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Abstract We are concerned with the inverse scatter-
ing problem (ISP) in acoustics within the Marchenko
inversion scheme. The quantum ISP is first discussed
and applied in order to exhibit certain characteris-
tics and application prospects of the method which
could be useful in extending it to classical systems. We
then consider the ISP in acoustics by assuming plane
waves propagating in an elastic, isotropic, and linear
medium. The wave equation is first transformed into
a Schrödinger-like equation which can be brought into
the Marchenko integral equation for the associated
nonlocal kernel the solution of which provides us the
full information of the underlying reflective profile. We
apply the method in several model problems where
the reflection coefficient of the multi-layer reflective
medium is used as input to the ISP and in all cases we
obtain excellent reproduction of the original structure
of the scatterer. We then applied the inverse scatter-
ing scheme to construct profiles with certain predeter-
mined reflection and transmission characteristics.
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1 Introduction

In scattering theory, one considers the effects a medium
has on an incident wave and how it scatters. In quantum
mechanical systems, the whole process is described by
the Schrödinger equation and from the knowledge of
the potential one gets from its solution the wave func-
tion which contains the full information for the scat-
tering. In classical systems one has instead profiles and
the usual classical wave equation. The solution of the
latter depends on the characteristics of the scatterer and
provides us the dynamics of the scattering. The above
process, in both the quantum and classical physics, is
usually called the direct scattering problem.

In contrast to the direct problem, in the inverse scat-
tering the underlying potential or profile is unknown
and one faces the task of reconstructing it from the
scattering information available either from an experi-
ment or from some theoretical model. This information
includes the knowledge of the reflection coefficient
R(k) as well as the bound states information, when
present.

The quantum inverse scattering problem (ISP) has
afforded numerous theoretical investigations to the ex-
tent that it is nowadays textbook material (see, for
example, [1–4]). In contrast, applications are limited
since its implementation presupposes the knowledge of
the reflection coefficient R(k) at all momenta of the
incident wave, k ∈ (0, ∞), and most importantly, the
knowledge of the phase of R(k). However, in practice
only the modulus of the reflection coefficient, |R(k)|,
can be measured (this is the famous “phase problem”)
and thus one has no option but to apply the inver-
sion method based on data extracted from a model
problem.
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In the present work, we are mainly interested in the
classical, one-dimensional, ISP in acoustics in which
plane waves are propagated along the x-axis coincid-
ing with the direction of a stratified elastic medium.
The corresponding classical wave equation for the
acoustic wave is first transformed into a Schrödinger-
like equation which can be used to extract the reflection
coefficient for the effective potential corresponding to
the reflective profile(s) which by itself could be useful
in Acoustic studies. Furthermore, this equation can be
brought into a Marchenko integral equation [1] and,
therefore, it can be utilized in the ISP not only to
reconstruct the scatterer but also to construct profiles
with certain predetermined acoustical characteristics.

The transformation of the classical wave equation
into a Marchenko integral equation allows us to take
over experiences from the solution of the correspond-
ing quantum mechanical ISP, the theoretical aspects
of which are summarized in Section 2. Thereafter, in
Section 3.1, the ISP is applied to a quantum system
exhibiting strong resonance structure in the reflection
coefficient, a behavior usually encountered in classical
systems. The inversion method is then employed to
demonstrate how to construct quantum systems having
predetermined reflection (and transmission) proper-
ties. In Section 3.2 the ISP is applied to acoustics by
considering three- and five-layer media to show that
the method is not only applicable but it could also
be very useful in practical applications. Finally, the
conclusions drawn from this work are summarized in
Section 4.

