of the LS procedures.
We acknowledge the need of LS algorithms that work on discontinuous and noisy functions, as well as the necessity of a robust algorithm
for continuous well-behaved functions. For these reasons, the selected algorithms are Torczon’s Multi-Directional Search (MDS) [35] and
the BFGS [5] quasi-Newton method with either parallel numerical or analytical derivatives. Although BFGS with analytical derivatives is
not parallel per se, it achieves great performance on many continuously differentiable cases. In the following subsections we give a brief
introduction to the MDS and BFGS algorithms, which are not provided in the corresponding MEMPSODE references [29].

2.3.1. Multi-directional search
In the early 90s, the Multi-Directional Search (MDS) algorithm was introduced by Torczon [35]. MDS operates on the n + 1 vertices of

an n-dimensional simplex defined in the search space. It applies a sequence of reflection, expansion, and contraction operators on the edges
of the simplex and, under mild assumptions, it provides guaranteed convergence to a local minimum [45]. MDS was devised to operate
without using derivative information of the objective function but only concurrent function evaluations.

If t denotes the iteration counter, the corresponding simplex consists of n+ 1 points,

S(t)
=


x(t)
0 , x(t)

1 , . . . , x(t)
n


, x(t)

i ∈ X ⊂ Rn.

The barycenter of the simplex,

x(t)
c =

1
n+ 1

n
i=0

x(t)
i ,

is considered as the approximation to the minimizer. The objective function is evaluated at all vertices of the simplex and the indices are
rearranged such that,

f

x(t)
0


= min

i=0,...,n
f

x(t)
i


,

i.e., the best vertex (the one with the smallest function value) is always x(t)
0 .

The transition to the next iteration is performed by pivoting the simplex around x(t)
0 and attempting a reflection step. The objective

function is then evaluated at the n reflected vertices of the simplex. If a better point is obtained, then an expansion step is attempted to
produce an even larger reflected simplex. On the other hand, if the reflection step fails to improve the best point, a contraction step is
attempted to reduce the size of the considered simplex.

The procedure is repeated until a termination criterion is satisfied. This criterion can be a maximum number of iterations or function
evaluations or a number of consequent non-improving iterations. The MDS algorithm is presented in the pseudocode of Procedure MDS.
Apparently, the function evaluations at lines 7, 12, and 22, are independent, hence, they can be performed in parallel.

2.3.2. BFGS algorithm
The BFGS algorithm falls into the category of quasi-Newton methods [5,17]. Quasi-Newton algorithms assume that, at each iteration t ,

a point x(t), the gradient g(t), and an approximation B(t) to the Hessian matrix, are available. Then, a descent direction d(t) is computed by
solving the linear system,

B(t) d(t)
= −g(t),

and a line search is initiated from x(t) along the search direction d(t). The outcome of the line search is a scalar step λ(t) that leads to the
next approximation,

x(t+1)
= x(t)

+ λ(t) d(t).

The step λ(t) is properly selected to satisfy theWolfe conditions,

f

x(t)
+ λ(t)d(t) 6 f


x(t)
+ ρ λ(t) g(t)⊤d(t), (17)

∇f

x(t)
+ λ(t)d(t)⊤ d(t) > σ ∇f


x(t)⊤ d(t), (18)

where ρ ∈ (0, 1) and σ ∈ (ρ, 1).
The iteration is completed by updating the approximate Hessian matrix B(t) using only first-order derivative information from x(t) and

x(t+1). The algorithm is given in Procedure BFGS.

2.4. Memetic strategies

The MEMPSODE software implements thememetic strategies proposed in [46] for the application of local search:
Strategy 1: LS is applied only on the overall best position pg of the swarm.
Strategy 2: LS is applied on each locally best position, pi, i ∈ I , with a prescribed fixed probability, ρ ∈ (0, 1].
Strategy 3: LS is applied both on the best position pg as well as on some randomly selected locally best positions pi, i ∈ I .

The application of a LS can either take place at each iteration or after a specific number of iterations. Also, for practical reason, only a small
number of particles are considered as start points for LS, following the suggestions in [47]. The correspondingDE strategies assume only the
corresponding individuals in the population. The reader is referred to [29] for further details. In the current p-MEMPSODE implementation,
the aforementioned strategies were retained.

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 195

Procedure MDS(f , x(0), µ, θ , x∗)
Input: Objective function, f : X ⊂ Rn

→ R; initial point x(0); parameters µ ∈ (1,+∞), θ ∈ (0, 1)
Output: Approximation to local minimizer: x∗

1 Create S(0)
= {x(0)0 , x(0)1 , . . . , x(0)n } that contain x(0)

2 min← argmin
i
{f (x(0)i)} and swap x(0)min and x(0)0

3 for t = 0, 1, . . . do
4 Check the stopping criterion

// Reflection step

5 for i = 1, 2, . . . , n do
6 r ti ← 2x(t)0 − x(t)i
7 Evaluate f (r ti)
8 end
9 ifmin

i


f (r ti), i = 1, 2, . . . , n


< f (x(t)0) then

// Expansion step

10 for i = 1, 2, . . . , n do
11 eti ← (1− µ)x(t)0 + µr(t)

i
12 Evaluate f (eti)
13 end
14 if min

i


f (eti), i = 1, 2, . . . , n


< min

i


f (r ti), i = 1, 2, . . . , n


then

// Expansion step accepted

15 x(t+1)i ← eti , i = 1, 2, . . . , n
16 else

// Reflection step accepted

17 x(t+1)i ← r ti , i = 1, 2, . . . , n
18 end
19 else

// Contraction step

20 for i = 1, . . . , n do
21 cti ← (1+ θ)x(t)0 − θr(t)

i
22 Evaluate f (cti)
23 end

// Always accept contraction

24 x(t+1)i ← cti , i = 1, 2, . . . , n
25 end
26 min← argmin

i
{f (x(t+1)i)} and swap x(t+1)min and x(t+1)0

27 end
28 x∗ ← 1

n+1
n

i=0 x(t)i

Procedure BFGS(f , x(0), x∗)
Input : Objective function, f : S ⊂ Rn

→ R; starting point: x(0)
Output: Approximation of the minimizer: x∗

// Initialization

1 B(0)
= I

2 g(0)
= ∇f (x(0))

