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A Spatially Constrained Mixture
Model for Image Segmentation

K. Blekas, A. Likas, N. P. Galatsanos, and I. E. Lagaris

Abstract—Gaussian mixture models (GMMs) constitute a well-known
type of probabilistic neural networks. One of theirmany successful applica-
tions is in image segmentation, where spatially constrained mixture models
have been trained using the expectation–maximization (EM) framework.
In this letter, we elaborate on this method and propose a new methodology
for the M-step of the EM algorithm that is based on a novel constrained
optimization formulation. Numerical experiments using simulated images
illustrate the superior performance of our method in terms of the attained
maximum value of the objective function and segmentation accuracy com-
pared to previous implementations of this approach.

Index Terms—Covex quadratic programming (QP), expectation–max-
imization (EM), Gaussian mixture model (GMM), image segmentation,
Markov random field (MRF).

I. INTRODUCTION

Image segmentation is the process that groups image pixels together
based on attributes such as their intensity and spatial location. A va-
riety of different methods have been proposed for image segmentation
such as edge-based segmentation, region-based segmentation, pixel
labeling, and hybrid techniques [1]–[3]. In this work, we elaborate
on a pixel labeling (clustering) technique based on Gaussian mix-
ture models (GMMs) which constitute a well known probabilistic
neural-network model [4], [5]. The expectation–maximization (EM)
framework constitutes an efficient method for GMM training based on
likelihood maximization.

The application of clustering methods to image segmentation has
the particular characteristic that spatial information should be taken
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into account. That is, apart from the intensity values, the pixel loca-
tion must also be used to determine the cluster to which each pixel is
assigned. Intuitively speaking, in most cases it is desirable to assign the
same cluster label to spatially adjacent pixels. The Bayesian framework
provides a natural approach to implement these ideas. Following this
formulation, a likelihood term which is based exclusively on the data
captures the pixel intensity information, while a prior biasing term that
uses a Markov random field (MRF) captures the spatial location in-
formation. Thus, it is no surprise that most recent image segmentation
algorithms follow this paradigm (see, for example, [6] and [7]).

Nevertheless, an inherent difficulty with this formulation is that, due
to the introduction of the prior, the M-step of the EM algorithm cannot
be implemented using closed-form expressions. For this reason, in [6],
a gradient projection (GP) algorithm was proposed to implement the
M-step.

In this letter, we propose a novel method to implement the M-step
based on a closed-form update equation followed by an efficient pro-
jection method. We demonstrate with numerical experiments using the
synthetic image data in [7] that the proposed M-step provides a better
maximum of the objective function than the GP approach proposed in
[6]. In addition, it also yields better segmentation results.

The rest of this letter is organized as follows. In Section II, we de-
scribe the probabilistic model for image segmentation. In Section III,
we present our improvements to this model. In Section IV, we provide
comparative experimental results and finally in Section V, our conclu-
sions and future work.

II. SPATIALLY VARIANT FINITE MIXTURE MODEL

Let xi denote the observation at the ith pixel of an image (i =
1; . . . ; N ) modeled as i.i.d. The spatially variant finite mixture model
(SVFMM) [6] provides a modification of the classical mixture model
approach for pixel labeling. The SVFMM assumes a mixture model
withK components, each one having its own vector of density param-
eters �j .

According to the SVFMM approach, the probabilities �ij = P (jjxi)
of the ith pixel belonging to the jth cluster (class label) are considered
as additional model parameters that should satisfy the following con-
straints: 0 � �ij � 1 and K

j=1
�ij = 1. Let �i denote the probability

vector for pixel i, � = f�1; . . . ; �Ng the set of probability vectors
and � = f�1; . . . ; �Kg the set of component parameters. Then the
SVFMM model assumes that the density function f(xij�;�) at an
observation xi is given by

f(xij�;�) =

K

j=1

�
i
j�(x

ij�j) (1)

where �(xij�j) is a Gaussian distribution with parameters
�j = f�j ; �jg.

