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Abstract

An important step in the design of alloys and intermetallic compounds using semi-empirical potentials is to de-

termine the appropriate parameters, which best describe experimental and/or quantum mechanical ab initio results.

This task is quite difficult as the data are not always consistent and complete and furthermore, they contain errors. To

facilitate the modelling we use the optimization environment of MERLINERLIN http://merlin.cs.uoi.gr/. This was

applied to study a particular class of intermetallic compounds and alloys, which are very interesting, the so-called super-

alloys, such as Ni–Al. We have fitted the properties of such intermetallic alloys and compounds utilizing a semi-

empirical tight-binding potential in the second moment approximation. The potentials, which were produced in this

way, were tested for properties at various temperatures, including segregation to surfaces and interfaces, and also for

dynamical properties like the phonon density of states and mean-square displacements. We find a very good agreement

to known experimental results and also a wealth of interesting information has revealed. Therefore the produced in-

teratomic potentials present a realistic way to test scenarios which appear in the materials design.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Modern ab initio quantum mechanical compu-

tational methods have produced many important

results, a great number of which are predictions,
concerning the behavior of materials [1]. As the

computational power increases, the set of systems,

properties and situations that can be treated
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broadens. On the other hand, even nowadays some

problems are outside the reach of such exact

methods and call for approximate treatment.

Some important problems which need approxi-

mate treatment, are the thermodynamic properties
of metallic alloys at surfaces and interfaces, a key

problem in materials design [2]. When coping with

such problems it is customary to invoke some ap-

proximation to the potential function of the system

and determine the unknown parameters by mini-

mizing an appropriate error function. A class of

semi-empirical potentials which proved very useful

for metallic systems includes the embedded-atom
ed.
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method (EAM) [3], Finnis–Sinclair potentials [4]

and the tight-binding in the second moment ap-

proximation (TB-SMA) [5–7]. The error function

has the form of a weighted norm, where each

component is the difference between known ex-
perimental and/or ab initio zero temperature

properties and the properties obtained using the

approximate potential function [8,9]. The optimi-

zation problem can be stated as following: for a

particular semi-empirical form find the parameters

which best describe the intermetallic system. This

problem is demanding because not all the data

which are available for the fitting are equally rel-
evant to the problem, and furthermore the data do

not have the same accuracy. To help solve this

problem one needs a flexible, transparent, easily

implemented and controlled code. Those criteria

are met by the optimization environment MER-ER-

LINLIN. This environment includes many optimization

methods in an homogeneous setup, menu driven

control, scripting language, mechanism to store
results of different optimization cycles. In effects, it

allows a combined use of different optimization

methods, which is done transparently without re-

sorting to the complexities of each one, constraint

the range of the parameters, fix the value of a pa-

rameter and so on. In addition the MERLINERLIN opti-

mization environment [10], which features its own

programming language, MCLCL [11], that allows the
programmer to build a strategy to find the best set

of parameters. So far this approach has been used

on a number of metallic alloy systems with success.

Augmenting the procedure with molecular dy-

namics methods we have obtained a variety of

properties essential in materials design and pro-

cesses like growth, including the linear expansion

coefficient, mean square displacements, both in
bulk and at surfaces, and dynamical properties,

such as phonon spectra, and atomic diffusion [12–

17]. On the other hand using the Monte-Carlo

method, in addition to the previous, we can access

ordering and disordering phenomena in bulk, in-

terfaces and at surfaces and segregation phenom-

ena at interfaces and surfaces [18–22]. The purpose

of the present work is to demonstrate the utility of
the MERLINERLIN environment and to show results

concerning the thermodynamics of metallic alloys

and intermetallic compounds.
2. Method

2.1. The MERLINERLIN optimization environment

Multidimensional minimization is a common

procedure applied in many fields. A variety of

problems in engineering, physics, chemistry, etc.,

are frequently reduced to minimizing a function of

many variables.