3 for k← 1, 2, . . . do

// Linear system solution

4 Solve B(t)d(t)
= −g(t)

// Line search

5 Set x(t+1) = x(t) + λ(t)d(t) , where λ(t) satisfies the Wolfe conditions (1) and (2)
// Derivative evaluation

6 Calculate g(t+1)
= ∇f (x(t+1))

// BFGS update

7 y(t) = g(t+1)
− g(t)

8 s(t) = x(t+1) − x(t)

9 B(t+1)
= B(t)

−
B(t)s(t)s(t)

⊤
B(t)

s(t)⊤B(t)s(t)
+

y(t)y(t)
⊤

y(t)⊤ s(t)
10 Stop if convergence criterion is met
11 end
12 Set x∗ = x(t+1)

3. Parallelization issues

3.1. Parallelizing PSO and DE

The structure of both PSO and DE is intrinsically parallel and perfectly suits the well established master–worker execution model. The
master retains the current and best positions in the PSO case and the population for the DE case. It creates N function evaluation tasks

196 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

for the workers. A synchronization point exists at the end of each iteration of the algorithm so that the master retrieves all new function
values before updating swarm velocities and positions or DE individuals.

Recently, asynchronous implementations have been proposed for PSO [48]. In such cases, there is no synchronization point and the
updating step is performed by the master using the currently available information. Preliminary experiments have shown that although
the synchronized version may achieve faster convergence, asynchronous task handling can increase parallel efficiency.

Although the synchronous variant has been followed in p-MEMPSODE, no loss of parallel efficiency is guaranteed by the employment
of a dynamic nested parallelization scheme (see following sections). The synchronization point at the end of each iteration ensures that
the approximation of the minimizer will not be affected by parallel or sequential execution of the algorithm.

3.2. Parallelizing MDS and BFGS

MDS is an inherently parallel method. At each iteration, at least n function evaluations can be performed concurrently. In the simplest
implementation, three synchronization points for n function evaluation tasks can be inserted at lines 8, 13, and 23 of Procedure MDS.
Alternatively, one may concurrently execute the reflection, expansion and contraction steps by launching 3n function evaluation tasks. In
this case, the best simplex is chosen for the next iteration after gathering all results. Increasing the number of concurrent tasks can lead
to better parallel efficiency on larger computational systems.

Regarding the BFGS algorithm, since we consider function evaluations as the major computational tasks, the essential source of paral-
lelization lies in the parallel estimation of derivatives. Numerical differentiation via finite differences can also be efficiently implemented
using the master–worker model [49].

Due to the synchronization points in each iteration of MDS or BFGS, the parallelization does not affect neither the minimum approxi-
mation nor the required number of iterations and function evaluations. That means that for a given initial configuration and regardless the
number of processors, the above parallel algorithms always lead to the same minimizer having consumed the same number of function
evaluations.

3.3. Parallelizing the memetic algorithm

The stochastic nature of its components, renders the Memetic Algorithm a difficult case for effective parallelization. The basic loop of
the algorithm spawnsN independent tasks, each one associatedwith a specific particle/individual. Some of these tasks are simple function
evaluations (FE)while the rest are local searches (LS). The probability ρ controlswhich particleswill execute FE (approximately (1−ρ)×N
particles) and which will initiate a local search (approximately ρ × N particles).

An LS algorithm may require several hundreds of function evaluations, thus its computational cost is substantially large. On the other
hand, a worker, i.e. processing unit, that has been assigned an FE task is expected to finish much sooner than a worker executing a local
search. Oneway to improve efficiency is to introduce an additional level of parallelism inside the LS task, thus spawning and assigning new
tasks for idle workers that have already finished their FEs. This requires the use of parallel local searches like MDS or BFGS with parallel
numerical derivatives.

In the case that MDS is employed as the LS component, we introduce a second level of parallelism. At this inner level, n independent
calls to the objective function are made for the computation of the reflection simplex and, subsequently, n calls for expansion and n calls
for contraction. The distribution of tasks in this case is shown in Fig. 1, where the computational tasks are depicted in boxes and represent
function evaluations. The iterations of the MDS procedure are not known beforehand, unless we choose a single termination criterion that
is based on the maximum number of iterations or function evaluations. However, in practice, termination criteria based on the proximity
to the solution are habitually used. In this way, wasting of computational resources is avoided.

For the BFGS algorithm we support two alternative task distribution schemes based on whether parallel numerical or analytical
derivatives are used. The task graph of the first case is shown in Fig. 2(a). Here, the iterative local optimization spawns an inner-level
group of at least n tasks that correspond to function evaluations required for the gradient calculation. On the other hand, when analytical
derivatives are employed the task graph of the memetic algorithm is the one illustrated in Fig. 2(b). In this case, lengthy first level tasks
are created. Thus, in the best case, the total runtime will be equal to the time required by the lengthiest local search task.

3.4. OpenMP directives

According to the previous presentation, the parallelism of the Memetic Algorithm is highly irregular and depends on several factors:

(a) The swarm-size and the probability of performing local searches.
(b) The time steps required by the local optimization for finding a minimum.
(c) The dimensionality and execution time of the objective function.

An efficient parallel implementation requires flexible management of this dynamic and highly irregular nested parallelism. To achieve
this on shared-memory platforms, we employed the OpenMP tasking model [36]. Tasks were first introduced in OpenMP v.3.0, aiming to
extend the expressiveness of the programmingmodel beyond loop-level and coarse-grain parallelism. Both function evaluations andMDS
calls are expressed with OpenMP tasks, with each MDS dynamically spawning function evaluation tasks.

Specifically, only a single team of OpenMP threads for all levels of parallelism is created. Themaster thread runs the primary application
task, which executes themain loop of the algorithmand iteratively spawns first-level tasks using the task construct. The rest of the threads
reach the end of the parallel region and begin the execution of these tasks. The primary task then encounters a taskwait construct and
waits for its children tasks to complete, while the master thread participates in their execution.

Any OpenMP thread that executes an MDS task, dynamically spawns additional tasks at the innermost level of parallelism, following
the same fork-join (master–worker) approach. The underlying OpenMP runtime library is responsible for the scheduling of all these tasks
across the available cores.

