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2model inside a suitable neighborhood (the trust region) of the urrent iterate, as implied by theTaylor series expansion. This loal model of f(x) at the kth iteration an be written as:f(xk + s) � mk(s) = f(xk) + sT g(k) + 12sTB(k)s (1)where g(k) = rf(x(k)) and B(k) is a symmetri approximation to r2f(x(k)).The trust region may be de�ned by:T(k) = fx 2 <n j jjx� x(k)jj � �(k)g (2)It is obvious that di�erent hoies for the norm lead to di�erent trust region shapes. The Eulideannorm jj � jj2, orresponds to a hypershpere, while the jj � jj1 norm de�nes a hyperbox.Given the model and the trust region, we seek a step s(k) with jjs(k)jj � �(k), suh that themodel is suÆiently redued in value. Using this step we ompare the redution in the model tothat in the objetive funtion. If they agree to a ertain extend, the step is aepted and the trustregion is either expanded or remains the same. Otherwise the step is rejeted and the trust regionis ontrated. The basi trust region algorithm is skethed in Alg. 1Algorithm 1 Basi trust regionS0: Pik the initial point and trust region parameter x0 and �0, and set k = 0.S1: Construt a quadrati model:m(k)(s) � f(x(k) + s)S2: Calulate s(k) with jjs(k)jj � �(k), so as to suÆiently redue m(k).S3: Compute the ratio of atual to expeted redution, r(k) = f(x(k))�f(x(k)+s(k))m(k)(0)�m(k)(s(k)) . This value willdetermine if the step will be aepted or not and the update for �(k).S4: Inrement k  k + 1 and repeat from S1.3 Bound-onstrained QPLet x; d 2 RN and B a symmetri, positive de�nite N �N matrix and I = f1; 2; � � � ; Ng. Considerthen the QP problem: minx 12xTBx+ xT d; subjet to: ai � xi � bi;8i 2 I (3)We follow the Lagrange multipliers line and we onstrut the Lagrangian:L(x; �; �) = 12xTBx+ xT d� �T (x� a)� �T (b� x) (4)The KKT neessary onditions at the minimum x�; ��; �� require that:Bx� + d� �� + �� = 0��i � 0; ��i � 0; 8i 2 I��i (x�i � ai) = 0; 8i 2 I (5)��i (bi � x�i ) = 0; 8i 2 Ix�i 2 [ai; bi℄; 8i 2 I



3A solution to the above system of equations (5), an be obtained through an ative set strategydesribed in detail in the following setion 3.1.3.1 The BOXCQP algorithmOur QP algorithm is skethed in Alg 2:Algorithm 2 BOXCQPS0: Initially set: k = 0, �(0) = �(0) = 0 and x(0) = �B�1d.If x(0) is feasible, Stop, the solution is: x� = x(0).At iteration k, the quantities x(k); �(k); �(k) are available.S1: De�ne the sets: L(k) = fi : x(k)i < ai; or x(k)i = ai and �(k)i � 0gU (k) = fi : x(k)i > bi; or x(k)i = bi and �(k)i � 0gS(k) = fi : ai < x(k)i < bi; or x(k)i = ai and �(k)i < 0;or x(k)i = bi and �(k)i < 0gNote that L(k) [ U (k) [ S(k) = IS2: Set: x(k+1)i = ai; �(k+1)i = 0; 8i 2 L(k)x(k+1)i = bi; �(k+1)i = 0; 8i 2 U (k)�(k+1)i = 0; �(k+1)i = 0; 8i 2 S(k)S3: Solve: Bx(k+1) + d = �(k+1) � �(k+1)for the N unknowns: x(k+1)i ; 8i 2 S(k)�(k+1)i ; 8i 2 U (k)�(k+1)i ; 8i 2 L(k)S4: Chek if the new point is a solution and deide to either stop or iterate.If (x(k+1)i 2 [ai; bi℄ 8i 2 S(k) and �(k+1)i � 0; 8i 2 U (k)and �(k+1)i � 0; 8i 2 L(k)) ThenStop, the solution is: x� = x(k+1).Else set k  k + 1 and iterate from S1Endif