Based on the previous formulation, the parameters of the model can
be estimated through likelihood maximization (ML) using the EM al-
gorithm. Since the pixel observations are considered to be independent
samples, a significant drawback of the ML approach is that the spa-
tial pixel information is not taken into account [7], [8]. To overcome
this difficulty, the SVFMM method considers a maximum a posteriori
(MAP) approach by introducing a prior distribution for the parameter
set� that takes into account spatial information based on the following
Gibbs function [6]–[8]:

p(�) =
1

Z
exp(�U(�)); where U(�) = �

N

i=1

VN (�): (2)
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The Z is a normalizing constant, while � is often called regularization
parameter. The function VN (�) denotes the clique potential function
of the pixel label vectors f�mg within the neighborhood Ni of the
ith-pixel and can be computed as follows:

VN (�) =
m2N

g(ui;m) (3)

where the ui;m specifies the distance between the two label vectors �i

and �m, i.e, ui;m = j�i � �mj2 = K
j=1(�

i
j � �mj )2. The neighbor-

hood Ni is the set containing pixels that are horizontally or vertically
adjacent to pixel i. Finally, the function g(u)must be nonnegative and
monotonically increasing [8]. We have selected g(u) = (1 + u�1)�1

adopted from [8], while in [6] the identity function h(u) = uwas used.
The function g(u) penalizes less large values of u and, thus, is more
robust to outliers.

Given the prior density, a posteriori log-density function can be as
follows:

p(�;�jX) =

N

i=1

log f(xij�;�) + log p(�): (4)

The use of the EM algorithm for MAP estimation of the parameters
f�ijg and f�jg [6] requires that the conditional expectation values zij
of the hidden variables are computed at the E-step

z
i
j =

�ij �(xij�(t)j )
K

l=1

�il �(xij�(t)l )

(5)

while in the M-step the maximization of the following log-likelihood
corresponding to the complete data set is performed

QMAP(�;�j�
(t)�(t))

=

N

i=1

K

j=1

z
i
j flog(�ij) + log(�(xij�j))g � �

N

i=1m2N

g(ui;m)

(6)

where t indicates the iteration step. The function QMAP can be maxi-
mized independently for each parameter. This gives the following up-
date equations for parameters of the component densities:

�
(t+1)
j =

N

i=1

zij xi

N

i=1

zij

; [�2j ]
(t+1) =

N

i=1

zij [xi � �
(t+1)
j ]2

N

i=1

zij

: (7)

However, the maximization of the function QMAP with respect to the
label parameters f�ijg does not provide closed-form update equations.
In addition, the maximization procedure must also take into account
the constraints 0 � �ij � 1 and K

j=1 �
i
j = 1. Due to this difficulty,

a Generalized EM scheme for estimating the label parameters f�ijg
was adopted in [6] following the iterative GP method. According to
this method the gradient of the MAP function is first projected onto the
hyperplane of the constraints. Then a line search is performed along the
direction of the projected gradient to find the label parameters f�ijg that
maximizes the QMAP function.

III. PROPOSED TECHNIQUE

In this section, we present the new M-step which we demonstrate
experimentally in Section IV that improves the performance of the seg-
mentation algorithm. In order to maximize QMAP (6) with respect to

�ij , we set its derivative equal to zero and obtain the following quadratic
expression:

4�
m2N

_g(ui;m) (�ij )2

�4�
m2N

_g(ui;m)�mj (�ij )� z
i
j = 0 (8)

where _g(u) indicates the derivative of g. It must be noted that in the pre-
vious equation the neighborhood Ni can include pixels with updated
label parameter vectors (t+1 step), as well as pixels whose label vec-
tors �m have not yet been updated (t step).