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 197

Fig. 1. Execution task graph for the memetic scheme with MDS local search.

(a) Numerical derivatives. (b) Analytical derivatives.

Fig. 2. Execution task graph for the memetic scheme with BFGS local search.

The OpenMP tasking model allows to instantiate the task graph of the hybrid algorithm in a straightforward way and effectively
exploit the multiple levels of parallelism. In addition, due to the single team of threads, our parallel application avoids the overheads
and performance implications of OpenMP nested parallel regions.

198 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

Listing 1: OpenMP directives in MDS

1 while (termination_condition()) {

2 k = minimum_simplex(fu, n); // Find minimum simplex point k

3 swap_simplex(u, fu, n, k, 0); // Swap minimum and first point

4
5 // rotation step

6 fr[0] = fu[0];

7 for (i = 1; i < n + 1; i++) {

8 r[i] = u[0] - (u[i] - u[0]);

9 #pragma omp task shared(fr, r, n) firstprivate(i)

10 {

11 Objective_F(&r[i], n, &fr[i]);

12 }

13 }

14 #pragma omp taskwait

15 k = minimum_simplex(fr, n);

16 if (fr[k] < fu[0]){

17 expand = 1;

18 }

19 if (expand){ // expand

20 fec[0] = fu[0];

21 for (i = 1; i < n + 1; i++) {

22 ec[i] = u[0] - mu * ((u[i] - u[0]));

23 #pragma omp task shared(fec, ec, n) firstprivate(i)

24 {

25 Objective_F(&ec[i], n, &fec[i]);

26 }

27 }

28 #pragma omp taskwait

29 kec = minimum_simplex(fec, n);

30 if (fec[kec] < fr[k]) {

31 assign_simplex(u, fu, ec, fec, n);

32 } else {

33 assign_simplex(u, fu, r, fr, n);

34 }

35 }

36 else { // contract

37 fec[0] = fu[0];

38 for (i = 1; i < n + 1; i++) {

39 ec[i] = u[0] + theta * ((u[i] - u[0]));

40 #pragma omp task shared(fec, ec, n) firstprivate(i)

41 {

42 Objective_F(&ec[i], n, &fec[i]);

43 }

44 }

45 #pragma omp taskwait

46 assign_simplex(u, fu, ec, fec, n);

47 }

48 } /* while termination */

Listing 2: OpenMP directives in the core of the memetic scheme

1 // Define which particles will perform local searches

2 for (i = 0; i < M; i++) {

3 if (drand48() < P)

4 local[i] = 1;

5 else
6 local[i] = 0;

7 }

8
9 for (i = 0; i < M; i++) {

10 if (local[i] == 1) {

11 #pragma omp task untied firstprivate(i) private(GRMS,fev,gev) shared(bestpos, N, fbestpos, xll, xrl)

12 {

13 local_optimization(&bestpos[i], N, &fbestpos[i], &GRMS, xll, xrl, &fev, &gev);

14 } /* task */

15 }

16 }

17
18 for (i = 0; i < M; i++) {

19 if (local[i] == 0) {

20 #pragma omp task untied firstprivate(i) shared(N, swarm, fswarm, stats) private(j, FX)

21 {

22 Evaluate_Particle(&swarm[i], &FX, N);

23 fswarm[i] = FX;

24 } /* task */

25 }

26 }

27
28 #pragma omp taskwait

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 199

4. Software description

The proposed p-MEMPSODE software can be built either as a standalone executable or as a library that exports a user callable interface.
Like its serial predecessor, all algorithmic parameters are controlled by a rich variety of options, while all its components are written
in ANSI C. The software also contains a set of sample objective functions, including an interface to the Tinker [50] package for molecular
mechanics calculations. During optimization, p-MEMPSODE prints informativemessages on the screen and, upon termination, appropriate
output files are created. For installation instructions and detailed examples we refer the reader to the extensive readme file in the software
distribution.

4.1. User-defined subroutines

The user must provide the following subroutines:

(1) void Objective_F (double x[], int n, double *f)

Returns the value of the objective function evaluated at x.
x (input) Array containing the evaluation point.
n (input) Dimension of the objective function.
f (output) Objective function value.

(2) void Bounds_F(double l[], double r[], int n)

Returns the double-precision array lwith the lower bounds and the double-precision array rwith the upper bounds of the variables.
n (input) Dimension of the objective function.
l (output) Array containing the lower bounds.
r (output) Array containing the upper bounds.

For the first order derivatives, the gradient is also needed:

(3) void Objective_G (double x[], int n, double g[])

Returns the gradient vector evaluated at x.
x (input) Array containing the evaluation point.
n (input) Dimension of the objective function.
g (output) Gradient vector.

4.2. Installation and use: standalone version

Assuming that the above user-defined subroutines are included in the file fun.c, the standalone executable can be built using the make
utility:

make OBJECTIVE=fun

Then the user can define the number of OpenMP threads that will be used to carry out parallel computation by issuing the command:

export OMP_NUM_THREADS=8

Subsequently, execution is initiated from the command line:

mempsode -d 20 -a pso -l 2 -m 3 -s 100 -f 10000

dimension
of the
problem

choice
between
UPSO and
DE

memetic
scheme

local
search

swarm
size

maximum
function
evaluations

The above commands execute p-MEMPSODE on 8 OpenMP threads using UPSO (option -a pso) for the 20-dimensional provided objective
function (option -d 20), swarm size 100 (option -s 100), maximum number of function evaluations 10000 (option -f 10000), the second
memetic scheme (option -l 2) and the third local search procedure (BFGS with analytic derivatives) (option -m 3).

Algorithm specific parameters can be defined using the command line arguments -B for BFGS and -T for MDS, which are presented
below along with their default values:

(1) BFGS parameters: -B=“param1=value param2=value...”

feps=1.e-8 Function value termination criterion tolerance.
xeps=1.e-8 X-termination criterion tolerance.
geps=1.e-8 Gradient norm termination criterion tolerance.
rho=1.e-4 Line search ρ parameter.
sigma=0.9 Line search σ parameter.
maxiter=300 Maximum number of iterations.
maxfevals=1000 Maximum number of function evaluations.
lsiter=30 Maximum number of line search iterations.

