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Abstract

A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional,
multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We
list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The
accompanying software accepts objective functions coded either in Fortran 77 or in C++.

Program summary

Program title: GenMin
Catalogue identifier: AEAR_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 35 810
No. of bytes in distributed program, including test data, etc.: 436 613
Distribution format: tar.gz
Programming language: GNU-C++, GNU-C, GNU Fortran 77
Computer: The tool is designed to be portable in all systems running the GNU C++ compiler
Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler
RAM: 200 KB
Word size: 32 bits
Classification: 4.9
Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There
are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required.
Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a
nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not
correspond to solutions (i.e. they are far from zero).
Solution method: Grammatical evolution and a stopping rule.
Running time: Depending on the objective function. The test example given takes only a few seconds to run.
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1. Introduction

The problem of locating the global minimum of a continuous
and differentiable function f inside a bounded domain defined
as S ⊂ Rn is considered in this paper. The problem can be for-
mulated as: Determine

x∗ = arg min
x∈S

f (x)

The nonempty set S ⊂ Rn considered here, is a hyper box de-
fined as:

S = [l1, u1] ⊗ [l2, u2] ⊗ · · · [ln, un].
The problem of locating the global minimum of a function
finds many applications in a variety of scientific fields such
as: physics, astronomy, chemistry, etc. Recently several meth-
ods have been proposed for the solution of the global opti-
mization problem. These methods can be divided in two main
categories, deterministic and stochastic. The methods which be-
long to the first category are more difficult to implement and
they depend on a priori information about the objective func-
tion. Some examples of stochastic methods suggested for the
global optimization problem are: Random Line Search, Adap-
tive Random Search [1], Competitive Evolution [2], Controlled
Random Search [3], Simulated Annealing [4–6], Genetic Al-
gorithms [7,8], Differential Evolution [9,10], methods based on
Tabu Search [11], etc. In this article a genetic algorithm is intro-
duced for the location of the global minimum. The method uti-
lizes the Grammatical Evolution [12] procedure for the creation
and evolution of the population and a new stopping rule for the
genetic algorithm, that is based on asymptotic considerations.
The reason behind the use of Grammatical Evolution in encod-
ing real numbers is that the genetic operations in Grammatical
Evolution are faster than of real-code genetic algorithm. The
proposed method is useful for determining the most stable con-
formations of a molecule. We give examples of Lennard–Jones
clusters associated with a molecule of 3 atoms (potential3) and
a molecule consisting of 5 atoms (potential5). In these cases
the potential energy of the molecule is minimized with respect
to the atomic positions. The global minimum of the energy cor-
responds to the desired conformation.

The rest of this article is organized as follows: in Section 2
the Grammatical Evolution procedure is outlined and the pro-
posed algorithm is explained in detail, in Section 3 the proposed
method is applied on a series of test problems and a compari-
son is made against some well-known methods, in Section 4
the package which implements the proposed method is doc-
umented from the installation procedure to some illustrative
examples and in Section 5 some conclusions are derived re-
garding the proposed method and the results from the test prob-
lems.

2. Method description

2.1. Grammatical evolution

Grammatical evolution is an evolutionary algorithm that can
produce code in any programming language. The algorithm re-
Please cite this article in press as: I.G. Tsoulos, I.E. Lagaris, GenMin: An enhanced
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quires the grammar of the target language in BNF syntax and
the proper fitness function. Chromosomes in grammatical evo-
lution, in contrast to classical genetic programming [13], are not
expressed as parse trees, but as vectors of integers. Each integer
denotes a production rule from the BNF grammar. The algo-
rithm starts from the start symbol of the grammar and gradually
creates the program string, by replacing non terminal symbols
with the right hand of the selected production rule. The selec-
tion is performed in two steps:

• Read an element from the chromosome (with value V ).
• Select the rule according to the scheme

(1)RULE = V mod R,

where R is the number of rules for the specific non-terminal
symbol. The process of replacing non terminal symbols with
the right hand of production rules is continued until either a
full program has been generated or the end of chromosome
has been reached. In the latter case we can reject the entire
chromosome or we can start over (wrapping event) from the
first element of the chromosome. In our approach we allow at
most two wrapping events to occur. If the limit of two wrapping
events is reached the chromosome is rejected. The rejection of
a chromosome means that a large fitness value is assigned to
the chromosome and as a consequence it will not be used in
the crossover procedure. The grammatical evolution procedure
has been used with success in many fields such as symbolic re-
gression [14], discovery of trigonometric identities [15], robot
control [16], caching algorithms [17], financial prediction [18],
etc.

