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Abstract. A quadratic programming problem with positive definite Hessian and bound constraints is solved, using
a Lagrange multiplier approach. The proposed method falls in the category of exterior point, active set techniques.
An iteration of our algorithm modifies both the minimization parameters in the primal space and the Lagrange
multipliers in the dual space. Comparative results of numerical experiments are also reported.

1 INTRODUCTION
Consider the Quadratic Programming problem:

min
x

1
2
xTBx+ xT d, subject to:ai ≤ xi ≤ bi,∀i ∈ I (1)

wherex, d ∈ RN andB a symmetric, positive definiteN ×N matrix andI = {1, 2, · · · , N}.
The problem of minimizing a convex quadratic function subject to bound constraints appears frequently in

applications. For instance, many Computational Physics and Engineering problems, are reduced to quadratic
programming problems. Portfolio management can also be formulated as quadratic programming problem[18]. In
the field of Artificial Intelligence, and especially in Support Vector Machines an efficient quadratic solver is crucial
for the training process[6, 7]. Finally many non linear optimization techniques are based on solving quadratic
subproblems[3].

So far two major strategies exist in the literature, both of which require feasible steps to be carried out. The first
one is the Active Set strategy[1, 2] which generates iterates on a face of the feasible box until either a minimizer
of the objective function on that face or a point on the boundary of that face is reached. Since the function values
are strictly decreasing and the iterates are feasible, finite convergence can be proved. The basic disadvantages
of the classical approach, especially in the large-scale case, is that constraints are added or removed one at a
time, requiring so a number of iterations proportional to the problem size. To overcome this, gradient projection
methods[4, 5] were proposed. In that framework the active set algorithm is allowed to add or remove many
constraints per iteration.

The other solution strategy consists in treating the inequality constraints using interior point algorithms [14,
13, 15]. In brief, an interior point algorithm consists of a series of parameterized barrier functions which are
minimized using Newton’s method. The major computational cost is due to the solution of the Newton system,
which provides a feasible search direction.

Our proposal to solve the problem of Eq. (1) is an exterior point active set algorithm, which does not guarantee
strictly descent iterations. In this paper we investigate a series of convex quadratic test problems. We recognize
that bound constraints are a very special case of linear inequalities, which may in general have the formAx ≥ b,
A being anmxn matrix andb is a vector∈ Rm. Our investigation is also motivated by the fact that in the convex
case, every problem subject to inequality constraints can be transformed to a bound constrained one, using duality.
The problem:

min
x∈Rn

1
2
xTBx+ xT d (2)

subject to:Ax ≥ b

is equivalent to the dual:

max
y∈Rm

−1
2
yT B̃y + yT d̃ (3)

subject to:y ≥ 0
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whereB̃ = AB−1AT a positive definite matrix and̃d = AB−1d + b. The dual problem in Eq. (3) is also a
quadratic problem subject to bounds. Lety∗ be the solution of the dual problem. We can then obtain the solution
to the initial problem Eq.( 2) as:

x∗ = B−1(AT y∗ − d) (4)

2 BOUND CONSTRAINED QP
Consider the problem in Eq. (1). We construct the associated Lagrangian:

L(x, λ, µ) =
1
2
xTBx+ xT d− λT (x− a)− µT (b− x) (5)

The KKT necessary conditions at the minimumx∗, λ∗, µ∗ require that:

Bx∗ + d− λ∗ + µ∗ = 0
λ∗i ≥ 0, µ∗i ≥ 0, ∀i ∈ I
λ∗i (x

∗
i − ai) = 0, ∀i ∈ I (6)

µ∗i (bi − x∗i ) = 0, ∀i ∈ I
x∗i ∈ [ai, bi], ∀i ∈ I

A solution to the above system (6), can be obtained through an active set strategy described in detail in Algorithm 1:

Algorithm 1 BOXCQP

Initially set: k = 0, λ(0) = µ(0) = 0 andx(0) = −B−1d.
If x(0) is feasible,Stop, the solution is:x∗ = x(0).
At iterationk, the quantitiesx(k), λ(k), µ(k) are available.