Minimizing a multidimensional function faces a

lot of difficulties. There is no single method that

can tackle all problems in a satisfactory way. The
presence of constraints, even of simple ones, pro-

motes the difficulty further. MERLINERLIN [10] is a

multidimensional optimization package designed

to handle the following category of optimization

problems: Find a local minimum of the function:

f ðxÞ; x 2 RN ; x ¼ ½x1; x2; . . . ; xN �T; ð1Þ
under the box constraints:

xi 2 ½ai; bi� for i ¼ 1; 2; . . . ;N : ð2Þ
Special merit is taken for problems where the ob-

jective function can be written as a sum of squares:

f ðxÞ ¼
XM
i¼1

f 2
i ðxÞ: ð3Þ

Seven different minimization algorithms are im-

plemented in MERLINERLIN. In particular there are two
direct methods (Simplex and Roll) that use no

derivative information. These are appropriate for

small problems or when the objective function is

subject to noise or when derivatives cannot be

calculated. From the conjugate gradient family of

methods, three algorithms are chosen: the Fletcher–

Reeves, the Polak–Ribiere and the generalized

Polak–Ribiere, while from the quasi-Newton
family the DFP method and several versions of the

BFGS method are coded. For the special case

when the objective function is a sum of squares, an

efficient Levenberg–Marquardt method is in-

cluded. All algorithms and their implementation

are described in detail in Ref. [10].

Some of the above algorithms require evalua-

tion of the gradient. Since it is not always
straightforward to code it, MERLINERLIN provides ac-

curate and efficient numerical approximations to

the first derivatives and the Hessian matrix.
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MERLINERLIN is designed for interactive use. A user

can select among the aforementioned minimization

algorithms and perform a number of auxiliary op-

erations through a friendly command line interface.

For example one may want to change (or even re-
move) the constraints at some point of the mini-

mization process or temporarily fix one or more of

the minimization parameters at a certain value.

It has been realized that in order to efficiently

handle a wide spectrum of problems one needs to

combine several minimization methods, thus cre-

ating a minimization strategy. For this purpose

MERLINERLIN features its own programming language.
The Merlin Control Language (MCLCL) [11] is a high

level language that aids the user in implementing

intelligent minimization strategies. The MCLCL

compiler takes as input a strategy (appropriately

coded in MCLCL) and outputs instructions that drive

the minimization process.

MERLINERLIN and MCLCL are both coded in standard

ANSI Fortran 77 in order to be portable. The
users need only to supply the objective function as

an appropriate Fortran subprogram, and option-

ally gradient and Hessian information.

Newer versions of the package are available at

http://merlin.cs.uoi.gr/.

There are certain advantages in having an op-

timization-specific environment and language.

Among other things, it allows the user to concen-
trate on the minimization process and the physical

properties under study, rather than dealing with

‘‘technicalities’’, such as combining source code

subroutines, dealing with arguments, etc. In addi-

tion it gives the user a variety of options and

flexibility in implementing its minimization strat-

egy. As a result the overall development time is

greatly reduced, and the risk for errors in the user-
written code is reduced as well.

Not many details of the MERLINERLIN/MCLCL envi-

ronment are provided, since we want to show the

advantages of the MERLINERLIN/MCLCL environment, not

the implementation details. The corresponding

Refs. [10,11] provide a complete description.

Once more, we would like to state that beyond

its powerful minimization algorithms and wealth
of options, the MERLINERLIN/MCLCL environment is de-

signed to ‘‘make things easy’’ and aid the user in

the minimization process.
2.2. Semi-empirical potential

According to the Born–Oppenheimer approxi-

mation for adiabatic changes, for the potential
energy of the ensemble of the ions we need to

consider only the ionic positions. Therefore the

potential energy can be written as

V ¼ V ðR1;R2;R3; . . . ;RNÞ: ð4Þ
This potential energy for the motion of the nuclei

can accurately be obtained using state-of-art
quantum mechanical computational methods. At