2 Theory

2.1 Quantum Systems

In order to elucidate the ISP, let us first summarize the
inversion procedure on the half-line for quantum sys-
tems. The corresponding Schrödinger equation reads

y′′(x) + (
k2 − V(x)

)
y(x) = 0, 0 < x < ∞ , (1)

where the potential V(x) is assumed to be real and non-
vanishing on a finite interval and the prime denotes
the derivative with respect to the variable x. The Jost
solutions f±(k, x) of (1) are defined by their asymptotic
behavior

lim
x→±∞ e∓ikx f±(k, x) = 1 . (2)

They are given by [2, 9]

f−(k, x) =
{[

e−ik̄x + R+(k)e+ik̄x
]
/T+(k) x → +∞

e−ikx x < 0

(3)

and

f+(k, x) =
{

eik̄x x → +∞[
e−ikx + R−(k)e+ikx

]
/T−(k) x < 0

(4)

where k̄ = √
k2 − Vs is the wave number in the semi-

infinite substrate with potential value Vs.
In the following equation, we consider incidence

from the left and suppress the corresponding subscripts.
We will further assume that Vs = 0. An integral equa-
tion corresponding to the Jost solution f (k, x) and fully
equivalent to (1), is most easily obtained via the Levin
representation [2, 3] of f (k, x) which reads

f (k, x) = e−ikx +
∫ x

−∞
M(x, x′)e−ikx′

dx′ . (5)

The kernel M(x, x′) fulfills the Marchenko integral
equation [1]

M(x, y) + B(x + y) +
∫ x

−∞
M(x, x′)B(x′ + y) dx′ = 0 ,

y < x, (6)

where the function B(z) is given by the Fourier trans-
formation of the reflection coefficient

B(z) = 1
2π

∫ +∞

−∞
R(k)e−ikz dk +

∑

b

Ab eκb z . (7)

Here, κ2
b = |Eb | are the binding energies for the quan-

tum system, Ab the corresponding asymptotic normal-
ization constants while R(k) is the reflection coefficient
which for the one-dimensional problem on the half-
line can be extracted from the knowledge of the Jost
function, i.e., from f (k, x)|x=0, and is given by [5]

R(k) = ikf (k, 0) − f ′(k, 0)

ikf (k, 0) + f ′(k, 0)
(8)

where the prime indicates derivative with respect to x.
The connection with the experiment is achieved via

the reflection coefficient R(k) and the bound state data
κb and Ab . Given these data, (6) can be solved and the
potential is then readily obtained from

V(x) = 2
d

dx
M(x, x) , for x > 0 . (9)
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It is noted that the asymptotic normalization constants
can be evaluated from the information of B(x) for
negative values of x [6] by noting that (7) can be written
as

B(x) = B̃(x) +
∑

b

Ab eκb x , (10)

where B(x) = 0 for x < 0. Thus

B̃(xi) = −
Nb∑

b=1

Ab eκb xi (11)

with xi < 0, i = 1, · · · , Nb and xi distinct. It is further
noted that the construction of the underlying potential
from the scattering data (reflection coefficient) in the
absence of bound states is unique. When bound states
are present, one may construct a family of equiva-
lent potentials which give rise to the same reflection
coefficient R(k). Of specific interest is the construction
of the so-called super-symmetric partners potentials
which, for the one-dimensional case have been dis-
cussed in [7, 8].

The above inversion scheme can be used, for exam-
ple, to design a quantum filter having specific reflection
and transmission properties within the momentum in-
terval k ∈ [ka, kb ]. For this, we may start from a prefab-
ricated profile V0(x) whose reflection coefficient R(k),
and hence its Fourier transform B(x), is known. Assum-
ing now that the reflection coefficient in the interval
k ∈ [ka, kb ] has another desired new value Rn(k) we
may rewrite the new Fourier transform as

B̃n(x) = B̃(x) + 1
2π

∫ ∞

0
dk

[
�R∗(k)eikx + �R(k)e−ikx]

(12)

where �R(k) = −R(k) + Rn(k). Using this new
Fourier transform, we may obtain the modified profile
with the required predetermined characteristics. More
details concerning this method can be found in [9].

