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Abstract: - A trust region algorithm for unconstrained and bound c@aséd nonlinear optimization
problems is presented. The trust region is a rectangulagrbyp in contrast with the commonly used
hyperellipsoid. The resulting quadratic subproblems afeesl approximatelly by an adaptation of
Powell’s dogleg method for rectangular trust regions. Carapve results of numerical experiments
are reported.
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1 Introduction and a modification of Powell’s [3] dogleg tech-
Non-linear optimization plays an important role inique is developed to obtain an approximate solu-
many fields of science and engineering, in the inen.
dustry, as well as in a plethora of practical prob- We embed this scheme in a quasi—-Newton
lems. Frequently the optimization parameters dramework that uses a positive definite approxima-
constrained inside a range imposed by the nattion to the Hessian matrix. This renders the prob-
of the problem at hand. Developing methods feem in Eq.1 a strictly convex one, and hence the
bound constrained optimization is hence quite uskgleg technique is applicable.
ful. We refer to [1] (pp. 10-12) for a list of ap- In Section 2, we describe in brief the trust region
plication areas. The most efficient optimizatiociass of algorithms along the lines of Conn, Gould
methods are based on Newton’s method wherarad Toint [1]. In Sections 3 and 4 we present the
quadratic model is adopted as a local approxim@oposed methodology along with our experimen-
tion to the objective function. Two general apal results. Finally our conclusions are layed out in
proaches have been followed. One uses a lirfeection 5.
search along a properly selected descent direction,
while the other permits steps of restricted size in an
effort to maintain the reliability of the quadraticap2 Trust region methods
proximation. The approaches in this second clagsyst region methods fall in the category of se-
bear the generic name Trust-Region techniquesguential quadratic programming. The algorithm-
this article we deal with a method of that type. s in this class are iterative procedures in which
We develop a method that adopts a rectanguleg objective functionf(z) is represented by a
shape for the trust region. This geometry has t@gadratic model inside a suitable neighborhood
obvious advantage of the linearity of the subpro@ihe trust region) of the current iterate, as implied
lem constraints and in addition allows effortledsy the Taylor series expansion. This local model
adaptation to bound constrained problems. Theo-f(z) at thek"" iteration can be written as:

merging quadratic subproblems are of the sort: s 1
f(xe+s) = mi(s) = f(or) + 5 §+58 Bys (2)

1 )
min 5sTBs +s"g subjecttoia; < s; <bi (1) whereg, = Vf(z;) and B, is a symmetric ap-



proximation toV? f (z). N
The trust region may be defined by:

Tp={v e R" ||z -zl <A} (3)

. . . . i : Dogleg Path
It is obvious that different choices for the norm | / /o’geg a

lead to different trust region shapes. The Euclidea
norm||-||2, corresponds to a hypershpere, while th | ;
|| - || NOrm defines a hyperbox. xS
Given the model and the trust region, we seek -
a steps;, with ||s;|| < Ay, such that the model is |
sufficiently reduced in value. Using this step we .~ 1
compare the reduction in the model to that in the  uyperBox m
objective function. If they agree to a certain extend,
the step is accepted and the trust region is either
expanded or remains the same. Otherwise the step
is rejected and the trust region is contracted. The

basic trust region algorithm is sketched in Alg. 1the dogleg path for the cases of tfe||., and the
|| - || norm. The quadratic modeh,(s(a)), de-

Algorithm 1 Basic trust region creases monotonically asncreases assuming that
S0: Pick the initial point and trust region paramer 1S positive definite In the original paper, the
terz, andA,, and set = 0. dogleg path was truncated as soon as it intersected
with the trust region boundary. We distinguish the
S1: Construct a quadratic model: three following cases:

my(s) = f(zg + 5)

D
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Figure 1. Dogleg path

Casel: NeT;
S2: Calculatesy, with |[s;|| < Ay, so asto suffi-  Case2: (C €T, andN ¢ T,

ciently reducen,. Case3: (C ¢T,andN ¢ T,

S3: Compute the ratio of actual to expected reduc-
tion, r, = % This value will de-

termine if the stepkWikIf be accepted or not a
the update for\.