1. Define the sets:

L(k) = {i : x(k)
i < ai, or x(k)

i = ai and λ(k)
i ≥ 0}

U (k) = {i : x(k)
i > bi, or x(k)

i = bi and µ(k)
i ≥ 0}

S(k) = {i : ai < x
(k)
i < bi, or x(k)

i = ai and λ(k)
i < 0,

or x
(k)
i = bi and µ(k)

i < 0}

Note thatL(k) ∪ U (k) ∪ S(k) = I

2. Set:

x
(k+1)
i = ai, µ

(k+1)
i = 0, ∀i ∈ L(k)

x
(k+1)
i = bi, λ

(k+1)
i = 0, ∀i ∈ U (k)

λ
(k+1)
i = 0, µ(k+1)

i = 0, ∀i ∈ S(k)

3. Solve:

Bx(k+1) + d = λ(k+1) − µ(k+1)

for theN unknowns:

x
(k+1)
i , ∀i ∈ S(k)

µ
(k+1)
i , ∀i ∈ U (k)

λ
(k+1)
i , ∀i ∈ L(k)

4. Check if the new point is a solution and decide to either stop or iterate.
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If (x(k+1)
i ∈ [ai, bi] ∀i ∈ S(k) and µ(k+1)

i ≥ 0, ∀i ∈ U (k)

and λ(k+1)
i ≥ 0, ∀i ∈ L(k)) Then

Stop, the solution is:x∗ = x(k+1).
Else

setk ← k + 1 and iterate fromStep 1.
Endif

The solution of the linear system in step 3 above, needs further consideration. Let us rewrite the system in a
componentwise fashion. ∑

j∈I

Bijx
(k+1)
j + di = λ

(k+1)
i − µ(k+1)

i , ∀i ∈ I (7)

Since∀i ∈ S(k) we have thatλ(k+1)
i = µ

(k+1)
i = 0, we can calculatex(k+1)

i , ∀i ∈ S(k) by splitting the sum in
Eq. (7) and taking into account step 2 of the algorithm, i.e.:∑

j∈S(k)

Bijx
(k+1)
j = −

∑
j∈L(k)

Bijaj −
∑

j∈U(k)

Bijbj − di, ∀i ∈ S(k) (8)

The submatrixBij , with i, j ∈ S(k) is positive definite as can be readily verified, given that the full matrixB is.

The calculation ofλ(k+1)
i , ∀i ∈ L(k) and ofµ(k+1)

i , ∀i ∈ U (k) is straightforward and is given by:

λ
(k+1)
i =

∑
j∈I

Bijx
(k+1)
j + di, ∀i ∈ L(k) (9)

µ
(k+1)
i = −

∑
j∈I

Bijx
(k+1)
j − di, ∀i ∈ U (k) (10)

3 EXPERIMENTAL RESULTS
In order to explore the practical behaviour of the proposed algorithm, we have contacted four different types of
minimization tasks: random problems, the circus tent problem,the biharmonic equation problem, and the support
vector machine training problem.

The testing platform used was Matlab version 6.5, where our algorithm was implemented. The other quadratic
programming algorithms were:

MOSEK-QP: Mosek[8] is commercial product that among other algorithms provide a quadratic program-
ming code and has an easy to use Matlab interface.

QUADPROG: Quadprog is Matlab’ s quadratic programming solver.

MINQ : Minq[9] is an implementation of a quadratic programming algorithm subject to simple bounds.

QPOPT: Qpopt[10] is a commercial software included in TOMLAB[19] optimization environment.

QLD : Qld[12] is a free software included in TOMLAB optimization environment.

SQOPT: Sqopt[11] is a commercial software included in TOMLAB optimization environment.

From the algorithms tested, only QUADPROG and MINQ were written in Matlab, while all the others were
precompiled dll’s with a Matlab interface. For each method the total CPU time is measured. Due to the interpreter
nature of Matlab environment, a time comparison is not totally fair for our implementation, although it performed
better in the majority of the experiments.

In the subsections below a brief description of the problem is made and the computational results are reported.