2.2 Classical Systems

Let us consider acoustic waves propagating in an elas-
tic, isotropic, and linear medium. A schematic pic-
ture for waves scattered, for example, in a three-layer
medium for which the density is ρi and the speed of
sound is ci, is shown in Fig. 1. The basic equations
associated with the propagation of the acoustic wave in
a medium characterized by the set of parameters ( p,
c, and ρ) and (�p, v, and ρ ′) denoting mean values

Fig. 1 Schematic diagram for a three-layer medium

of pressure, speed of sound, density, and their distur-
bances, are [10]

−∇ p = ρ
∂

∂t
v (13)

−ρ∇ · v = ∂

∂t
ρ ′ (14)

p = c2ρ ′ (15)

where t denotes the time. In the one-dimensional case
in which the acoustic wave is propagated in the x-
direction (subscripts denote the corresponding deriva-
tives with respect to the variable shown), we have

−px = ρvt (16)

and

−ρvx = ρ ′
t (17)

Substituting ρ ′ of (15) in (17),

−ρvx = pt

c2 , (18)

and taking the derivative with respect to x of (16) and t
of (18), we obtain the system

pxx = −ρxvt − ρvxt

ptt

c2 = −ρtvx − ρvxt

or subtracting them and assuming ρt = 0 (also ct = 0),
we obtain

pxx − 1
c2 ptt = −ρxvt (19)

or using (16)

pxx − 1
c2 ptt = − [ln(ρ)]x px . (20)
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Assuming now that the time dependence is of the form

p(x, t) = f (x)eiωt (21)

then (20) reduces to

fxx + k2 f = − [ln(ρ)]x fx (22)

where

k2 = ω2

c2 . (23)

For a homogeneous medium, the right hand side van-
ishes and one simply has the Helmholtz equation

fxx + k2 f = 0 . (24)

Consider now the transformation

s(x) =
∫ x

0
n(x′) dx′ (25)

where n is the index of refraction n = c0/c. The variable
s corresponds to the distance traveled in the medium
during the same time period as the wave travels from
the origin to point x. With this transformation, (22)
reduces to

fss + k2

a2 f = − [ln(ρ)]s fs (26)

Noting that a = ds/ dx = n = c0/c, we obtain

fss + k2
0 f = − [ln(ρ)]s fs (27)

where now

k2
0 = ω2

c2
0

(28)

In order to reduce (27) into a Schrödinger-like equa-
tion, we let

f = u−1/2ψ , (29)

where u ≡ [ln(ρ)], to obtain

ψss + [
k2

0 − V(s)
]
ψ = 0 (30)

where the effective potential V(s) in the s-space is given
by

V(s) = 3
4

u2
s

u2 − 1
2

uss

u
(31)

which is equivalent to that given in [10], namely,

V(s) = 1
4

[(ln u)s]2 − 1
2
(ln u)ss . (32)

Equation (30) has the same structure as the
Schrödinger equation (1). Therefore, when the poten-
tial V(s) is real and non-vanishing for 0 < s < ∞, the
above one-dimensional Marchenko formalism can be
applied in a straightforward manner.

3 Applications

3.1 Quantum Systems

Let us demonstrate first the application of the
Marchenko Inversion (MI) method in one-dimensional
quantum systems. The purpose of revisiting the prob-
lem is threefold. First, to demonstrate the reliability of
the method in handling quite complicate potentials that
give rise to a reflection coefficient having a consider-
able resonance structure; second, to expose features of
the MI that will be useful in extending the method to
classical systems; third, to demonstrate how it can be
used to construct profiles with predetermined charac-
teristics. The potential used for this purpose is shown
in Fig. 2. This potential can be easily constructed by
assuming that V(x) starts at xA and ends at xB, with
L = xB − xA while the maximum value of it at xA is

Fig. 2 The original potential
(solid line) and its
reproduction (dotted line)
by the MI method (left).
The omission of the high
momentum part of R(k)

results in a potential with
rounded edges (right)
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Fig. 3 The low (left) and high
(right) momentum reflectivity
generated by the original and
the inversion profiles shown
in Fig. 2. Dotted lines
correspond to reflectivities
obtained by inversion

V0. If the width of each oscillation is d then the left part
of the potential shown in Fig. 2 is given by

V(x)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 x > xB

(−1)n V0

L
(xB − x) xA + id ≤ x < xA + (i + 1)d,

i = 0, 1, · · · , int(L/d)

n = mod(i, 2)

(33)

Similarly, one constructs the right branch of the poten-
tial. Using this potential, we generated the reflection
coefficient R(k) for k ∈ (0, kmax) which when used as
input in (7) provided us the Fourier transformation
B(x) needed to obtain the solution of the Marchenko
equation.