present these methods have limits regarding the

size, time scales, and the complexity of the systems

they can be applied to. One way to alleviate these

restrictions is to approximate the system using

reasonable approximations. Such approximations

are also useful in multiscale calculations. Many

different approximations have been suggested for
metals, coming under various names, forming the

so-called many body potentials [3–7]. These are

approximations to the full quantum mechanical

problem and contain parameters to be obtained by

suitable procedures. In such an approximation the

potential energy is written as

V ðR1;R2;R3; . . . ;RN Þ ¼
XN
1

FiðRi;Ra;Rb; . . . ;RnÞ;

ð5Þ

where Ra;Rb;Rc; . . . ;Rn are the position vectors of

the neighboring atoms of atom Ri.
Depending on the specific form of Fi we have a

particular approximation. The one which we use is

the so-called tight-binding potential in the second

moment approximation (TB-SMA) [5–7]. The ex-

plicit form is

Fi ¼
XNa

ia¼1

X
b

XNb

jb¼1;jb 6¼ia

Aab exp

�0
@ � pab

rab

dab

�
� 1

��

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
b

XNb

jb¼1;jb 6¼ia

n2ab exp � 2qab
rab

dab
� 1

� �� �vuut
1
A:

ð6Þ

In the above equation a or b denote species A or B

of the compound, A; p; q; n are the potential

http://merlin.cs.uoi.gr/
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parameters of the respective interaction terms, d is

the nearest neighbor distance of the respective

material, and ia are the sites occupied by atoms of

type a. This is not a pair potential because of the
second non-linear term.

The unknown parameters relate to the strength

and the range of both the attractive and the re-

pulsive term, which are related to the electronic

degrees of freedom. In order to make conduct with

the full quantum mechanical problem and/or the

experimental results we determine these parame-

ters using a set of properties.

2.3. Construction of the error function

The set of properties we choose the potential to

satisfy, forms a vector. The weighted distance from

the vector with the desired values of properties,

taken from experimental and/or ab initio results,

defines the error function to be minimized using
the MERLINERLIN optimization environment. Such an

expression is the following:

f ðxÞ ¼
Xm
1

wiðpi � epipiÞ2; ð7Þ

where pi are the values of the properties to which

the fitting will be done, ~ppi are the properties cal-
culated using the potential and depend on the

parameters x and wi are the weights.

A point about the input values for the fitting is

that not all of them have the same amount of ac-

curacy and therefore the weights must be larger for

those properties known to be more accurate. In the

particular application for Cu–Au system we

choose higher weights for the lattice parameter,
cohesive energy, bulk modulus, and lower for the

elastic constants. All the mentioned properties

comprise the vector of properties. Since we intend

to produce a consistent potential for the whole

range of the stoichiometries of the metallic com-

pound, the vector must include the corresponding

properties of all the intermetallic compounds pre-

sent in the phase diagram and the pure metals. The
parameters can be determined by minimizing the

error function. It must be noted that the error

function cannot be minimized exactly since the

input data contain errors and, furthermore, not all
of them are consistent. This fact is not a problem,

as long as most of the properties have converged

to some suitable extend. At the end, we obtain a

single model to present all the properties. Al-

though approximate this model is consistent and
this is exactly the advantage of the method,

namely, it does not depend on the error from a

single property.

Different strategies were followed for the choice

of the properties which were included in the error

function for the systems Ni–Al and Ni–Pt, and for

the Cu–Au system, which will be explained in the

specific subsection.
We have evaluated interatomic potentials of Ni,

Al, Pt and Ni–Al, Ni–Pt ordered alloys within the

SMA-TB model. The procedure consists of fitting

the total energy expression (5) of the TB-SMA

method to the first principles total-energy curves

as a function of the volume for these materials.