The two roots of the previous equation are

�
i
j =

1

2
m2N

_g(ui;m) m2N

_g(ui;m)�mj

�
m2N

_g(ui;m)�mj

2

+
1

�
z
i
j

m2N

_g(ui;m)

1=2

(9)

and select only the root with the positive sign+ since it yields �ij � 0.
The previous equation provides a straightforward update for the values
of label parameters �ij of each pixel i at the M-step of every EM it-
eration. However, we also have to ensure that these values satisfy the
constraints 0 � �ij � 1 and K

j=1 �
i
j = 1. In the following, we

present an efficient novel projection algorithm to achieve this goal.
For convenience, let us now denote with aj (j = 1; . . . ; K) the label

parameter values (�ij � 0) computed from (9). The problem we
address here is the following: ”Given a vector a 2 RK with aj � 0 and
the hyperplane K

j=1 yj = 1, find the point y on the hyperplane with
nonnegative components that is closest to a.” This can be formulated
as a linear constrained convex quadratic programming (QP) problem

min
y

K

j=1

(yj � aj)
2

subject to
K

j=1

yj = 1 and yj � 0 8j = 1; 2; . . . ; K: (10)

In order to solve the previous QP problem, several approaches may
be employed [9], such as active-set methods that use Lagrange mul-
tiplies, as well as penalty-barrier methods that formulate an objective
function with penalty terms for equality and barrier terms for inequality
constraints. We use here an active-set type of method, where we exploit
the fact that the Hessian is the identity matrix which in turn leads to the
derivation of closed-form analytical expressions for the Lagrange mul-
tipliers. This is of great value for both the efficiency and the robustness
of the method, since it avoids the burden of numerical instabilities that
occur frequently in the solution of large linear systems when the asso-
ciated matrices are nearly singular.

One may proceed using the following Lagrange function:

L(y; �0; �)=
1

2

K

j=1

(yj � aj)
2��0

K

j=1

yj�1 �
K

j=1

�jyj (11)

where �0 is the multiplier for the equality and �j ; j = 1; . . . ; K the
multipliers for the inequality constraints. First-order necessary condi-
tions imply

yj = aj + �0 + �j : (12)
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Fig. 1. Six noisy test images with K = 3 and K = 5 classes using three levels of noise.

Fig. 2. Plot of (a) the MAP function and (b) the classification error for various � values in the case of the three noisy images withK = 3 andK = 5 classes.

Combining the previous with the equality constraint yields

�0 =
1

K
� hai � h�i (13)

where hvi � (1=K) K

j=1
vj . Hence, substituting �0 in (12) we have

that

yj =
1

K
+ aj � hai+ �j � h�i; j = 1; . . . ; K: (14)

Note that the vector bwith components bj = 1=K+aj�hai is the pro-
jection of a on the hyperplane K

j=1
yj = 1. The �’s must be chosen

so as to satisfy the inequality constraints. Khun–Tucker conditions [9]
state that at the minimizer y�

�j � 0; �j > 0 if y�j = 0 (Active constraint); �jy
�

j = 0: (15)

We present a very efficient iterative strategy for calculating the �’s for
the previous problem.

Let y denote the vector at the current iteration. Initially, we set yj =
bj ; 8j = 1; . . . ; K . In the general case, there exist m negative com-
ponents yj . The corresponding set of indexes S = fj; with yj < 0g
constitutes the active set of constraints for the current vector y.

• For all j =2 S, we set �j = 0.
• For all j 2 S, we set yj = y?j = 0 and we compute the corre-
sponding �j by solving anm�m linear system that force the in-
equalities to be satisfied as equalities, namely yj+�j�h�i = 0,
leading to

�j =
1

m�K
k2S

yk � yj : (16)

• We compute the updated yj values for j =2 S using the new vector
� via (14).

The previous procedure is repeated until a feasible point is obtained,
i.e., yj � 0; 8j. This is the desired minimizer (y? = y).
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Fig. 3. (a) Execution time versus MAP function values for 50 runs of the proposed and the SVFMM-GP methods. (b) Typical run example of MAP function
versus number of steps is also presented.

Note that (16) produces positive values for �j , hence, no constraint
is to be dropped ever from the active set, i.e., if once some yj becomes
zero then it retains this value forever. This is a very important point as
far as efficiency is concerned and, in addition, guarantees the finite ter-
mination property of the algorithm. When all constraints are satisfied,
we have reached the sought solution.