4 The solution of the linear system in step 3 above, needs further onsideration. Let us rewritethe system in a omponentwise fashion.Xj2I Bijx(k+1)j + di = �(k+1)i � �(k+1)i ; 8i 2 I (6)Sine 8i 2 S(k) we have that �(k+1)i = �(k+1)i = 0, we an alulate x(k+1)i ; 8i 2 S(k) by splitingthe sum in eq. (6) and taking into aount step 2 of the algorithm, i.e.:Xj2S(k) Bijx(k+1)j = � Xj2L(k) Bijaj � Xj2U(k) Bijbj � di; 8i 2 S(k) (7)The submatrix Bij ; with i; j 2 S(k) is positive de�nite as an be readily veri�ed, given that thefull matrix B is. The alulation of �(k+1)i ; 8i 2 L(k) and of �(k+1)i ; 8i 2 U (k) is straightforwardand is given by: �(k+1)i =Xj2I Bijx(k+1)j + di; 8i 2 L(k) (8)�(k+1)i = �Xj2I Bijx(k+1)j � di; 8i 2 U (k) (9)3.2 Experiments with QPWe are urrently under the proess to present an elegant proof for the onvergene rate of theBOXCQP algorithm, although we have very strong experimental results of its eÆieny. It is ourstrong belief that if matrix B is suÆiently positive de�nite our algorithm will onverge to thesolution.We have ontated ... types of experiments in order to measure the speed of our BOXCQPalgorithm: Random quadrati problems, ....4 Retangular trust region approahThe basi motivation under the development of an robust solver for positive de�nite quadratiproblems with simple bounds, was to solve exatly the quadrati subproblem that arises in a trustregion framework using in�nite norm jj � jj1. In this ase the trust region in whih we believe thatthe quadrati model \�ts" the objetive funtion, is a hyperbox.4.1 Model and norm de�nitionThe problem that we try to solve is: minx f(x)subjet to: li � xi � ui (10)using an in�nite norm trust region method. Let x(k) the estimation of the solution at the k-thstep of the algorithm. In eah step we onstrut a quadrati model of f , and �nd a step s(k) thatsolves: mins m(x(k) + s) = f (k) + g(k)Th+ 12sTB(k)ssubjet to: jjsjj1 � �(k) and li � x(k)i � si � ui + x(k)i (11)



5whih is equivalent to: mins m(s) = g(k)Th+ 12sTB(k)ssubjet to: max(li � x(k)i ;��(k)) � si � min(ui � x(k)i ;�(k)) (12)where f (k) = f(x(k)); g(k) = rf(x(k)); B(k) is a positive de�nite approximation of the hessianmatrix. We use the BFGS formula to update B(k) whenever we move to a new point x(k+1). Thusin S2 of the basi algorithm we have to solve a bound onstrained quadrati problem with positivede�nite hessian. 4.2 Trust region updateWe have inorporated a simple trust radius update, the same that we use in the Merlin [5℄ imple-mentation for the double dogleg method. The update algorithm (inorporated in S3 of the basialgorithm) is desribed in ...:Algorithm 3 Trust region parameter � updateS1: Calulate the ratio of the atual to the expeted redution r(k) = (f (k)�f (k+1))=m(k)(x(k))�q(k)(x(k) + s(k)) where f (k) stands for f(x(k)) and f (k+1) for f(x(k) + s(k))S2: Aept or rejet the trial point aording toIf r(k) � 0 thenx(k+1) = x(k); f (k+1) = f (k+1)Else x(k+1) = x(k) + s(k)EndifS3: If r(k) < 0:25 then�(k+1) = jjs(k)jj=4Else if r(k) > 0:75 and jjs(k)jj = �(k) then�(k+1) = 2�(k)Else �(k+1) = �(k)Endif Referenes[1℄ A. Conn, N. Gould and P. Toint, Trust-Region methods, MPS-SIAM Series on Optimization(2000)[2℄ J. E. Dennis and R. B. Shnabel, Numerial Methods for Unonstrained Optimization andNonlinear Equations, SIAM (1996)[3℄ M. J. D. Powell, A new algorithm for unonstrained optimization, Nonlinear Programming,pp. 31{65, Aademi Press, London (1970)
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