The determination of the a–a and b–b potential

parameters of Eq. (6) (a; b are the species) have
been obtained by fitting to both fcc and bcc re-

spective energy curves of pure metals, while the

cross-potential parameters a–b have been evalu-

ated by simultaneous fitting to the ab initio energy

curves of the three ordered intermetallic com-

pounds. This method has the advantage of pro-

viding potentials of good quality for pure metals.

The fits have been performed using MERLINERLIN

[10,11]. This approach is very useful, especially in

cases where not enough available experimental

data are available in order to adjust the TB-SMA

parameters.

2.4. Molecular dynamics

Using the expression of Eq. (6) with the ad-
justed parameters, we performed classical MD

simulations for the pure metals and the or-

dered alloys in the canonical ensemble NVT at

finite temperatures. Systems were constructed of

4000 particles arranged on the appropriate lat-

tice structure. For the integration of the equa-

tions of motion we used a time step of 5 fs and

the Verlet algorithm. Thermodynamical averages
were computed over 50 ps trajectories after equil-

ibration of 10 ps. At each temperature, the

value of the lattice constant was adjusted to a



Table 1

Calculated and experimental lattice parameters, a, along with

the bulk modulus, B, for Ni3Al and NiAl [17]

Compound a (�AA)-

calc.

a (�AA)-

expt

B (GPa)-

calc.

B (GPa)-

expt

Ni3Al (L12) 3.526 3.567 232 177

NiAl (B2) 2.895 2.886 222 158
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value resulting in zero pressure to the system.

The atomic mean-square displacements were

deduced from the local density profiles in the di-

rection normal to the atomic layers. Finally,

the phonon DOS were obtained by Fourier
transforming the velocity auto-correlation func-

tions [9].

2.5. Monte-Carlo method

The Monte-Carlo method is widely used for

statistical and quantum mechanical calculations

for various problems. Studying the thermody-
namics of intermetallic compounds and alloys re-

quires additional consideration. First of all, these

systems are multicomponent and require the cal-

culation of the chemical potential. In addition,

their design includes internal defects, surfaces,

pressure, and stoichiometry modulation. To cope

with all these complex problems, a systematic and

transparent method based on the particular many-
body interatomic potential needed to be devel-

oped. The main point of the method is to produce

a simulation-box by repeating an appropriate unit

cell, and then be able to manipulate the atoms in

the box in order to introduce surfaces, internal

surfaces, or stoichiometric modulations. To per-

form such a task a suite of routines was produced.

A windows interface to the routines helps the
user to develop the simulation cell in a transparent

way.

The particular Monte-Carlo realization in-

cludes constant pressure, chemical potential, and

number of atoms. Constant chemical potential is

utilized with the help of computational alchemy,

i.e. in each simulation step the identity of a given

atom is considered for mutation under the Monte-
Carlo rules. Additionally to the constant pressure,

each atom is also moved from its position to

simulate thermal motion. This motion also relaxes

the strains, and increases the acceptance ratio for

the mutation of species. Therefore, all the dy-

namical effects are included. As a result we can

study the following properties: chemical potential

as a function of stoichiometry and temperature,
segregation phenomena at surfaces and interfaces,

various order parameters, lattice parameters,

strains, and more.
3. Results and discussion

3.1. Ni–Al system

In Table 1 we report the calculated lattice

constants of Ni3Al and NiAl at 0 K within the TB-

SMA scheme together with the corresponding ex-

perimental values at room temperature [17]. The

agreement between computation and experiment is

very good. In the same Table we give also the bulk

moduli of these ordered alloys. The deviation be-

tween calculated and experimental values of the
bulk moduli is about 30%. In addition, the linear

thermal expansion coefficient near room tempera-

ture for NiAl and Ni3Al has been deduced to

17.4� 10�6 and 15.9� 10�6 K�1 respectively, while

the corresponding experimental data are

10.8� 10�6 and 11.8� 10�6 K�1 [17]. Further-

more, the computed mean-square displacements of

Al and Ni are in excellent agreement with the ex-
perimental values from neutron or X-ray scatter-

ing [17]. Finally, the phonon DOS of NiAl and

Ni3Al at 300 K are described with satisfactory

accuracy within the TB–SMA model (cutoff fre-

quency, position of peaks and presence of the gap

[17]). This approach appears to reproduce the

measured data with better accuracy than the TB-

SMA, in which the parameters are obtained by
fitting to several experimental data [8].