200 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

(2) MDS parameters: -T=“param1=value param2=value...”

mu=2.0 µ parameter.
theta=0.5 θ parameter.
maxiter=300 Maximum number of iterations.
maxfevals=1000 Maximum number of function evaluations.

A complete list of all available command line options is provided in the package distribution or through the command:

mempsode -h

During the optimization procedure the software provides printout information (iterations, function evaluations, minimum objective
function value) and upon termination a detailed message containing the minimum, the total number of function evaluations, the number
of local searches etc. In addition, the number of tasks executed by each of the OpenMP threads can be retrieved.

4.3. Installation and use: library version

The p-MEMPSODE software can be also built as a library by issuing the command:

make lib

This command creates the file libmempsode.a, which contains a set of interface routines. To render themusable, the usermust provide
appropriate function calls, as illustrated below:

#include "mempsode.h"

...

init_mempsode();

set_mempsode_iparam("dimension", 20);

set_mempsode_cparam("algorithm", "pso");

set_mempsode_iparam("memetic", 2);

/* Use BFGS with analytic derivatives */

set_mempsode_iparam("local-search", 3);

/* Set maximum BFGS iterations */

set_mempsode_cparam("bfgs-params", "maxiter=300");

set_mempsode_iparam("swarm-size", 100);

set_mempsode_iparam("max-fun-evals", 10000);

mempsode();

get_mempsode_min("minval", &val);

...

The above code sets various p-MEMPSODE parameters, calls the main optimization routine, and finally retrieves the best function value
found. Assuming that file main.c contains the above code fragment and file fun.c contains the objective function, they can be linkedwith
the p-MEMPSODE library as follows:

gcc main.c fun.c -L/path/to/mempsode -I/path/to/mempsode -lmempsode -fopenmp

The complete list of interface routines as well as various installation options are provided in the software distribution.

5. Sample applications

In order to examine the parallel efficiency of p-MEMPSODE, we provide three categories of sample applications. The first one considers
the global minimization of multimodal objective functions. For this purpose, four widely used multimodal test function were chosen.
Since parallel algorithms are more useful in cases of computationally demanding objective functions, an artificial delay was added to each
function call. The other two applications refer to molecular conformation problems using pairwise and Tinker potentials. The parallel p-
MEMPSODE software was tested on a multicore server with 16-core AMD Opteron CPUs and 16 GB of RAM. The software was compiled
under Linux 2.6 with GNU gcc 4.7 and OpenMP 3.1.

5.1. Application on artificial test functions

To evaluate the performance of our implementation under different parameter configurations we used a set of standard multimodal
test functions (see Table 1). These test problems are widely used in the literature to assess the quality of global optimization algorithms.
Since we are interested in the parallel speedup, we added artificial delays of 1 and 10 ms to each function call. Preliminary experiments
indicated that using delays larger than 10ms does not alter the speedup measurements, hence we excluded them from the analysis. We
note that p-MEMPSODE retrieves the global minimizer in all cases reported, given a large budget of function evaluations.

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 201

Table 1
Artificial test functions.

Function Formula Minimizer

Rastrigin f (x) = 10 n+
n

i=1


x2i − 10 cos(2πxi)


f ∗ = 0, x∗ = (0, 0, . . . , 0)⊤

Ackley
f (x) = 20+ exp(1) −20 exp


−0.2


1
n

n

i=1
x2i



− exp

1
n

n

i=1
cos(2πxi)

 f ∗ = 0, x∗ = (0, 0, . . . , 0)⊤

Griewank f (x) =
n

i=1
x2i

4000 −
n

i=1 cos


xi√
i


+ 1 f ∗ = 0, x∗ = (0, 0, . . . , 0)⊤

Schwefel f (x) = 418.9829 · n−
n

i=1 xi sin
√
|xi|


f ∗ = 0, x∗ = (420.9687, 420.9687, . . .)⊤

Table 2
Experimental setting for the Rastrigin test function.

Setting Probability (ρ) Dimension (n)

E1 0.01 30
E2 0.01 50
E3 0.01 100
E4 0.05 30
E5 0.05 50
E6 0.05 100
E7 0.1 30
E8 0.1 50
E9 0.1 100
E10 0.2 30
E11 0.2 50
E12 0.2 100

We tested all the local search algorithms implemented in the software. In Table 2 we define 12 different parameter configurations by
varying the probability of local search and the dimension of the objective function. The swarm sizewas set equal to the problem dimension
for each case.

The probability ρ controls the number of parallel LS tasks launched at each iteration in the outer parallelization level. The dimension
n also defines the number of concurrent function evaluations in the case of MDS and BFGS with numerical derivatives, at the inner
parallelization level. Small probability and dimension result in small number of tasks. Increasing these quantities also increases the number
of parallel tasks, which in turn improves parallel efficiency. We also expect more parallel tasks to be spawned as the swarm size increases.

Figure 3 illustrates the achieved speedup when MDS was used as the LS component. The results are arranged in a 3× 2 grid. Each row
of figures corresponds to a specific swarm size and each column to a specific computational delay level (left column: 1 ms, right column:
10 ms). Each figure illustrates the speedup for the 12 different parameter settings of Table 2, on 1, 2, 4, 8, and 16 processors. The ideal
speedup is the corresponding horizontal line per number of processors.

As we can see, almost perfect speedup is obtained for both delay values, even for the case of 16 processors. As expected, inferior
performance is observed when the number of parallel tasks is relatively small (Experiment E1 with swarm size 30), while the best
performance is achieved when the number of tasks is high (Experiment E12 with swarm size 100).

The case of BFGS with numerical derivatives is illustrated in Fig. 4. All speedup measurements with varying swarm size (a single
row in Fig. 4) show increase with increasing swarm size. Furthermore, the speedup increases as a function of probability of local search
and dimensionality. For all swarm sizes, experiment E12 (high dimensionality, high probability) exhibits better speedup that E1 (low
dimensionality, low probability). The spikes at the 16-processor line for the 100-D cases of E3, E6 and E9, indicate that the speedup is
mainly affected by the dimensionality of the problem.