In our algorithm cases 1 and 2 are treated the
same way as in Powell’s original paper[3]. Howev-
n& in case 3, we prefer a slightly different approach.
Instead of taking the maximum feasible step along
C (PC = bC, b < 1) which is the case in the o-
riginal algorithm, we proceed further towardsin
the direction’V— PC' until a bound is encountered.
In Fig.2 we show such a case when the trust region
is a hyperbox. The definition of the dogleg path
3 Outline of thealgorithm under this modification is:
As mentioned in the introduction, our algorithm is oC for0 < a<b
a modification of Powell's dogleg method suitablga) = -7
for rectangular trust regionsgI Tghe dogleg pathli‘, ) { bC+ (e —b)(N—-bC) forb<a<l+b
defined as:

$A: Incrementt < k + 1 and repeat from S1.

whereb = IE2l2 e [0,1]. It can be trivially

s(a) = { aC for0<a<1 shown that along this path;(s(a)) monotonically
C+@-1)(N-C) forl <a<2 decreases, reaching so a lower value for the model.

B Lo _ We wish to apply our method to the more gener-

whereC = T Buge Ik is the Cauchy step, and, problem:

N = —H; g, is the Newton step, that is the un- ) .

constrained minimizer ofn. In Fig. 1 we show min f(z) subjecttorl; < z; <wi - (4)




N Special care must be taken when an itergte
reaches a bound. We define tinetive seft a point
X, as the set of indices:

, of
3 / i Alx) = {z|xi—uiandaxi<0}u
i I/ S//‘ af
3 / ’ {Z | r; = ; and > 0} (8)
i //// a’L'Z
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Hessian matrix. We construct the mode} (s) as 1/, |~
described in Section 2, and we omit the c:onstan%2
term f(x) in EQ. 2.

The trust region at the!” iteration is defined as:

Trust C'
4 Region

/ 3 c) Reduced
problem
a) Reaching

Tp={z e R ||lz — zillo < Ak} (5) s

and thus the dogleg step must be constrained by:
Figure 3: Bound handling

[[sk]loo < A (6)
puted from the quadratic subproblem may lead out-
in other words: side the feasible region and hence no progress can
be achieved. To deal with this situation, we reduce
—Ap < max(sg) < Ay (7) the dimension of the subproblem by excluding the

minimization parameters that belong to the active
From Eq. 7, and the fact that the new poipt+- set. Letm the number of parameters in the active
sr must be feasible, the subproblem can be restaged. The dimension of the subproblem is reduced
as: ton — m. In Fig.3, we present a case that progress
would have been impossible without the reduction.
mingepn My (s) = 55" Bys + 57 gy Our algorithm is presented in Alg. 2.
max|l; — z;, —Ag] < s < minfu; — z;, Ag]

It is worth mentioning that when the original probd EXxperimental results

lem involves bound constraints, the trust regidn order to investigate the behavior of the DOG-
shape is a hyperectangle. When no bounds B@X algorithm, we have performed a substantial
present the trust region is just a hypercube. amount of numerical testing. We have attempted



Algorithm 2 DOGBOX

to solve 35 unconstrained and bound constrained

S0: Pick the initial point and trust region parametgr (€St problems taken from the More collection [4].

andAg, and sek =0

The implementation was written in double pre-
cision FORTRAN 77, and was incorporated in the

S1: If active constrains exist, reduce the subproblerrr\’ﬁer"n Optimization Environment [5]

dimension.By, andgj, are reduced quantities.

S2: Construct the quadratic model aroungt

mi(s) = 1/25" Bps + 5" i

max[l; — z;, —A] < §; < minfu; — x;, A]
(2 (2

S3: Calculate dogleg step.

if N =—B] g, is feasible then
5 =N
else
if ¢ = —-%% & is feasible then
] 9T Bigr i
find the maximumu such that
C+ax(N-C) €T,
5p=CH+ax(N-0C)

else
find the maximunms such that
PC = pC €Ty,

find the maximumy such that
PC+ax (N —PC) €Ty
5p =PC+ax(N—PC)
end if
end if

In the unconstrained case we compare our
hyperbox-dogleg method to the originally pro-
posed dogleg that is implemented in Merlin (com-
mandTRUST). We start the minimization from the
points recommended by More (Test Points 1 and
2). Both methods use BFGS updates to approxi-
mate the Hessian matrix and use exactly the same
scheme to treat the trust region. The stopping cri-
teria are identical as well. The aim of these exper-
iments is to verify that, in the unconstrained case,
our method is as effective as the original one pro-
posed by Powell. The results are shown in Table 1,
were the number of iterationsI{”), the function
calls ("FC”) and the gradient calls BC") are re-
ported for each method. In this table;”denotes
that the two methods ended up in different minima,
and hence any comparison is meaningless.

For the bound constrained tests, the bounds were
generated by the following two schemes, were
stands for the initial starting points recommended
by More.