2.2. Chromosome creation

The grammatical evolution is used to create trial solutions
using the grammar in Fig. 1. The numbers in parentheses denote
the sequence number of the corresponding production rule to be
used in the mapping procedure of grammatical evolution (see
Eq. (1)). Dempsey et al. have also described another approach
for the creation of constants through Grammatical Evolution
using meta-grammars in their work [19]. The symbol START
in the grammar denotes the start symbol of the grammar. This
grammar can create valid double precision numbers in the range
[0,1]. These are brought inside the required range. For exam-
ple consider the chromosome c = [7,11,26,12]. In Table 1 the
mapping procedure from the chromosome c to a valid double
precision number (0.12) is presented.

2.3. Genetic operations

The genetic algorithm utilizes the operations of crossover
and mutation to create the evolving generations.

2.3.1. Crossover
The crossover procedure is performed on each generation

to create new chromosomes from the old ones. These will re-
place the worst individuals in the population. For every couple
genetic algorithm for global optimization, Computer Physics
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<START>::=0. <digitlist>
<digitlist>::=<digit> (0)

|<digit><digitlist> (1)
<digit>::=0 (0)

| 1 (1)
| 2 (2)
| 3 (3)
| 4 (4)
| 5 (5)
| 6 (6)
| 7 (7)
| 8 (8)
| 9 (9)

Fig. 1. The used grammar of the algorithm.

Table 1
An example of the mapping procedure

Chromosome Action Expression

7,11,26,12 7 mod 2 = 1 0.<digit><digitlist>
11,26,12 11 mod 10 = 1 0.1<digitlist>
26,12 26 mod 2 = 0 0.1<digit>
12 12 mod 10 = 2 0.12

0.12

of new chromosomes two parents are selected, we cut these
chromosomes at a randomly chosen point and we exchange the
right hand side sub chromosomes, as shown in Fig. 2. The par-
ents are selected through tournament selection: We first create
a group of K � 2 randomly selected chromosomes from the
current population and the individual with the best fitness in
the group is selected as a parent. Note that there exist in the
relevant literature various crossover schemes adopted in Gram-
matical Evolution using subtrees [20,21].

2.3.2. Mutation
For every element of each chromosome a random number in

the range [0,1] is chosen. If this number is less than or equal
to the mutation rate the corresponding element is changed by
selecting a random integer in the range [0,255], otherwise it
remains intact.
Please cite this article in press as: I.G. Tsoulos, I.E. Lagaris, GenMin: An enhanced
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2.4. Algorithm description

The main steps of the algorithm are:

• Initialization step. Here each chromosome is initialized at
random from a uniform distribution inside the feasible re-
gion using the procedure described in Section 2.2 along
with the following parameters:
– Set k = 0. A counter for the number of the generations.
– Denote by (xbest, ybest) the final output of the algorithm

(the discovered global minimum).
– Set ymin = ∞. This is the best function value discovered

by the genetic algorithm.
– Set v1 = 0, v2 = 0. These are auxiliary variables.

• Genetic operations step. Here the main steps of the genetic
algorithm are taken:
– Calculate the fitness for every chromosome in the

population. For example, consider the objective func-
tion given by the equation f (x) = x2

1 + x2
2 . Suppose

that we seek the global minimum of this function in
the range [−1,1]2 and let the chromosome be c =
[7,11,26,12,3,4,28,7]. The chromosome is split into
two parts (the dimension of the objective function). The
first part is denoted by c1 = [7,11,26,12] and the sec-
ond by c2 = [3,4,28,7]. The mapping procedure of
Section 2.2 produces the numbers (0.12, 0.47) and by
rescaling them to the range [−1,1]2 we have the final
result x = (−0.76,−0.06). The value of the objective
function at this point is given by f (x) = 0.5812 and that
is the fitness of the chromosome c.

– Apply the genetic operators of crossover and mutation.
– Set k = k + 1.
– If k < MAXITERS terminate.