3.2. Cu–Au system

The Cu–Au system is of particular interest as

it displays order–disorder transitions below the

melting point. Its study has a long history both

experimentally and theoretically. From the theo-
retical point of view it was the first metallic system

to be studied using the Ising model. Although

many results were produced, the description was



Fig. 1. Stoichiometry (atomic percent of Cu) at the (0 0 1)

surface of Cu3Au as a function of temperature.

130 D.G. Papageorgiou et al. / Computational Materials Science 28 (2003) 125–133
far from realistic, since only the chemical disorder

could be taken into account. Recently, with the use

of the many-body interatomic potentials, all de-

grees of freedom, both chemical and positional,

could be taken into account, without the necessity
of any by hand change of the interactions close to

the interfaces, surfaces and defects. By applying

the machinery of the chemical potential, it was

possible to assess segregation phenomena at and

near interfaces, surfaces, and defects, which is of

uppermost importance in the design of metallic

systems. Additionally, the free energy, and other

thermodynamic properties could be calculated
giving a standard description of the system. This,

in turn, permits the comparison with approximate

statistical methods and also the advent of simpli-

fied thermodynamical functions suitable for direct

fit to key experimental results. In this part we will

describe the results that have been obtained so far,

by citing the appropriate references and, in addi-

tion, we will present some recent results.
In order to determine the error function we

used the experimental lattice parameter, cohesive

energy and elastic constants of Cu3Au. This was

necessary, because the order–disorder transition is

a phenomenon very sensitive to the potential pa-

rameters, as it depends on differences. It turned

out that the order–disorder transition temperature

for the constant volume condition is equal to the
experimental temperature, but if we move to con-

stant pressure conditions, and allow the atoms to

relax we find a lowering of about 25% of the

transition temperature. On the other hand, some

thermodynamic properties, as for example the ex-

pansion coefficient, change of volume as we cross

the order–disorder transition, and some dynamical

properties like the mean-square displacements
agreed well with the experimental results, provided

that we plotted the results as a function of T =Tc
[18]. We used the same potential parameters for

the CuAu [21] and CuAu3 intermetallic com-

pounds. To our surprise the findings were in good

accord with the known experimental results. If we

consider these findings with the ones on Ni–Al and

Ni–Pt, we can conclude that different strategies do
not necessarily lead to different results and de-

pending on the available data one can build an

appropriate vector of properties.
In the design of alloy systems a very important

aspect are the segregation phenomena at interfaces

and surfaces. It is well known that the properties

of stainless steel depend on segregation of, for

example, Ni atoms to the surface. In a similar way
brittleness and strength are related to the segre-

gation of impurities to internal boundaries. Hav-

ing these facts in mind we studied the segregation

profile near the surface of Cu3Au [20,22] and near

interfaces [19]. We found that at surfaces Au-

atoms segregate to the surface and that the

amount of the segregated atoms changes with

temperature, as can be seen from Fig. 1. In Fig. 2
we present the stoichiometry profile for slabs with

different surface orientations at a given tempera-

ture. We can observe the different percentages of

segregated Au atoms to the surface. On the other

hand at twist and tilted R boundaries no segrega-

tion of either constituent could be observed [19].

Disordering is an important effect as it affects

the properties of the materials. The Cu–Au system
is ideal to study such phenomena, as there are

many experimental results and relates to the class

of super-alloys. One question in concern is the

effect of surfaces and interfaces on the disordering.