In Fig. 5 we present results using the BFGS with analytical derivatives. As expected the serial nature of the original BFGS algorithm
deteriorates the parallel efficiency of the whole scheme. The number of LS tasks (determined by the swarm size and the probability of LS)
is not large enough to keep many processors busy, causing severe load imbalance. Notice that in the extreme case of E12, a mean number
of 100 · 0.2 = 20 LS are initiated at each iteration. When 16 processors are available, these LS are distributed in two passes. In the first
pass, each processor is be assigned a single LS, which leaves approximately 4 remaining tasks to the second pass. Therefore, the majority
of the processors (75%) in the second pass will remain idle. As a result, an average speedup of 4 is observed when 4, 8 or 16 processors are
used.

However, additional experiments using BFGS with analytical derivatives on larger swarm sizes and dimensions, showed that the
speedup is again approximating the ideal. The reason is the increasing number of concurrent local searches that are launched using these
settings. In Fig. 6, we report the speedup for dimension n = 100, swarm size 1000 and 5000, respectively, and probability of LS ρ = 0.2
and 0.5.

The remaining test functions were also studied for the 12 configurations of Table 2, again using artificial delays of 1 and 10 ms. The
resulting charts are grouped together in a Supplementary Material (see Appendix). In all cases, the reported speedup values are similar to
the ones reported for the Rastrigin function. The only significant difference occurs when BFGS with analytical derivatives was applied to
the Griewank function (Fig. 16). The speedup reported in this figure is greater than the one reported for the Rastrigin, Ackley and Schwefel
functions (Figs. 5, 13, 19) and this can be attributed to the increased complexity of the Griewank objective.

202 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 50. (e) Swarm size 30. (f) Swarm size 100.

Fig. 3. Results with 1 ms delay (first row) and 10 ms delay (second row) using MDS.

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 30. (e) Swarm size 50. (f) Swarm size 100.

Fig. 4. Results with 1 ms delay (first row) and 10 ms (second row), using BFGS with numerical derivatives.

5.1.1. Parallel vs. serial performance
The experimental procedure up to this point establishes clearly the efficiency of our parallel software. However, it is also important

to present evidence that the parallel execution of p-MEMPSODE can approximate a global minimum faster than the best sequential p-
MEMPSODE algorithm. In many cases, a fast algorithm cannot be parallelized as easy as a less efficient algorithm specially constructed for
parallelization. For this comparison we will appose a serial execution of p-MEMPSODE that uses BFGS and analytical derivatives against

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 203

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 30. (e) Swarm size 50. (f) Swarm size 100.

Fig. 5. Results with 1 ms delay (first row) and 10 ms delay (second row), using BFGS with analytic derivatives.

a b

dc

Fig. 6. Speedup using BFGS with analytic derivatives on the 100-dimensional Rastrigin test function.

a parallel execution of p-MEMPSODE that uses BFGS with numerical derivatives and record the execution time. The basic incentive is to
explore the conditions under p-MEMPSODE using BFGS with numerical derivatives can solve an optimization problem in less time than
the fastest and more robust analytic BFGS counterpart.

For this comparison we use the same delay of df = 10ms for all objective functions and a delay of dg = n
10 df , n being the problem

dimensionality, for each analytic gradient call. This reflects a realistic comparison between the serial runtime of an analytic gradient
evaluation and the serial runtime of the corresponding function evaluation. Swarm size was set to 30 and probability ρ = 0.05. Each

204 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

Table 3
Serial vs parallel timing. Swarm size is set to 30 and ρ = 0.05. The reported time is in seconds.

Obj. Fun. Dim. BFGS analytic BFGS numeric
1 cpu 2 cpus 4 cpus 8 cpus 16 cpus

Rastrigin N = 10 1485.55 1501.50 772.34 543.0 384.75
Rastrigin N = 30 9752.98 10304.94 6204.12 3763.53 2701.93
Rastrigin N = 50 16808.65 17412.29 9606.57 5844.02 4123.87

Griewank N = 10 1936.39 2344.78 1229.15 1123.13 371.20
Griewank N = 30 13494.30 15299.93 8165.96 5851.38 4378.37
Griewank N = 50 24608.88 25539.29 14460.38 7314.27 6168.27

Ackley N = 10 1017.47 1127.34 372.26 334.40 476.62
Ackley N = 30 8544.98 8572.07 5706.40 2953.65 2178.28
Ackley N = 50 19323.70 19529.78 10404.43 6852.25 5606.60

Schwefel N = 10 4288.22 5033.21 2072.73 1506.99 1323.74
Schwefel N = 30 38795.81 42534.90 24949.72 14627.02 10558.88
Schwefel N = 50 84541.26 89089.47 47677.92 29527.08 21607.25

experiment was executed until the global minimum value 0.0 is reached within an accuracy of 10−6 and was repeated 10 times with
different random seeds. In Table 3 we have collected the mean execution times for each setting. The reported times indicate that
for all tested objective functions, the parallel execution of p-MEMPSODE with numerical derivatives can reduce the execution time of
approaching the global minimum. The reduction in time is obvious if more than 2 processors are used. This reduction is expected since,
using many CPUs, parallel gradient calculation can be faster than the analytic one. The compared implementations differ only in the
approximation of the gradient vector. The only reason for them to follow different paths to the global minimum is the approximation
error is introduced in every parallel numerical gradient call. Since this error is really small, both algorithms are expected to perform
roughly the same number of iterations until they reach the global minimum. So the p-MEMPSODE implementation with numerical BFGS
can converge faster (a) due to faster gradient calls and (b) due to parallel evaluation of the particles new positions. We must notice that
the artificial delay for each analytical gradient is set to 10, 30 and 50 millisecond respectively and the number of gradient evaluations is
small compared to the total function evaluations. This explains the slightly worse performance of parallel execution in the case of 2 CPUs.
A great increase in runtime is expected if parallel derivatives are employed on a small amount of processors.