• Local search step. The chromosome with the lowest value
in the current generation (x0, y0) is compared to the chro-
mosome (xmin, ymin), which has the lowest value among all
the previous generations. If y0 < ymin, we update: xmin =
x0, ymin = y0 and subsequently a local search is started
from xmin, yielding a local minimum (x∗, y∗). If y∗ < ybest

we update: xbest = x∗, ybest = y∗.
Fig. 2. One point crossover.
genetic algorithm for global optimization, Computer Physics
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• Termination check step. At every iteration k, the best value
y

(k)
best is recorder. We calculate the variance σ (k) of this vari-

able at every iteration k. When there is no progress for a
number of iterations, we speculate that it is likely that y

(k)
best

is the global minimum and hence we would like to stop it-
erating. The stopping rule is then:

stop if σ (k) < pσ (L),

where p ∈ [0,1] The parameter p controls the compromise
between an exhaustive search (p → 0) and a search opti-
mized for speed (p → 1). The suggested value is p = 0.5.
The number L is the iteration where the current best point
y

(k)
best was first encountered.

• Goto Genetic operations step.

3. Experiments

3.1. Test problems

1. Exponential function.

f (x) = − exp

(
−0.5

n∑
i=1

x2
i

)
, −1 � xi � 1

The global minimum is located at x∗ = (0,0, . . . ,0) and
f (x∗) = 0. In our experiments we used this function with
n = 30 and it is denoted by the label EXP.

2. Zakharov function.

f (x) =
n∑

i=1

x2
i +

(
n∑

i=1

i

2
xi

)2

+
(

n∑
i=1

i

2
xi

)4

,

−5.12 � xi � 5.12.

The global minimum is located at x∗ = (0,0, . . . ,0) and
f (x∗) = 0. In our experiments we used this function with
n = 10.

3. Rosenbrock function.

f (x) =
n−1∑
i=1

(
100(xi+1 − x2

i )2 + (xi − 1)2),
−30 � xi � 30.

The global minimum is located at the x∗ = (0,0, . . . ,0)

with f (x∗) = 0. In our experiments we used this function
with n = 50.

4. Ellipsoidal function.

f (x) =
n∑

i=1

(xi − i)2, −n � xi � n.

The global minimum is located at the x∗ = (1,2, . . . , n)

with f (x∗) = 0. In our experiments we used this function
with n = 10. The function is denoted by the label ELP in
the corresponding table.
Please cite this article in press as: I.G. Tsoulos, I.E. Lagaris, GenMin: An enhanced
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5. Sinusoidal function.

f (x) = −
(

2.5
n∏

i=1

sin(xi − z) +
n∏

i=1

sin
(
5(xi − z)

))
,

0 � xi � π.

The global minimum is located at x∗ = (2.09435,2.09435,

. . . ,2.09435) with f (x∗) = −3.5. In our experiments we
used n = 10 and z = π

6 and the function is denoted by the
label SINU.

6. Camel function. The function is given by

f (x) = 4x2
1 − 2.1x4

1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2 ,

x ∈ [−5,5]2.

The global minimum has the value of f (x∗) = −1.0316.
7. Rastrigin function.

f (x) = x2
1 + x2

2 − cos(18x1) − cos(18x2),

x ∈ [−1,1]2.

The global minimum is located at x∗ = (0,0) with value
−2.0.

8. Griewank2 function.

f (x) = 1 + 1

200

2∑
i=1

x2
i −

2∏
i=1

cos(xi)√
(i)

,

x ∈ [−100,100]2.

The global minimum is located at the x∗ = (0,0, . . . ,0)

with value 0.
9. Gkls function. f (x) = Gkls(x,n,w), is a function with w

local minima, described in [22], x ∈ [−1,1]n, n ∈ [2,100].
In our experiments we use n = 2,3 and w = 50.

10. Goldstein & Price function.

f (x) = [
1 + (x1 + x2 + 1)2

× (19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)
]

× [
30 + (2x1 − 3x2)

2

× (18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)
]
.

With x ∈ [−2,2]2. The global minimum is located at x∗ =
(0,−1) with f (x∗) = −3.0.

11. Test2N function.

f (x) = 1

2

n∑
i=1

x4
i − 16x2

i + 5xi, xi ∈ [−5,5].

The function has 2n local minima in the specified range and
in our experiments we used n = 4,5,6,7.