We have found that these changes in the lattice

continuity increase the disordering and can lead to

complete disorder below the order–disorder tran-

sition temperature [20]. Although the long-range
order is lost, short-range order is observed. Fur-



Fig. 2. Stoichiometry (atomic percent of Cu) profile of a crystal

with the (0 0 1), (1 1 0) and (1 1 1) surface of Cu3Au. T ¼ 450 K.

The first and the last layer are the corresponding surface layers.

Fig. 3. Atomic configuration at the (0 0 1) surface of Cu3Au.

T ¼ 450 K.
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thermore, Monte-Carlo simulations can produce
the atomic arrangements at equilibrium, as can be

seen in Fig. 3.

3.3. Ni–Pt system

Recently, the study of heteroepitaxial growth

has been widely increased, due to its application in

areas as catalysis, corrosion, magnetism, etc. In the
following we will give an example of the applica-

tion of our approach to the study of surface dif-

fusion of Ni on Pt.
The interatomic potential for Ni and Pt has

been obtained by fitting the cohesive energy of

expression (6) to the volume dependence of the

total-energy for both fcc and bcc structures, de-

rived by first-principles APW calculations (Figs. 4
and 5 respectively). The cross-potential parameters

for Ni–Pt have been evaluated by simultaneous

fitting the ab initio energy curves of the three or-

dered intermetallic compounds (Fig. 6). The fits

have been performed using MERLINERLIN [10,11]. From

this adjustment we find the lattice constants of

metals and alloys at 0 K within the TB-SMA,

which are presented in Table 2, together with
available experimental values at room temperature

[23,24]. The differences between computation and
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Table 2

Calculated and experimental lattice parameters, a, along with

the bulk modulus, B, for Ni, Pt and their alloys

Compound a (�AA)-

calc.

a (�AA)-

expt

B (GPa)-

calc.

B (GPa)-

expt

Ni 3.421 3.523 255 188

Ni3Pt (L12) 3.588 3.646 235

NiPt (B2) 2.936 296

Pt3Ni (L12) 3.810 3.837 283

Pt 3.912 3.924 303 288

The experimental values of the lattice parameters for Ni, Pt are

taken from Ref. [23] and from Ref. [24] for the alloys. The

experimental data for the bulk modulus are taken from Ref.

[25].
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measurements are very small, except for Ni. In the

same Table we report also the bulk moduli of

metals and alloys together with available experi-

mental data [25]. The agreement for Pt is better

than for Ni. In addition, the thermal expansion

coefficients near room temperature were obtained

by MD simulations to be 15.7� 10�6 and
10.2� 10�6 K�1, for Ni and Pt, that compare well

with the experimental values of 12.5� 10�6 and

8.9� 10�6 K�1 respectively [23]. Furthermore, the

phonon DOS of Pt at 90 K is well reproduced by

the present model, showing a maximum frequency

of 6.50 THz, in close agreement with the experi-

mental value of 5.85 THz [26].

Using the above-mentioned interatomic poten-
tial in tandem with large-scale MD simulations in

the temperature range of 300–1000 K, we have
studied the diffusion of single Ni adatatom on

Pt(1 1 1) and we have found that the diffusion

coefficient shows an Arrhenius behavior with an

associated migration energy of 230 meV and a pre-

exponential factor of 0.4� 10�3 cm2/s. Our value
for the migration energy is higher than the re-

ported value of 137 meV [27], obtained by static

effective medium calculations. To our knowledge,

there are no experimental data available for the

diffusion of this system.
4. Conclusions

The synergy of the optimization environment

MERLINERLIN, the MD and Monte-Carlo simulations

and the TB-SMA of quantum mechanical origin

has allowed to consider with success problems that

are essential in the design and processes of metallic

alloys. Good use is made of the available experi-

mental and/or ab initio results to produce simple,
realistic and coherent models which will allow fast

and detailed examination of the possible scenarios

that need to be tested in the process of materials�
design. The systems may include surfaces, defects,

impurities, multilayers and more complex struc-

tures. In addition the model can be used to bridge

the different length and time scales.
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