3.1 Random problems
The first set of experiments includes randomly generated problems. We create random positive–definiteB matri-
ces, random boundsa andb and we choosed in a way so that the solution is outside the box. In Table 1, we report
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Dimension BOXCQP MOSEK QUADPROG MINQ QPOPT QLD SQOPT
100 0.036333 0.365000 0.286333 0.067667 0.020667 0.015667 0.015333
200 0.026333 0.411667 1.390667 0.390333 0.047000 0.046667 0.114333
300 0.052000 0.448000 2.255333 1.296667 0.213667 0.208333 0.406333
400 0.099000 0.651000 3.963333 2.729333 0.515667 0.547000 0.518667
500 0.161667 0.781000 6.109333 5.463333 1.031667 1.099000 1.354000
600 0.281667 1.197667 8.786333 9.359333 1.791667 2.041667 2.114667
700 0.364667 1.745000 12.078000 15.609333 2.781000 2.838667 2.630000
800 0.531333 2.390333 15.625333 22.437000 4.166667 9.354333 3.942667
900 0.651000 2.870000 20.500000 31.739667 5.854333 6.083333 4.510333
1000 0.843333 3.750000 25.041667 44.682667 8.036667 10.515667 6.068000
1100 1.130000 4.542000 30.640667 58.838667 10.562333 11.140333 6.849000
1200 1.390667 5.630000 37.646000 76.765333 13.135667 24.172000 9.062333
1300 1.719000 7.411000 42.849000 99.542000 16.182000 18.197667 9.391000
1400 2.318333 9.640333 63.895667 128.744333 19.833000 33.245000 12.083333
1500 2.781667 11.713667 77.765667 176.025667 23.739333 27.812667 13.656000

Table 1: CPU times (in secs): Random Tests

the average CPU times in seconds. The average is taken over ten runs for problems of the same dimension. The
generated matricesB, were constructed so as to have a condition number around103.

3.2 Circus Tent: An energy minimization application
The circus tent problem is taken from Matlab’s optimization demo as an example of large-scale quadratic program-
ming with simple bounds. The problem is to build acircus tentto cover a square lot. The tent is elastic and is
to be supported by five poles. The question is to find the shape of the tent at equilibrium, that corresponds to the
minimum of the energy.

As we can see in Figure 1, the problem has only lower bounds imposed by the five poles and the ground.

Figure 1: Circus tent problem

The surface formed by the elastic tent, is determined by solving the bound constrained optimization problem:

min
x
f(x) =

1
2
xTHx+ xT c (11)

subject to:l ≤ x

wheref(x) is the discrete approximant to the energy function andH is a 5-point finite difference Laplacian
over a square grid. The results for different grid sizes are shown in Table 2.

3.2 Biharmonic Equation: An application from mathematical physics
We consider the problem of describing small vertical deformations of an horizontal, elastic membrane clamped on
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Dimension BOXCQP MOSEK QUADPROG MINQ QPOPT QLD SQOPT
25 0.021000 0.661000 0.104333 0.025667 0.005333 0.000000 0.010667
100 0.010667 0.364667 0.135333 0.099000 0.010333 0.010000 0.015667
225 0.010333 0.401000 0.271000 0.328000 0.005333 0.041667 0.021000
400 0.026000 0.489333 0.380333 0.979000 0.052000 0.203000 -
625 0.036000 0.693000 0.666667 2.589000 0.125000 0.791667 -
900 0.047000 0.474000 1.119667 6.281667 0.359000 2.307333 -
1225 0.052000 0.578000 1.614667 12.494667 0.693000 5.573000 -

Table 2: CPU times (in secs): Circus Tent

a rectangular boundary, under the influence of a vertical force. The membrane is constrained to remain below an
obstacle. For an in depth discussion of this problem see[16].

The formulation of the problem is given by Eq.( 12).

min
u

1
2
uTQu+ uT f (12)

subject to:u ≤ ψ

Dimension BOXCQP MOSEK QUADPROG MINQ QPOPT QLD SQOPT
25 0.021000 0.250000 0.119333 0.010667 0.010333 0.005000 0.000000
100 0.062667 0.177000 0.208333 0.072667 0.005333 0.015667 0.005000
225 0.031000 0.229667 0.411667 0.171667 0.010333 0.088667 0.005333
400 0.052333 0.244667 0.984333 0.755333 0.057000 0.567333 0.031333
625 0.125333 0.411000 2.088667 2.682000 0.229333 1.932333 0.031000
900 0.213667 0.453000 4.786667 7.885000 0.370000 5.291667 0.047000
1225 0.375000 0.593667 8.036333 19.437333 0.463667 12.286000 0.047000

Table 3: CPU times (in secs): Biharmonic

3.4 Support Vector Classification
In this classification problem, the goal is to separate two classes using a hyperplanef(x) = wTx + b, which is
determined from available examples (D = {(x1, y1), (x2, y2), . . . (xl, yl)}, x ∈ Rn, y ∈ −1, 1). Furthermore
it is desirable to produce a classifier that will work well on unseen examples, i.e. it generalizes well. Consider
the example in Fig 2. There are many possible linear classifiers that can separate the data, but there is only one
that maximizes the distance between it and the nearest data point of each class. This classifier is termed the
optimal separating hyperplane and intuitively, one would expect that generalizes optimally. The formulation of the