12. Test30N function.

f (x) = 1

10
sin2(3πx1)

n−1∑
i=2

(
(xi − 1)2(1 + sin2(3πxi+1)

))
+ (xn − 1)2(1 + sin2(2πxn)

)
with x ∈ [−10,10]. The function has 30n local minima in
the specified range and we used n = 3,4 in our experi-
ments.
genetic algorithm for global optimization, Computer Physics
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Table 2
Experimental results

Function SA GSA CRS GCRS GA GENMIN

EXP(30) 72042 1380 89792 10019 13067 573
ELP(10) 24004 3849 29548 21361 49202 436
Zakharov(10) 24021 1960 27446 5737 34472 483
Rosenbrock(50) 120308 2058(0.73) 101590 92592 50788 1464
Sinu(10) 24042(0.93) 4459(0.93) 24855 12091 7184 1212
CAMEL 4820 1791 1852 1504 49639 761
RASTRIGIN 4843 488 1903 428 1640 750
GRIEWANK2 4832(0.27) 580 2105 977 4995(0.97) 764
GKLS(2,50) 4820 1641 1627 1220 51013 743
GKLS(3,50) 7228 2004 3349 2056 48972 1941
GOLDSTEIN 4842 1281 1923 961 20437 748
TEST2N4 9631 2923 6835(0.97) 4280(0.97) 2106 1028
TEST2N5 12034(0.87) 3456 25270(0.97) 7958 5711(0.93) 1180
TEST2N6 14438(0.66) 3633 32801(0.70) 9914 14109(0.73) 1348
TEST2N7 16840(0.37) 3840 38057(0.40) 9740 9639(0.87) 1458
TEST30N3 7930(0.23) 1425 3703 1519 1752 508
TEST30N4 9858(0.23) 1001 5135 1416 2758 519
POTENTIAL3 21404 3075 198046 9265 50915 613
POTENTIAL5 36212 2770 188646 9096 50662 685
NEURAL 76667(0.93) 6241(0.93) 122617 14559 52952(0.97) 9751
13. Potential function. The molecular conformation corre-
sponding to the global minimum of the energy of N atoms
interacting via the Lennard–Jones potential is determined
for two cases: with N = 3 atoms and with N = 5 atoms.
We refer to the first case as Potential(3) and to the sec-
ond as Potential(5). The global minimum for the first is
f (x∗) = −3 and f (x∗) = −9.103852416 for the second
case.

14. Neural network function. A neural network (sigmoidal per-
ceptron) with 10 hidden nodes (30 variables) was used
for the least squares approximation of the function g(t) =
t sin(t2), t ∈ [−2,2]. The error function is given by:

f (x, t) =
m∑

i=1

(
N(x, ti) − g(ti)

)2
,

where N(x, t) is the output of the neural network with the
weight vector denoted by x. This function is given by:

N(x, t) =
H∑

i=1

x3i−2σ(x3i−1t + x3i ),

where H is the number of hidden nodes (in our case H =
10). The constant m stands for the number of points in the
training set (in our case m = 100). The global minimum of
the error function is f (x∗) = 0.

3.2. Experimental setup

For the experiments we have used 100 chromosomes for the
genetic population and each chromosome’s length was set to
5n, where n is the dimensionality of the objective function.
The mutation rate was set to 5% and the selection rate to 95%.
The maximum number of generations allowed (variable MAX-
ITERS in the algorithm) was set to 500.
Please cite this article in press as: I.G. Tsoulos, I.E. Lagaris, GenMin: An enhanced
Communications (2008), doi:10.1016/j.cpc.2008.01.040
3.3. Results

In Table 2 we list the results from the application of Sim-
ulated Annealing (SA) as described in [5], Genetic Simulated
Annealing (GSA) as described in [24], Controlled Random
Search (CRS) of Price [26], Genetically Controlled Random
Search (GCRS) as described in [23], a simple genetic algo-
rithm (GA) as described in [27] (more specifically the algorithm
named GA(cr1, l)) with 100 chromosomes and maximum num-
ber of allowed generations set to 500 and the proposed method
(GENMIN) on the test problems. The parameters for each of
the algorithms are set according to the relevant literature. Each
method was run 30 times for every problem using different ran-
dom seeds. The local search method used in all methods was a
BFGS variant due to Powell [25]. The numbers in the cells rep-
resent the average number of function evaluations spent. Not all
of the runs discover the global minimum. In such cases we add
in parentheses the fraction of successful runs.

3.4. Scalability of the method

In this subsection the method’s scaling behavior is tested
with respect to problem dimension using test functions sug-
gested by Hansen et al. [28]. In Table 3 we present the results
of our method for the functions EXP, ELP, ROSENBROCK
and ZAKHAROV for n = 2,4,8,16,32,64,100. Similarly, in
Table 4 the corresponding results for the standard Genetic Al-
gorithm are presented. We counted the number of function
evaluations versus the dimensionality of some appropriate test
functions as proposed in [28]. In Figs. 3 and 4 we present graph-
ically the scaling behavior of our method. We find that there is
not a notorious dependence as in the case of Hansen et al. [28].
The only exception is a linear relation that seems to hold for the
Sharp Ridge function.
genetic algorithm for global optimization, Computer Physics
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Table 3
Scalability of the proposed method

n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 100

EXP 610 665 700 679 570 560 615
ELP 492 478 448 394 306 366 475
ROSENBROCK 581 688 787 982 1272 1551 1542
ZAKHAROV 534 539 502 469 441 531 564