5.2. Application on atomic clusters using pairwise energy potentials

Pairwise energy potentials are mathematical models used to calculate the total energy in a cluster of atoms. Minimizing this energy
with respect to the coordinates of the atoms, corresponds to finding a stable conformation of the cluster. In the case of pairwise potentials,
the total energy of the system consisting of Natoms atoms can be calculated as:

Utot =

N
i=1

N
j<i

E

rij

. (19)

Here the quantity E

rij

is the pairwise interaction energy between the ith and jth atoms and

rij =


xi − xj
2
+

yi − yj

2
+

zi − zj

2
is the distance between atom i located at (xi, yi, zi)⊤ and atom j located at (xj, yj, zj)⊤. Different formulations for E


rij

lead to different

potentials and hence different conformations in space. Different pairwise energies to describe interactions for various classes of atoms
have been proposed over the last years.

We use p-MEMPSODE to minimize three well known pairwise energy potentials (Lennard-Jones, Morse and Girifalco). The purpose of
these benchmarks is to estimate the parallel efficiency of the software. Since the objective function is analytic and first order derivatives
are available, we focused on the hybrid scheme that applies BFGS with analytical derivatives.

5.2.1. Lennard Jones potential
The Lennard-Jones potential [51] is a simplemodel that approximates the interaction between a pair of neutral atoms ormolecules (van

der Waals interaction). It is considered a relatively good and universal approximation and due to its simplicity is often used to describe
the properties of gases.

Formations of Lennard-Jones clusters have been extensively used as global optimization benchmark problems. The potential energy of
the cluster is given by:

E(rij) = 4 ε


σ

rij

12

−


σ

rij

6


, (20)

where rij is the distance between atoms i and j. This function, for reduced units (σ = ε = 1), is implemented in the file lj.c of the
p-MEMPSODE source code distribution.

We tested the speedup of p-MEMPSODE on a relatively large molecule of 100 atoms, which results in a problem of dimension n = 300.
Each call for this specific instance of the Lennard-Jones objective function takes approximately 1 ms on a single core of the multicore
server. We tested large swarm sizes (100, 500, and 1000) with probabilities set to 0.1, 0.2, and 0.3, respectively.

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 205

Fig. 7. Speedup for the Lennard-Jones potential: cluster of 100 atoms.

Fig. 8. Speedup for the Morse potential: cluster of 100 atoms.

Figure 7 depicts the achieved speedups. We can easily notice that when 16 processors were utilized, the speedup ranged from 9.26 up
to 11.07. This evidence is in accordance with the experiment results for the Rastrigin function with large swarm size and probability value
(see Fig. 6). Again, it is apparent that larger swarms lead to more local searches and hence better speedup.

5.2.2. Morse potential
The Morse potential [52] is a convenient model for the potential energy of diatomic molecules. Morse clusters are also considered a

particularly tough test system for global optimization. The potential energy of the cluster is given by:

E(rij) = ϵ

e−nβ(rij−r0) − ne−β(rij−r0)


. (21)

The parameter r0 is the distance which corresponds to the minimum of the potential and ϵ(n − 1) is the energy of the potential at its
minimum. The parameters β and n define the steepness of the potential.

We measured the speedup of p-MEMPSODE using the same settings as in the Lennard-Jones case (100 atoms). The runtime of this
instance of the objective function is approximately 1 ms. The results are shown in Fig. 8 and are very similar to those observed for the
Lennard-Jones potential.

5.2.3. Girifalco potential
The Girifalco potential [53] was derived as an effective potential of the fullerene–fullerene interaction. A fullerene is a molecule

composed of carbon in the form of a hollow sphere or ellipsoid. The formula of this potential is given by:

E(rij) = −α


1

sij(sij − 1)3
+

1
sij(sij + 1)3

−
2
s4ij


+ β


1

sij(sij − 1)9
+

1
sij(sij + 1)9

−
2
s10ij


, (22)

where sij =
rij
2a , α =

N2
c A

12(2a)6
, β = N2

c B
90(2a)12

. Here Nc is the number of carbon atoms of the fullerene, a defines the minimum position and the
quantities A = 19.97 and B = 34,809 are calculated empirically.

In this experiment we used p-MEMPSODE to calculate clusters of 100 fullerenes, each one consisting of Nc = 60 carbon atoms. The
results are shown in Fig. 9. Although the same general trend is observed, the speedups are slightly lower in this case. Further analysis
revealed that for the Girifalco potential, the BFGS algorithm exhibits larger variance in the number of steps required for convergence
compared to the other two cases. That means that higher load imbalance is introduced by the BFGS, affecting the parallel performance of
algorithm.

5.3. Application on Tinker potential

The Tinker potential energy function was used in [29] to demonstrate the efficiency of the serial MEMPSODE version. In that example,
the minimum energy conformation of a gas phase Alanine octamer was found. In the present work, we use the same example to measure
the speedup of the p-MEMPSODE software.

The Tinker software package contains a Fortran implementation of theAmber [54] force field used in this study and in [29]. Tinkermakes
heavy use of common blocks for inter-subroutine communication. Since OpenMP threads share the same address space, concurrent Tinker
function evaluations will be erroneous. To deal with this issue, we spawn separate Tinker server processes, one for each OpenMP thread.
Each server calculates the same potential within its own memory space and communicates with p-MEMPSODE via Unix-domain sockets.
This special implementation reduces the communication overhead while allowing concurrent Tinker evaluations to be issued by multiple
OpenMP threads on a single computer system (see Fig. 10).

206 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

Fig. 9. Speedup for the Girifalco potential: cluster of 100 fullerenes.

Fig. 10. Speedup for the Tinker potential application.

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 50. (e) Swarm size 30. (f) Swarm size 100.

Fig. 11. Ackley function results with 1 ms delay (first row) and 10 ms delay (second row) using MDS.

6. Conclusions

It this work, the parallel implementation of a hybrid global optimization algorithm that combines population based methods with
local searches is proposed. The components of the hybrid algorithm were chosen mainly due to their inherent parallelization capabilities.
The parallelization of the presented method results in an irregular, two-level task graph, considering function evaluations as basic
computational tasks. The implementation is based on the OpenMP tasking model which provides seamless extraction and efficient
execution of nested task-based parallelism. Thorough experimental testing on a server with 16 cores revealed that the proposed parallel
implementation harnesses the power of multicore architectures and drastically reduces the execution time of the hybrid optimization
algorithm.

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 207

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 30. (e) Swarm size 50. (f) Swarm size 100.