(1-r)z <z < (l+4r)z, z€ R", 0<r <1 (9)

$4: Using the reduced stef., calculate the full space

steps; and the ratioy.
S5: Choose the new pointy, ; according to:

if r, <0.1then

Tr+1 = Tk
else

Tk+1 = Tk + Sk
endif

S6: Update trust regior\,, according to:

if r, < 0.25 then

Apir = ||skl|/4

else ifr, > 0.75 and ||sx|| = Ay then
Apyr =20k

else
A1 = Ag

endif

S7: Incrementk < k + 1 and repeat from S1.

r—c<z<zx+c x,c€R" (10)

Care was taken that in our experiments the uncon-
strained minimum was feasible in some, but not in
all, cases. In the bound constrained case, we com-
pare our method against MerlinBRUSTmethod
and the well knownTolmin6] algorithm which is
also included in the Merlin distribution. The result-
s of the two bound constrained tests are shown in
Table 2 for EQ.9 and Table 3 for Eq.10. We should
point out that the symbol*” in these tables means
that the method did not converge to the solution.
The presented results for the unconstrained case,
offer a useful insight about the behavior of our al-
gorithm. It seems that our method performs bet-
ter (although marginally) than the original dogleg-
trust region method in the majority of the test prob-
lems. We can infer that our slight modification in
the dogleg path, is responsible for that.



In the bound constrained case results, we W& M.J.D. Powell, TOLMIN: A Fortran Package
ness a dramatic improvement when we comparefor Linearly Constrained Optimization Cal-
TRUSTto our implementation. This is expect- culation,DAMTP (1989)
ed due to the hyberbox nature of our approach, _
that helps dealing with bounds in a straightforwafd |- Bongartz, A.R. Conn, Nick Gould, Ph.L.
way. Another conclusion that can be drawn is that 10Int, CUTE: Constrained and unconstrained
our method behaves similarly fiolminin most ~ testing environmenCM Transactions on
cases, and overall perfoms slightly better. Mathematical Softwa(@993)

[8] A.R. Conn, Nick Gould and P.L. Toint, Test-
ing a Class of Methods for Solving Minimiza-

\?V ConCI:JSldontS t redi thod. t | tion Problems with Simple Bounds on the
€ presented a trust region method, 10 SOIVe UNn-y 5 5165 Mathematics of ComputatiornO,

constrained and boynd constrained optimizgtion pp. 399-430 (1988)
problems, by extending Powell’s dogleg technique

to rectangular hyperbox trust regions. Compari-

son to existing methods for unconstrained prob-

lems favors, although marginally, our method. In

the bound constrained case our method performs

equally well to one of the leading methods[6] in

the literature.