Table 4
Scalability of the standard Genetic Algorithm

n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 100

EXP 1081 1309 1951 5324 11272 22839 33243
ELP 36199 46905 49310 48533 47126 45257 44153
ROSENBROCK 13908 30942 37408 48942 51239 51484 51771
ZAKHAROV 1282 3104 22376 50519 51013 51000 50281

Fig. 3. Plot of average number of calls for functions: sphere, cigar, tablet, two_axes and par_ridge.
4. Software documentation

4.1. Distribution

The software package is distributed in a single tar.gz file
named GenMin.tar.gz and it can be extracted under UNIX
systems with the following commands:

1. gunzip GenMin.tar.gz
2. tar xfv GenMin.tar

The above step create the directory GenMin with the following
contents:

1. bin: An empty directory that will contain the executable
make_genmin, after the compilation of the package.
Please cite this article in press as: I.G. Tsoulos, I.E. Lagaris, GenMin: An enhanced
Communications (2008), doi:10.1016/j.cpc.2008.01.040
2. doc: A directory that contains the documentation of the
package (this file) in different formats: A LYX file, a LATEX
file and a PostScript file.

3. examples: A directory with the test functions used in this
article, coded in ANSI C++.

4. include: A directory which holds the header files needed
for the compilation of the package.

5. src: This directory contains the source files for the compi-
lation of the package.

6. Makefile: The main file used for the building of the tool.
This file is used as input to the make utility, which is avail-
able in most UNIX systems. Usually, the user does not need
to change this file.

7. Makefile.inc: This file contains some critical parameters
for the compilation of the package, such as the name of the
C++ compiler, the path of the tool, some linking options,
etc. The user must edit and change this file before compila-
tion, in order to meet his needs.
genetic algorithm for global optimization, Computer Physics
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Fig. 4. Plot of average function evaluations for functions ellipsoid, cigar_tablet, dpowers, sharp_ridge and rosenbrock.
4.2. Installation

The following commands must be issued, in order to build
the tool:

1. gunzip GenMin.tar.gz.
2. tar xfv GenMin.tar.
3. cd GenMin.
4. Change (if needed) the configuration parameters in the file

Makefile.inc.
5. Type make.

The Makefile.inc contains the following compilation parame-
ters:

1. CXX: This parameter specifies the name of the C++ com-
piler, that will be used for the compilation of the package.
In most systems running the GNU C++ compiler this para-
meter must be set to g++.

2. CC: If the user written programs are in C, set this parame-
ter to the name of the C compiler. Usually, for the GNU
compiler suite, this parameter is set to gcc.

3. F77: If the user written programs are in Fortran 77, set this
parameter to the name of the Fortran 77 compiler. For the
GNU compiler suite a usual value for this parameter is g77.

4. F77FLAGS: The compiler GNU FORTRAN 77 (g77) ap-
pends an underscore to the name of all subroutines and
functions after the compilation of a Fortran source file. In
order to prevent this from happening we can pass some
flags to the compiler. Normally, this parameter must be set
to -fno-underscoring.

5. ROOTDIR: Is the location of the GenMin directory. It is
critical for the system that this parameter is set correctly.
In most systems, it is the only parameter which must be
changed.
Please cite this article in press as: I.G. Tsoulos, I.E. Lagaris, GenMin: An enhanced
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6. LINK: This parameter specifies additional linking options,
such as external libraries etc. For example if we want to
link the final executable against the library foo located in
/home/user/libraries directory this parameter must be set
to “-L/home/user/libraries -lfoo”. The surrounding double
quotes are necessary for the compilation. The default value
for this parameter is set to “-lg2c” in order to enable FOR-
TRAN Input Output commands in the user written subpro-
grams.

7. INCL: This parameter specifies additional directories,
where may be located needed header files. For example,
the user can direct the program to search for header files
under the subdirectory /home/user/include by setting this
parameter to “-I/home/user/include”.

4.3. User written subprograms

The user can code his objective function either in C, C++
or in Fortran77 in a single file. Each file has a series of func-
tions in an arbitrary order. However, the C++ files must have
the lines

extern “C” {

before the functions and the line
}

after them. The meaning of the functions are the following:

1. getdimension(): This integer function returns the dimen-
sion of the problem.