Finally, it must be noted that apart from problems of low dimension-
ality as in the case of image segmentation (where K is equal to the
number of pixel labels), we have also applied the previous projection
technique to problems of large dimensions (e.g., K = 65536) arising
in other image processing problems and we have verified its efficiency
and robustness.

IV. EXPERIMENTAL RESULTS

A series of image segmentation experiments has been conducted
to evaluate and compare the effectiveness of the proposed technique.
Since the main contribution of our work is on improving the M-step
of the SVFMM model that estimates the label parameters �i

j , we com-
pared our approach with the generalized EM scheme proposed in the
original SVFMM model description that employs the GP technique
(termed as SVFMM-GP) as described in [6].

In this letter, we present results using two simulated test images
being sampled from the MRF model using a Gibbs sampler [7], with
K = 3 and K = 5 classes, where we have added three levels of
Gaussian noise with standard deviation of 18, 25, and 52, respectively
(Fig. 1). Fig. 2 illustrates the comparative results from the application
of the two methods to each noisy image. Two evaluation criteria have
been used for the comparison study: a) the maximum attained value of
theMAP objective function (4) and b) the classification (segmentation)
error defined as the percentage of misclassified pixels. Therefore, for
each image segmentation problem we provide two diagrams that illus-
trate the performance of the models according to the previous two cri-
teria for several values of the � parameter. These results demonstrate
that our approach provides a better maximum of the MAP function.
Moreover, it provides significantly better segmentation accuracy, since
the misclassification ratio is considerably lower in our approach, espe-
cially for high levels of noise.

In order to gain insight on the reason why our method yields con-
sistently better results, the following additional experiments were con-
ducted. For each method and test image (Fig. 1), we performed 50 runs

starting from different initial points �i
j while keeping the same initial

values for the mixture component parameters (�j ; �j). The regulariza-
tion parameter � was kept equal to � = 1 throughout. In Fig. 3(a),
we plot the execution time for each of the 50 runs, versus the obtained
MAP function value using both methods on the fifth test image. Note
that the results for all images were similar.

In Fig. 3, we observe that our method returns in all cases the same re-
sult, whereas the SVFMM-GP technique depends on the initialization,
hence, returning not one, but a number of different maxima. This be-
havior can be explained noting that our method locates the global max-
imum of theQMAP function (6) in every M-step, since it only projects
the unique unconstrained maximum (9) onto the constraint boundary.
On the contrary, SVFMM-GP is trapped to the first local maximum en-
countered. There is a small variation in the execution times (� 1 s) of
our method that cannot be shown in Fig. 3(a) since the value of function
is the same in all runs. This is expected since the projections onto the
constraint boundary may require different times, depending on the ini-
tial conditions. However, in our exeriments the dimension of the con-
straint polyedron is small (K = 3 or 5), thus, these differences are
negligible.

In Fig. 3(b), we plot the MAP function values versus the number of
EM-steps. From that plot we see that our method requires more EM it-
erations to converge and it is slower as it can be deduced from Fig. 3(a).
However, our method reaches higher maximum values which implies
better segmentation performance.

V. CONCLUSION

We have presented a new method to maximize the label parameter
values at theM-step of the EM algorithm for training GMMswithMRF
priors for image segmentation. Experimental results on simulated im-
ages demonstrate that the proposed modification improves, in some
cases significantly, the segmentation performance of this method. It
must be noted that we have also tested the proposed algorithm with
real images, where in all tested cases the proposed M-step provides a
better maximum of the objective function. However, due to space con-
straints, we do not present these results here. Future work will focus
on applying the method to real world segmentation problems arising in
medical imaging and bioinformatics and also to consider segmentation
of color and texture images. We also plan to design more sophisticated
prior functions that will take into account not only pixel adjacency, but
also image information, such as for example the existence of edges.
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An Improved Conjugate Gradient Scheme
to the Solution of Least Squares SVM

Wei Chu, Chong Jin Ong, and S. Sathiya Keerthi

Abstract—The least square support vector machines (LS-SVM) formu-
lation corresponds to the solution of a linear system of equations. Several
approaches to its numerical solutions have been proposed in the literature.
In this letter, we propose an improved method to the numerical solution of
LS-SVMand show that the problem can be solved using one reduced system
of linear equations. Compared with the existing algorithm for LS-SVM, the
approach used in this letter is about twice as efficient. Numerical results
using the proposed method are provided for comparisons with other ex-
isting algorithms.