For kmax = 16, the reflectivity becomes practically
zero and the reproduction by inversion is perfect except
that there appear small spikes at the sharp edges due to
numerical inaccuracies in obtaining the derivative, (9),
for the extraction of the potential. Such a zig-zag poten-

tial is expected to generate strong resonance behavior
at low as well at high energies. This behavior is shown
in Fig. 3. The high-energy behavior is of particular
interest as even at incident energies much higher than
the profile, the quantum effects are quite strong and
generate considerable spells of interference patterns.
The use of R(k) at such high momenta is crucial in
the inversion procedure and their omission results in a
potential with rounded edges as shown in Fig. 2, right.

In practice, the inversion procedure is difficult to
apply in practical problems due to the aforementioned
“phase problem” and by the requirement that the R(k)

must be known at all incident momenta. However,
the inversion can be usefully applied to provide us
structures with specific predetermined characteristics
as discussed in [9]. For example, in order to generate a
filter which removes the second reflectivity peak shown
in Fig. 3, i.e., by demanding that |R(k)| = 0 in the region
k ∈ (0.384, 0.650), we use the healing conditions for
zero reflectivity that ensure continuity in R(k) and the
new Fourier transformation (12). This results in the
new potential shown in Fig. 4 (left) that generates an

Fig. 4 The modified potential
(left graph) generating the
new reflectivity (right graph)
that exhibits zero values in
the region k ∈ (0.384, 0.65)

indicated by the vertical lines
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Fig. 5 The ρ(x) (left) and the
resulting effective potential
V(s) (right) and their
reproduction by inversion
(dotted lines)

|R(k)| which has, to all practical purposes, zero values
in the prescribed region indicated by the two vertical
lines. This is shown in Fig. 4 (right).

3.2 Acoustics

The implementation of the MI method in classical sys-
tems can be achieved in three steps: Transformation
into the s-space, (25), construction of ρ(s), and thus of
V(s), (31), which is then used to extract the reflection
coefficient R(k), (8), and finally obtaining the solution
of Marchenko equation for M(s, s′). Once the inversion
potential is obtained we may use (32) to reconstruct the
corresponding ρ(s) which can be transformed into the
x-space and compared with the original density.

As a first example, we consider acoustic waves trav-
eling with speed c0 = 343 m/s in air of density ρ0 =
1.225 kg/m3 and falling onto a stone wall of thickness
d = 0.2 m and of density ρ1 = 300 kg/m3 as shown in
Fig. 1. As can be seen in (31), for the one-dimensional
case the effective potential depends only on the shape
and extend of the density and it partially reflects or
transmits the waves with speed c1 = 5,971 m/s.

In applying our method, we may consider a perfectly
square barrier to represent the profile. However, this

results in two problems. The first is that the result-
ing potential has extremely sharp edges that give a
reflection coefficients R(k) which diminishes at very
large values of k and thus one has huge numerical
problems in obtaining accurately the Fourier transfor-
mation. The second problem is in the construction of
the effective potential which requires derivatives at the
edges of the profile and thus any sharp spike in the po-
tential makes the solution of the Marchenko equation
cumbersome and unstable. To avoid this, we assume
that the speed of sound and the impedance Z = ρc
change in the whole s-space region in a smooth way
according to

c(s) = c0 F(s) + c0 (34)

Z (s) = Z1 F(s) + ρ0c0 (35)

where the function F(s) is chosen to be

F(s) = 1
1 + exp [(s1 − s)/a1]
− 1

1 + exp [(s2 − s)/a2] (36)

where the diffuseness parameters ai, i = 1, 2, control
the smoothness at the edges of the profile: smaller