2. getleftmargin(left): It is a subroutine (or a void function
in C) which fills the double precision array left with the
lower bounds of the variables.

3. getrightmargin(right): Is a subroutine (or a void function
in C) which fills the double precision array right with the
upper bounds of the variables.
genetic algorithm for global optimization, Computer Physics
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4. funmin(x): It is a double precision function which returns
the value of the objective function evaluated at point x.

5. granal(x, g): It is a subroutine (or a void function in C)
which returns in a double precision array g the gradient of
the objective function at point x.

4.4. The utility make_genmin

The executable make_genmin will be placed after the compi-
lation of the package under the subdirectory bin. This program
is used to create the final executable from the objective function
and it accepts the following command line parameters:

1. -h: Prints a help screen and terminates.
2. -p filename: The filename parameter specifies the name of

the file containing the objective function. The utility checks
the suffix of the file and it uses the appropriate compiler. If
this suffix is .cc or .c++ or .CC or .cpp, then it invokes the
C++ compiler. If the suffix is .f or .F or .for then it invokes
the Fortran 77 compiler. Finally, if the suffix is .c it invokes
the C compiler.

3. -o filename: The filename parameter specifies the name
of the final executable. The default value for this parameter
is GenMin.

4.5. The utility GenMin

The final executable GenMin has the following command
line parameters:

1. -h: The program prints a help and it terminates.
2. -c count: The integer parameter count specifies the

number of chromosomes used by the genetic algorithm.
The default value for this parameter is 100.

3. -s srate: The double parameter srate specifies the se-
lection rate used in genetic algorithm. The default value for
this parameter is 0.10 (10%).

4. -m mrate: The double parameter mrate specifies the
mutation rate used in the genetic algorithm. The default
value for this parameter is 0.05 (5%).

5. -r seed: The integer parameter seed specifies the seed
for the random number generator. The default value for this
parameter is 1.

6. -g generations: The integer parameter generation speci-
fies the maximum number of generations allowed. The de-
fault value for this parameter is 500.

4.6. A working example

Consider the Rastrigin function which is given by:

f (x1, x2) = x2
1 + x2

2 − cos(18x1) − cos(18x2).

This function in the range [−1,1]2 has 49 local minima and the
global minimum is located at (0,0) with function value −2. The
function is coded in C++ and is listed in Fig. 5 and resides in the
examples subdirectory. In order to apply the proposed method
to the Rastrigin function we issue the following commands
Please cite this article in press as: I.G. Tsoulos, I.E. Lagaris, GenMin: An enhanced
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Fig. 5. The Rastrigin function code.

ITER= 1 BEST VALUE= -1.5156
VARIANCE= 0.57426 WILL STOP= 0.28713
ITER= 2 BEST VALUE= -2
VARIANCE= 0.72574 WILL STOP= 0.36287
ITER= 3 BEST VALUE= -2
VARIANCE= 0.6729 WILL STOP= 0.36287
ITER= 4 BEST VALUE= -2
VARIANCE= 0.60004 WILL STOP= 0.36287
ITER= 5 BEST VALUE= -2
VARIANCE= 0.53432 WILL STOP= 0.36287
ITER= 6 BEST VALUE= -2
VARIANCE= 0.47898 WILL STOP= 0.36287
ITER= 7 BEST VALUE= -2
VARIANCE= 0.43289 WILL STOP= 0.36287
ITER= 8 BEST VALUE= -2
VARIANCE= 0.39432 WILL STOP= 0.36287
ITER= 9 BEST VALUE= -2
VARIANCE= 0.36174 WILL STOP= 0.36287
X*=[ 0 0 ] Y*=-2
FUNCTION CALLS = 920 GRADIENT CALLS= 43

Fig. 6. Output from the minimization of the Rastrigin function.

../bin/make\_genmin -p rastrigin.cc

./GenMin

The output from the above command is listed in Fig. 6. Note
that the minimization stops after 9 iterations and the program
prints apart from the located minimum the function and gradi-
ent calls as well. In each iteration the program prints the value
genetic algorithm for global optimization, Computer Physics
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of the variance of the best located value as well as the stopping
value (variable s of the proposed algorithm).

5. Conclusions

A new method is proposed in this article that aims to locate
global minimum of a continuous multidimensional, multimodal
function. The user can code his problems either in C++ or in
Fortran77 programming language. The method has been ap-
plied to a series of well-known optimization problems and it
seems to be far more efficient compared to other established
methods.
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