Fig. 12. Ackley function results with 1 ms delay (first row) and 10 ms (second row), using BFGS with numerical derivatives.

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 30. (e) Swarm size 50. (f) Swarm size 100.

Fig. 13. Ackley function results with 1 ms delay (first row) and 10 ms delay (second row), using BFGS with analytic derivatives.

Acknowledgments

This work is co-financed by the European Union and Greece Operational Program ‘‘Human Resources Development’’ – NSFR 2007–2013
– European Social Fund.

208 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 50. (e) Swarm size 30. (f) Swarm size 100.

Fig. 14. Griewank function results with 1 ms delay (first row) and 10 ms delay (second row) using MDS.

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 30. (e) Swarm size 50. (f) Swarm size 100.

Fig. 15. Griewank function results with 1 ms delay (first row) and 10 ms (second row), using BFGS with numerical derivatives.

Appendix. Supplementary material

See Figs. 11–19.

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 209

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 30. (e) Swarm size 50. (f) Swarm size 100.

Fig. 16. Griewank function results with 1 ms delay (first row) and 10 ms delay (second row), using BFGS with analytic derivatives.

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 50. (e) Swarm size 30. (f) Swarm size 100.

Fig. 17. Schwefel function results with 1 ms delay (first row) and 10 ms delay (second row) using MDS.

210 C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 30. (e) Swarm size 50. (f) Swarm size 100.

Fig. 18. Schwefel function results with 1 ms delay (first row) and 10 ms (second row), using BFGS with numerical derivatives.

(a) Swarm size 30. (b) Swarm size 50. (c) Swarm size 100.

(d) Swarm size 30. (e) Swarm size 50. (f) Swarm size 100.

Fig. 19. Schwefel function results with 1 ms delay (first row) and 10 ms delay (second row), using BFGS with analytic derivatives.

References

[1] R. Horst, P.M. Pardalos, Handbook of Global Optimization, Kluwer Academic Publishers, London, 1995.
[2] T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York, 1996.
[3] G. Rudolph, Convergence Properties of Evolutionary Algorithms, Verlag Dr. Kovač, Hamburg, 1997.

http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref1
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref2
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref3

C. Voglis et al. / Computer Physics Communications 197 (2015) 190–211 211

[4] K.E. Parsopoulos, M.N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances and Applications, Information Science Publishing (IGI Global), 2010.
[5] J. Nocedal, S.J. Wright (Eds.), Numerical Optimization, Springer, 2006.
[6] A. Žilinskas, J. Žilinskas, A hybrid global optimization algorithm for non-linear least squares regression, J. Global Optim. 56 (2) (2013) 265–277.
[7] R. Dawkins, The Selfish Gene, Oxford University Press, New York, 1976.
[8] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms, Technical Report C3P Report 826, Caltech

Concurrent Computation Program, California, USA, 1989.
[9] P. Moscato, Memetic algorithms: A short introduction, in: D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas in Optimization, McGraw-Hill, London, 1999, pp. 219–235.

[10] H.-G. Beyer, Evolutionary algorithms in noisy environments: Theoretical issues and guidelines for practice, Comput. Methods Appl. Mech. Engrg. 186 (2000) 239–269.
[11] E. Bonabeau, M. Dorigo, G. Théraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York, 1999.
[12] C.A. Coello Coello, D.A. Van Veldhuizen, G.B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer, New York, 2002.
[13] A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, Wiley, 2006.
[14] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers, 2001.
[15] M.W.S. Land, Evolutionary algorithms with local search for combinatorical optimization (Ph.D. thesis), University of California, San Diego, USA, 1998.
[16] R. Fletcher, Practical Methods of Optimization, Wiley, New York, 1987.
[17] P.E. Gill, W. Murray, M.H. Wright, Practical Optimization, Academic Press, London, 1981.
[18] F. Neri, C. Cotta, P. Moscato (Eds.), Handbook of Memetic Algorithms, Springer-Verlag, Berlin, 2012.
[19] Reiner Horst, Panos M. Pardalos, H. Edwin Romeijn, Handbook of Global Optimization. vol. 2, Springer, 2002.
[20] J.J. Alonso, P. LeGresley, V. Pereyra, Aircraft design optimization, Math. Comput. Simul. 79 (6) (2009) 1948–1958.
[21] John T. Betts, Survey of numerical methods for trajectory optimization, J. Guid. Control Dyn. 21 (2) (1998) 193–207.
[22] C. Audet, S. Le Digabel, C. Tribes, NOMAD User Guide, Technical Report G-2009-37, Les cahiers du GERAD, 2009.
[23] M.A. Abramson, C. Audet, G. Couture, J.E. Dennis Jr., S. Le Digabel, C. Tribes, The NOMAD project. Software available at http://www.gerad.ca/nomad.
[24] Dario Izzo, Marek Ruciński, Francesco Biscani, The generalized island model, in: Parallel Architectures and Bioinspired Algorithms, Springer, 2012, pp. 151–169.
[25] Dario Izzo, Pygmoandpykep:Open source tools formassively parallel optimization in astrodynamics (the case of interplanetary trajectory optimization), in: Proceedings

of the Fifth International Conference on Astrodynamics Tools and Techniques, ICATT, 2012.
[26] Kejing He, Li Zheng, Shoubin Dong, Liqun Tang, Jianfeng Wu, Chunmiao Zheng, Pgo: A parallel computing platform for global optimization based on genetic algorithm,

Comput. Geosci. 33 (3) (2007) 357–366.
[27] Jian He, Layne T. Watson, Masha Sosonkina, Algorithm 897: Vtdirect95: serial and parallel codes for the global optimization algorithm direct, ACM Trans. Math. Softw.