Fig. 6 The low (left) and high
momentum (right) behavior
of the reflectivity and its
reproduction by inversion
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Fig. 7 The ρ(x) (left) and the
resulting effective potential
V(s) (right) and their
reproduction by inversion
(dotted line)

values of ai, (for example 0.001) give rise to sharp edges
and the resulting potential has spikes while larger val-
ues (for example 1.0) give a rounded smooth edge. Val-
ues of ai ∼ 0.03 results to reasonably smooth edges in
the effective potential. This approximation also affects
R(k) which for large values of ai becomes more trans-
parent, i.e., it is going to zero quite fast and therefore
the evaluation of the Fourier transformation, (7), is
easier.

In the present example, the underlying density ρ(x)

(obtained with ai = 0.0125) is shown in Fig. 5 (left)
together with the input effective potential V(s) (right).
The dotted lines indicate the reproduction of them
after the implementation of the MI. The correspond-
ing reflection coefficient for k ∈ (0, 400) is shown in
Fig. 6. Although the reflectivity |R(k)|2 becomes very
small beyond k = 200 (practically zero), the inclusion
of R(k) values of up to ∼350 is necessary as the real and
imaginary part of R(k) in this region still contributes to
the evaluation of the Fourier transformation B(x), (7).
The difference to the quantum case at high energies
should be noted: While in the quantum case one has
strong interference patterns, in the classical case the
interference patterns are weak and diminish fast.

Several cases of inversion for a three-layer medium
were considered with various materials. The results
were similar to the above which demonstrate the ap-
plicability of the MI procedure in acoustics in these
simple systems.

We turn now our attention to the more demanding
five-layer medium in which two profiles are next to
each other, i.e., we have a system air/profile 1/air/profile
2/air. As an example, we choose a stone of thickness
d = 0.12 m, c = 5,971 m/s and ρ = 300 kg/m3 and a
wood of thickness d = 0.1 m, c = 3,300 m/s, and ρ =
290 kg/m3. The diffuseness parameter was chosen to
be a = 0.01. In Fig. 7, we present the input ρ(x) and
effective potential V(s) together with their reproduc-
tion by inversion. The corresponding reflectivities and
their reproduction at low and high momenta are shown
in Fig. 8.

The shape of the effective potential V(s) and of
the resulting resonance behavior of the reflection
coefficient depends strongly on the distance between
the two materials considered and the value of the
diffuseness parameter. This is demonstrated in another
five-layer example, shown in Fig. 9, consisting of stone
and wood of thickness 0.1 and 0.05 m the diffuseness

Fig. 8 The reflectivity (left)
and its comparison with the
real part of R(k) at high
momenta (right) for the
potential shown in Fig. 7.
The reproduction of the
reflectivity by inversion is
also shown (dotted lines)
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Fig. 9 The ρ(x) (left) and the
resulting effective potential
V(s) (right) and their
reproduction by inversion
(dotted line)

Fig. 10 The reflectivity and
the real part of the reflection
coefficient for the potential
shown in Fig. 9 and their
reproduction by inversion

Fig. 11 The five-layer profile
(left) and the corresponding
reflectivity (right), solid lines.
The modified profile and the
generated desired reflectivity
|R(k)|2 =0 within k∈(3.3,8.9)

are shown with dotted lines

Fig. 12 Same as in Fig. 11 but
with a reflectivity |R(k)|2 = 1
within k ∈ (9.0, 12.2)
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parameter being 0.002. The small diffuseness parame-
ter generates sharp edges in the potential which has
positive values close to 120,000 as compared with the
previous potential which are of the order of 4,000. This
results to a lot of resonances in the reflection coefficient
R(k) which goes to zero at very high momenta. This is
shown in Fig. 10.

It is seen that although the |R(k)|2 becomes practi-
cally zero around k = 800, the real (and imaginary) part
of R(k) becomes insignificant only beyond k = 1,500.
Once again we stress that the inclusion of the high
momentum part of R(k) is essential in obtaining all
relevant physical quantities which then coincide, to all
practical purposes, with the original ones.