More experimentation is currently in progress
with the CUTE[7] test set. Furthermore, other trust
region techniques [8] are currently under a compar-
ative investigation.
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Test Point 1 Test Point 2
Problem TRUST DOGBOX TRUST DOGBOX
Name It. FC | GC | It FC | GC It. FC | GC | It FC | GC
ROSEN 40 | 47 | 41 | 37 | 44 | 38 26 | 31 | 27 | 27 | 34 | 28
FRE-ROT | 13 | 40 | 13 | 14 | 34 | 14 14 | 40 | 14 | 14 | 40 | 14
BRO-B-S 34 | 43 | 35 | 34 | 43 | 35 37 | 50 | 37 | 37 | 50 | 38
BEA 19 | 20 | 19 | 18 | 19 | 18 16 | 19 | 16 | 18 | 19 | 20
JEN-SAM 1 7 2 1 7 2 1 17 2 1 17 2
HEL-VAL 33| 43| 34 | 30 | 38 | 30 * * * * * *
BARD 23 | 42 | 23] 20 | 39 | 20 23 | 41| 23 | 22 | 40 | 22
GAUS 7 19 7 7 18 8 15 | 15 | 16 | 13 | 14 | 14
GULF 1 2 1 1 2 1 2 22 2 2 22 2
BOX3 37 | 39 | 38 | 39 | 40 | 42 52 | 57 | 53 | 51 | 57 | 52
POW-SIN | 67 | 71 | 68 | 88 | 89 | 94 92 | 97 | 93 | 71| 714 | 72
WOOD 36 | 44 | 36 | 37 | 46 | 37 24 | 30 | 25 | 34 | 43 | 35
KOW-OSB | 33 | 49 | 33 | 34 | 49 | 34 41 | 56 | 41 | 42 | 62 | 42
BRO-DEN | 37 | 65 | 37 | 41 | 69 | 41 42 | 69 | 42 | 49 | 83 | 49
OSB1 67 | 91 | 67 | 69 | 92 | 69 || 111 | 142 | 111 | 101 | 133 | 101
BIG-E6 44 1 62 | 44 | 46 | 69 | 46 41 | 57 | 41 | 40 | 58 | 40
OSB2 66 | 89 | 66 | 61 | 89 | 61 49 | 75 | 49 | 40 | 63 | 40
WATS 159 | 177 | 159 | 131 | 156 | 131 || 180 | 216 | 180 | 188 | 225 | 188
X-ROS 92 | 107 | 92 | 104 | 123 104 || 95 | 115| 95 | 98 | 121 | 98
X-POW-S | 204 | 218 | 204 | 221 | 247 | 231 || 254 | 274 | 254 | 204 | 221 | 204
PENI 202 | 226 | 202 | 172 | 217 | 172 || 57 | 81 | 57 | 38 | 61 | 38
PENII 203 | 241 | 203 | 270 | 300 | 271 || 259 | 300 | 260 | 253 | 300 | 254
VAR-DIM 15 | 21 | 15 | 25 | 31 | 25 23 | 28| 23 | 24 | 29 | 24
TRIG 34 | 48 | 34 | 30 | 46 | 30 36 | 50 | 36 | 39 | 54 | 39
BR-A-LIN 19 | 36 | 19 | 18 | 34 | 18 1 1 1 1 1 1
DISC-INT | 29 | 30 | 29 | 33 | 35 | 33 29 | 29 | 29 | 34 | 37 | 35
LIN-FR 3 5 4 2 3 2 3 4 3 2 3 2
LIN-R1 3 25 3 3 25 3 3 27 3 3 25 3
LIN-R10 3 24 3 4 28 4 5 28 5 4 27 4
CHEB 38 | 55 | 38 | 40 | 63 | 40 || 150 | 186 | 150 | 106 | 144 | 106
Table 1: Unconstrained case
Test Point 1 Test Point 2
Problem TRUST BOXDOG TOLMIN TRUST BOXDOG TOLMIN
Name It. | FC | GC | It FC[GC | FC|GC | It. [ FC |GC| It. [ FC ] GC | FC | GC
ROSEN 6 | 39 6 2 2 2 3 2 11 6 2 2 2 3 2
FRE-ROT 39 | 84 | 39 2 2 2 3 2 1 2 1 2 2 2 3 2
POW-B-S 11| 29 | 11 2 2 2 3 2 13| 32 | 13 3 3 3 5 4
BROW-B-S 8 | 65 8 3 48 3 [ 37| 36 6 | 63 6 3 3 3 4 3
BEAL 46 | 93 | 46 3 3 3 4 3 1 2 1 3 3 3 4 3
JEN-SAM 1 2 1 3 3 3 5 4 1| 13 2 3 3 3 6 5
GAUS 15| 16 | 15 7 18 8 14 | 15 || 56 | 73 | 56 9 9 9 | 31| 32
MEYE 63| 117 | 63 | 20 | 47 | 20 | 25 | 24 - - - 12 | 12| 12 | 23| 22
GULF 50 | 100 | 50 6 6 6 8 7 50| 97 | 50 | 10 | 10 | 10 | 8 7
BOX3 5 5 6 4 4 4 5 4 7| 32 7 4 4 4 5 4
POW-SI - - - 4 4 4 5 4 - - - 3 3 3 4 3
KOW-OSB 68| 84 | 68 | 13 | 13 | 13 | 20 | 19 || 58 | 105 | 58 7 7 7 8 7
BRO-DEN 1 9 2 3 3 3 7 6 1| 12 2 3 3 3 5 4
OSB1 66 | 115| 66 | 250 | 339 | 250 | 19 | 18 - - - 11 | 11 | 11 | 16 | 15
BIG-EX 53| 70 [ 53 | 10 | 11 | 10 | 19 | 18 || 30| 46 | 30 | 16 | 32 | 16 | 27 | 26
OSB2 73 91 | 73| 33 | 53 | 33 | 59 | 58 |58 76 | 58 | 14 | 30 | 14 | 22 | 21
WATS 1 0 0 0 0 0 0 0 1 3 2 21 |21 | 21 | 42 | 1
X-ROSE 7 | 33 7 2 2 2 3 2 6 | 40 6 2 2 2 3 2
X-POW-S - - - 6 6 6 6 5 - - - 3 3 3 4 3
PEN1 2 | 36 2 5 5 5 6 5 1 2 1 5 5 5 6 5
PEN2 50 | 97 | 50 5 5 5 10 | 9 90 | 136 | 90 5 5 5 7 6
VAR-DIM 22 82 | 22| 10 | 10 | 10 | 11| 10 |20 70 | 20 | 10 | 10 | 10 | 11 | 10
TRIG 61| 78 [ 61 | 19 | 36 | 19 | 33 | 32 |[ 53| 99 | 53 | 11 | 11 | 11 | 13 | 12
BR-A-LIN 8 | 41 8 3 3 3 4 3 0 0 0 0 0 0 0 0
DISC-BOUN | - - - 20 | 35 | 20 | 39 | 38 0 0 0 0 0 0 0 0
LIN-FR 46 | 90 | 46 2 2 2 3 2 45 89 | 45 2 2 2 3 2
LIN-R1 1 5 2 11 | 11 | 11 | 12 | 11 1 7 2 11 | 11 | 11 | 12 | 11
LIN-R10 1 4 2 9 9 9 10| 9 1 6 2 9 9 9 [ 10| 9
CHEB 49 69 | 49 | 44 | 66 | 44 | 60 | 59 || 74| 143 | 74 | 52| 96 | 52 | 86 | 85