Figure 2: Maximum distance classifier

maximum distance linear classifier is a convex quadratic problem with simple bounds on the variables, if we omit
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the constant termb of the hyperplane equation.1. The resulting problem has the form:

min
a

1
2
aTQa− aT e (13)

subject to:0 ≤ ai ≤ C

wheree ∈ Rl and withei = 1, Qij = yiyjK(xi, xj) andK(x, y) is the kernel function performing the non-linear
mapping into the feature space. The parametersa ∈ Rl are Lagrange multipliers of an original quadratic problem,
that define the separating hyperplane using the relation:

w∗Tx =
l∑

i=1

a∗i y
iK(xi, x) (14)

Hence the separating surface is given by:
f(x) = sgn(w∗Tx) (15)

Many employed kernelsK(x, y) contain an implicit bias term and thus omitting the constant termb does not
affect significantly the generalization of the resulting classifier. It is important for our implementation to make
this assumption because it simplifies the optimization problem. An explicit bias would add the equality constraint∑l

i=1 aiy
i = 0 to the problem in Eq. (13).

In our experiments we used the CLOUDS [17] data set, which is a two-dimensional data set with two classes.

We have constructed the problem in Eq. (13) using an RBF Kernel functionK(x, y) = exp(− ||x−y||2
2σ2 ), and setting

C = 100. The experiments conducted follow the procedure:

• Form the training set by extractingl examples from the dataset and let the rest examples (5000− l) form the
test set.

• Construct the matrixQ for the problem in Eq.( 13)

• Apply each solver, obtain the corresponding separating surface and test-set error.

In these experiments our algorithm did not perform as well. This was due to the large condition number of
matrixQ (cond(Q) ≥ 1012), that affects the linear solver. To circumvent this, we added in the main diagonal ofQ
a small positive term. This leads to a slightly different problem, which however is solved efficiently. All the other
algorithms solved the problem without modifyingQ, and reached identical solutions, slightly different from ours.

The results in Table 4 show that despite the modification ofQ, the separating surface2, is almost identical to
the surface constructed by the other techniques. This is depicted in Fig 3.

Dimension BOXCQP MOSEK QUADPROG MINQ
Time Error Time Error Time Error Time Error

200 0.235 13.5% 1.453 13.41% 2.234 13.41% 3.719 13.41%
500 2.156 11.2% 2.532 11.84% 48.781 11.84% 23.828 11.84 %
1000 2.234 10.6% 7.437 10.52% 503.000 10.52% 144.844 10.52%
2000 28.156 10.36% 81.546 10.36% >1000 10.36% > 1000 10.36%

Dimension QPOPT QLD SQOPT
Time Error Time Error Time Error

200 0.311 13.41% 0.0433 13.41% 0.0233 13.41%
500 1.333 11.84% 4.437 11.84% 3.723 11.84%
1000 5.532 10.52 % 10.781 10.52% 11.234 10.52%
2000 38.177 10.36% 30.655 10.36% 55.334 10.36%

Table 4: CPU times (in secs): SVM training

4 CONCLUSIONS
We have presented an infeasible active set method that solves a convex quadratic programming problem with
simple bounds. The algorithm uses the unconstrained minimum (Newton point), and projects it on the box defined

1Also known as explicit bias
2And hence the error in the test set
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by the bound constraints. The main computational task of our approach is the solution of a linear system, whose
dimension is equal to the number of free parameters at each iteration.

Extensive experimental testing revealed a connection between the iterations of our method and the condition
number of the Hessian. In problems where this number is very large (≈ 1012), a modification of the Hessian is
necessary to obtain a solution efficiently.

Box-shaped trust region methods for non-linear optimization, generate intermediate convex quadratic subprob-
lems that in most cases are treated approximately. Embedding our method in such a framework, will enhance its
performance by solving these problems exactly. We are currently investigating the performance of such schemes.
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(a) 200 training examples - BOXCQP (b) 200 training examples - Others

(c) 500 training examples - BOXCQP (d) 500 training examples - Others

(e) 1000 training examples - BOXCQP (f) 1000 training examples - Others

(g) 2000 training examples - BOXCQP (h) 2000 training examples - Others

Figure 3: SVM classification