Let us turn now our attention to the possibility of
constructing a profile having a desired reflection and
transmission properties. As an example, we consider
the five-layer profile consisting of air–stone–air–wood–
air, shown in Fig. 11 (left), generating a reflectivity
shown in the same figure (right). By requiring that
the reflectivity is zero in the region k ∈ (3.3, 8.9), we
obtain a profile shown in Fig. 11 (left, dotted line). We
see that in order to achieve the required zero window,
we need an effective potential V(s) which in both left
and right regions is oscillatory. Similarly, by requiring
that the reflectivity is one in the region (9.0, 12.2), we
obtain the results shown in Fig. 12. We notice that the
required profile also has an oscillatory structure. The
small differences between the original and modified
reflectivity for k > 8.9 is due to the cut-off of the po-
tential for s > 3.

4 Conclusions

We considered the Marchenko inverse scattering pro-
cedure in one-dimension for systems that obey the
Schrödinger or Schrödinger-like wave equation. The in-
version problem for quantum systems is first revisited in
order to expose the characteristics of the procedure in
systems in which the reflectivity has a strong resonance
structure and, furthermore, to demonstrate how the
ISP can be usefully applied to construct profiles with
predetermined reflection and transmission properties.
This knowledge could be very useful in applications of
the ISP to classical systems which in our case consist
of one-dimensional profiles reflecting acoustic plane
waves. It was found that the application of the ISP in
quantum profiles with considerable structure can be
easily implemented and therefore the construction of
devices with predetermined properties, as described in
details in [9], is possible and that the method can be
extended to classical systems as well.

As far as classical systems are concerned, one has
to transform first the classical wave equation from
the one-dimensional x-space to the s-space defined by
(25). This enable us to reduce it to a Schrödinger-like
equation in which the effective potential V(s) depends
on the shape and extension of the underlying density
ρ(s). When the potential is smooth and bounded, the
Schrödinger-like differential equation can be brought
into the Marchenko integral equation for the nonlocal
function M(s, s′) in the transformed s-space. The latter
depends only on the Fourier transform of the reflection
coefficient R(k) corresponding to the effective poten-
tial V(s).

In implementing the classical ISP, we found that the
numerical and physical experiences gained in quantum
systems can be taken over to classical systems in a
straightforward manner. One such experience is that a
good inversion requires that the reflection coefficient is
known at all momenta k ∈ (0, kmax) where the kmax is
such that both the real and imaginary parts of R(k) be-
come practically zero. Then the Fourier transformation
provides us with the full information needed to obtain
the function M(s, s′) accurately and thus to extract
the underlying effective potential V(s) and hence the
original density ρ(x) of the profile.

It should be emphasized here that in the Acoustic
case one has to assume that in moving from one
medium to another there is a smooth transition. Sharp
changes of the density ρ(x) and of the other relevant
quantities in moving from one medium to the next,
results to effective interactions which have spikes that
give rise to numerical instabilities. Furthermore, the
kmax becomes huge and thus further numerical prob-
lems arise (especially in calculating the Fourier trans-
formation, (7)). Therefore, the inversion procedure be-
comes hugely cumbersome. The smooth transition from
one medium to another may be physical and in fact it
can be used to generate a reflection coefficient with
desirable characteristics.

The extraction of the reflection coefficient R(k) for
the underlying profiles could be by itself very useful
as it reveals the reflection properties of the system.
Furthermore, it can be used as an input to implement
the MI method. The excellent results obtained with the
MI for classical systems in all cases tested, demonstrate
that the method could indeed be very useful in practical
applications as well. This has been demonstrated by
assuming that the reflectivity is zero or one within a
certain energy region. More work, however, is required
to fully understand the dynamics of the inverse scatter-
ing in acoustics with the MI scheme. This includes the
handling of standing waves, the blocking or channeling
through of waves at certain momenta through easily
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constructible profile(s), and, most importantly, the role
played by the thickness and the distance between the
profiles and their shapes.
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