Table 2: Constrained case (1)




Problem Test Point 1 Test Point 2
Name TRUST BOXDOG TOLMIN TRUST BOXDOG TOLMIN
It. FC | GC | I FC | GC| FC | GC It. FC | GC | I FC | GC| FC | GC
ROSEN 24 60 24 | 14| 17 14 17 16 26 66 26 5 5 5 11 | 10
FREU-ROT 16 44 16 9 9 9 28 27 42 99 42 3 3 3 5 4
BROW-B-S 7 64 7 3 44 3 15 14 14 78 14 3 3 3 4 3
BEAL - - - 8 24 8 20 19 1 2 1 2 2 2 3 2
JEN-SAM - - - 27 | 54 27 55 54 - - - 20 | 50 20 | 67 | 66
GAUS 9 9 9 7 18 7 14 13 49 52 41 | 14 | 28 15 | 33 | 32
MEYE 62 | 116 | 62 | 12| 24 12 27 26 79 | 170 | 79 | 47 | 60 47 | 22 | 21
BOX3 6 35 6 4 4 4 5 4 7 35 7 5 5 5 6 5
POW-SI 63 94 63 | 17 | 37 17 45 44 - - - 10 | 41 10 | 23 | 22
KOW-OSB 36 52 36 | 33| 43 33 48 47 41 57 41 | 44 | 64 44 | 46 | 45
BRO-DEN - - - 5 5 5 10 9 - - - 5 5 5 8 7
0SBl 76 | 102 | 76 | 70 | 93 70 | 103 | 102 || 300 | 300 | 300 | 91 | 124 | 91 | 99 | 98
BIG-EX 31 47 31 | 21| 38 21 31 30 28 45 28 | 17| 34 17 | 36 | 35
OSB2 84 | 106 | 84 | 54 | 78 54 91 90 53 69 53 | 19| 37 19 | 39 | 38
X-ROSE 34 72 34 | 36 | 53 36 41 40 77 | 130 | 77 | 11| 40 11 | 42 | 41
X-POW-S 79 | 118 | 79 | 32| 61 32 56 55 - - - 9 34 9 27 | 26
PEN1 1 2 1 7 7 7 13 12 1 2 1 5 5 5 6 5
VAR-DIM 202 | 258 | 202 | 1 2 1 3 2 - - - 18 | 19 18 | 37 | 36
TRIG 28 41 28 | 32| 47 32 53 52 * * * * * * * *
BR-A-LIN - - - 17 | 35 17 34 33 1 0 0 1 0 0 0 0
DISC-BOUN | 27 30 27 | 33| 35 33 46 45 32 34 32 | 34| 37 35 | 50 | 49
DISC-INT 25 25 25 | 25| 25 25 31 30 27 27 27 | 26 | 26 26 | 33 | 32
BROY-TRI 60 78 60 | 64 | 98 64 48 47 27 69 27 | 12| 12 12 | 30 | 29
BROY-BAN 88 | 119 | 88 | 68 | 109 | 68 88 87 26 76 26 | 11| 11 11 | 26 | 25
LIN-FR 48 93 48 2 2 2 3 2 47 92 47 2 2 2 3 2
LIN-R1 - - - 12 | 12 12 21 20 1 9 2 11 | 11 11 | 12 | 11
LIN-R10 - - - 10 | 10 10 19 18 1 8 2 9 9 9 10 9
CHEB 44 66 44 | 42 | 66 42 53 52 * * * * * * * *

Table 3: Constrained case (2)