Index Terms—Conjugate gradient (CG), least square support vector ma-
chines (LS-SVM), sequential minimal optimization (SMO).

I. INTRODUCTION

As an interesting variant of the standard support vector machines
(SVMs) [2], least squares support vector machines (LS-SVM) have
been proposed by Suykens and Vandewalle [3] for solving pattern
recognition and nonlinear function estimation problems. The links
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between LS-SVM classifiers and kernel Fisher discriminant analysis
have also been established by Van Gestel et al. [4]. The LS-SVM
formulation has been further extended to kernel principal component
analysis, recurrent networks and optimal control [5]. As for the training
of the LS-SVM, Suykens et al. [1] proposed an iterative algorithm
based on the conjugate gradient (CG) algorithm. Keerthi and Shevade
[6] adapted the sequential minimal optimization (SMO) algorithm for
SVM [7] for the solution of LS-SVM.

In this letter, we propose an improved algorithm with CG methods
for LS-SVM. We first show the optimality conditions of LS-SVM, and
establish its equivalence to a reduced linear system. CG methods can
then be employed for its solution. Compared with the algorithm pro-
posed by Suykens et al. [1], our algorithm is equally robust and is at
least twice as efficient.

We adopt the following notations. x 2 Rd; D 2 Rn�m are d-di-
mensional column vector andn�mmatrix of real entries, respectively;
xT is the transpose of x; 1n and 0n are n-column vectors of entries
1 and 0, respectively. This letter is organized as follows. In Section II,
we review the optimization formulation of LS-SVM, and then show the
simplification of the optimality conditions to a reduced linear system.
In Section III, we present the results of numerical experiments using
our proposed algorithm on some benchmark data sets of different sizes,
and compare with the results obtained using the conjugate method by
Suykens et al. [1] and the SMO algorithm by Keerthi and Shevade [6].
We conclude in Section IV.

II. LS-SVM AND ITS SOLUTION

Suppose that we are given a training data set of n data points
fxi; yig

n
i=1, where xi 2 Rd is the ith input vector and yi is the

corresponding ith target. For binary classification problems yi takes
only two possible values f�1;+1g, whereas yi 2 R for regression
problems. We employ the idea to transform the input patterns into
the reproducing kernel Hilbert space (RKHS) by a set of mapping
functions ���(x) [5]. The reproducing kernel K(x; x0) in the RKHS is
the dot product of the mapping functions at x and x0, i.e.

K(x; x0) = h���(x) � ���(x0)i: (1)

In the RKHS, a linear classification/regression is performed. The dis-
criminant function takes the form f(x) = n

i=1
hwww ����(x)i+ b, where

www is the weight vector in the RKHS, and b 2 R is called the bias term.
The discriminant function of LS-SVM classifier [3] is constructed by
solving the following minimization problem:

min
www;b;���

P (www; b; ���) =
1

2
hwww �wwwi+

C

2

n

i=1

�
2

i (2)

s:t: yi � (hwww � ���(xi)i+ b) = �i i = 1; . . . ; n (3)

where C > 0 is the regularization factor and �i is the difference be-
tween the output yi and f(xi). Using standard techniques [8], the La-
grangian for (2)–(3) is

L(www; b; ���;���) =
1

2
hwww �wwwi+

C

2

n

i=1

�
2

i

+

n

i=1

�i (yi � (hwww � ���(xi)i+ b)� �i) (4)
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