(TOMS) 36 (3) (2009) 17.
[28] Christian L. Müller, Benedikt Baumgartner, Georg Ofenbeck, Birte Schrader, Ivo F. Sbalzarini, pcmalib: a parallel fortran 90 library for the evolution strategy with

covariance matrix adaptation, in: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, ACM, 2009, pp. 1411–1418.
[29] C. Voglis, K.E. Parsopoulos, D.G. Papageorgiou, I.E. Lagaris, M.N. Vrahatis, MEMPSODE: A global optimization software based on hybridization of population-based

algorithms and local searches, Comput. Phys. Comm. 183 (5) (2012) 1139–1154.
[30] D.G. Papageorgiou, I.N. Demetropoulos, I.E. Lagaris, Merlin-3.1. 1. a new version of the Merlin optimization environment, Comput. Phys. Comm. 159 (1) (2004) 70–71.
[31] C. Voglis, Grigoris S. Piperagkas, Konstantinos E. Parsopoulos, Dimitris G. Papageorgiou, Isaac E. Lagaris, MEMPSODE: comparing particle swarm optimization and

differential evolutionwithin a hybridmemetic global optimization framework, in: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary
Computation Conference Companion, ACM, 2012, pp. 253–260.

[32] C. Voglis, Grigoris S. Piperagkas, Konstantinos E. Parsopoulos, Dimitris G. Papageorgiou, Isaac E. Lagaris, MEMPSODE: An empirical assessment of local search algorithm
impact on a memetic algorithm using noiseless testbed, in: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation
Conference Companion, ACM, 2012, pp. 245–252.

[33] C. Voglis, Adapt-MEMPSODE: a memetic algorithm with adaptive selection of local searches, in: Proceeding of the Fifteenth Annual Conference Companion on Genetic
and Evolutionary Computation Conference Companion, ACM, 2013, pp. 1137–1144.

[34] C. Voglis, Panagiotis E. Hadjidoukas, Konstantinos E. Parsopoulos, Dimitrios G. Papageorgiou, Isaac E. Lagaris, Adaptive memetic particle swarm optimization with
variable local search pool size, in: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, ACM, 2013, pp. 113–120.

[35] V. Torczon, A direct search algorithm for parallel machines (Ph.D. thesis), Department of Mathematical Sciences, Rice University, Houston, USA, 1989.
[36] OpenMP Architecture Review Board. Openmp specifications. Available at: http://www.openmp.org.
[37] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. Neural Networks, vol. IV, IEEE Service Center, Piscataway, NJ, 1995, pp. 1942–1948.
[38] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings Sixth Symposium on Micro Machine and Human Science, IEEE Service Center,

Piscataway, NJ, 1995, pp. 39–43.
[39] P.N. Suganthan, Particle swarm optimizer with neighborhood operator, in: Proc. IEEE Congr. Evol. Comput., Washington, D.C., USA, 1999, pp. 1958–1961.
[40] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput. 6 (1) (2002) 58–73.
[41] K.E. Parsopoulos, M.N. Vrahatis, UPSO: A unified particle swarm optimization scheme, in: Proceedings of the International Conference of Computational Methods in

Sciences and Engineering, ICCMSE 2004, in: Lecture Series on Computer and Computational Sciences, vol. 1, VSP International Science Publishers, Zeist, The Netherlands,
2004, pp. 868–873.

[42] K.E. Parsopoulos, M.N. Vrahatis, Parameter selection and adaptation in unified particle swarm optimization, Math. Comput. Modelling 46 (1–2) (2007) 198–213.
[43] R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11 (1997) 341–359.
[44] K. Price, Differential evolution: A fast and simple numerical optimizer, in: Proceedings NAFIPS’96, 1996, pp. 524–525.
[45] V. Torczon, On the convergence of the multidimensional search algorithm, SIAM J. Optim. 1 (1991) 123–145.
[46] Y.G. Petalas, K.E. Parsopoulos, M.N. Vrahatis, Memetic particle swarm optimization, Ann. Oper. Res. 156 (1) (2007) 99–127.
[47] W.E. Hart, Adaptive global optimization with local search (Ph.D. thesis), University of California, San Diego, USA, 1994.
[48] C. Voglis, K.E. Parsopoulos, I.E. Lagaris, Particle swarm optimization with deliberate loss of information, Soft Comput. 16 (8) (2012) 1373–1392.
[49] C. Voglis, P.E. Hadjidoukas, I.E. Lagaris, D.G. Papageorgiou, A numerical differentiation library exploiting parallel architectures, Comput. Phys. Comm. 180 (8) (2009)

1404–1415.
[50] J.W. Ponder, et al., TINKER: Software Tools for Molecular Design, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St.

Louis, MO, 1998.
[51] J. Lennard-Jones, On the determination of molecular fields, Proc. R. Soc. Lond. A. 47 (6) (1924) 106–463.
[52] P. Morse, Diatomic molecules according to the wave mechanics ii. Vibrational levels, Proc. R. Soc. Lond. A. 34 (1929) 57–64.
[53] L. Girifalco, Molecular properties of fullerene in the gas and solid phases, J. Phys. Chem. 96 (1992) 858–861.
[54] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field for the

simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc. 117 (19) (1995) 5179–5197.

http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref4
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref5
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref6
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref7
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref8
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref9
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref10
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref11
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref12
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref13
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref14
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref15
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref16
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref17
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref18
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref19
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref20
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref21
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref22
http://www.gerad.ca/nomad
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref24
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref25
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref26
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref27
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref28
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref29
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref30
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref31
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref32
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref33
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref34
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref35
http://www.openmp.org
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref37
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref38
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref40
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref41
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref42
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref43
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref44
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref45
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref46
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref47
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref48
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref49
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref50
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref51
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref52
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref53
http://refhub.elsevier.com/S0010-4655(15)00280-5/sbref54

	p-MEMPSODE: Parallel and irregular memetic global optimization
	Introduction
	Description of the algorithms
	Unified particle swarm optimization
	Differential evolution
	Local search
	Multi-directional search
	BFGS algorithm

	Memetic strategies

	Parallelization issues
	Parallelizing PSO and DE
	Parallelizing MDS and BFGS
	Parallelizing the memetic algorithm
	OpenMP directives

	Software description
	User-defined subroutines
	Installation and use: standalone version
	Installation and use: library version

	Sample applications
	Application on artificial test functions
	Parallel vs. serial performance

	Application on atomic clusters using pairwise energy potentials
	Lennard Jones potential
	Morse potential
	Girifalco potential

	Application on Tinker potential

	Conclusions
	Acknowledgments
	Supplementary material
	References

