
Gradient–Controlled, Typical–Distance Clustering

for Global Optimization.

I. G. Tsoulos and I. E. Lagaris∗

Department of Computer Science, University of Ioannina

P.O.Box 1186, Ioannina 45110 - GREECE

Abstract

We present a stochastic global optimization method that employs a clustering
technique which is based on a typical distance and a gradient test. The method aims
to recover all the local minima inside a rectangular domain. A new stopping rule is
used. Comparative results on a set of test functions are reported.

Keywords: Stochastic Global optimization, Multistart, Stopping rules.

1 Introduction

The task of locating all the local minima of a continuous function inside a bounded
domain, is frequently required in several scientific as well as practical problems. Meth-
ods that seek for the global minimum only, are not appropriate in this case. On the
other hand, methods that retrieve all the local minima belong to the class of global
optimization methods. In mathematical terms the problem may be expressed as:

Find all x∗

i ∈ S ⊂ Rn that satisfy:

x∗

i = arg min
x∈Si

f(x), Si = S ∩ {x, |x− x∗

i | < ε} (1)

S is considered to be a bounded domain of finite measure. An obvious method that
suggests itself is the so called Multistart. The main idea is to sample points at random
from S and to initiate from each one a local search to retrieve a minimum. The method
is inefficient since it rediscovers the same minima over and over. If by X∗ we denote
the (initially empty) set of the distinct local minima found so far, Multistart proceeds
as follows:

Step–0: Set i = 0 and X∗ = ∅

Step–1: Sample x at random from S

∗Corresponding author e-mail: lagaris@cs.uoi.gr

1

Step–2: Apply a local search procedure L, starting from x and concluding
at a local minimum x∗

Step–3: Check if a new minimum is recovered and if so add it to X∗, i.e.:
If x∗ 3 X∗ then

increment: i← i + 1
set: x∗

i = x∗

add: X∗ ← X∗ ∪ {x∗

i }
Endif

Step–4: If a stopping rule applies STOP, otherwise go to Step-1

Good stopping rules are important and should combine reliability and economy. A
reliable rule is one that stops only when all minima have been collected with certainty.
An economical rule is one that does not spend a huge number of local searches to detect
that all minima have been found. The “region of attraction” or the “basin” of a
local minimum associated with a local search procedure L is defined as:

Ai ≡ {x ∈ S, L(x) = x∗

i } (2)

where L(x) is the minimizer returned when the local search procedure L is started at
point x. If S contains a total of w local minima, from the definition above follows:

∪w
i=1Ai = S (3)

Let m(A) indicate the Lebesgue measure of A ⊆ Rn. Since by definition the regions of
attraction do not overlap, i.e. Ai ∩ Aj = ∅ for i 6= j, then from eq. (3) one obtains:

m(S) =
w

∑

i=1

m(Ai) (4)

If a point in S is sampled from a uniform distribution, the apriori probability pi that

it is contained in Ai is given by pi = m(Ai)
m(S) . If K points are sampled from S, the

apriori probability that at least one point is contained in Ai is given by:

1− (1−
m(Ai)

m(S)
)K = 1− (1− pi)

K (5)

From the above we infer that for large enough K, this probability tends to one, i.e.
it becomes “asymptotically certain” that at least one sampled point will be found to
belong to Ai. This holds ∀Ai, with m(Ai) 6= 0.
The main disadvantage of Multistart is that the local search may be initiated from
points belonging to the same basin of attraction, leading to the discovery of the same
minimizer over and over, wasting so computational resources. A way of curing that,
would be to design algorithms capable of recognizing if a point belongs to the basin of
an already found minimizer and hence avoid starting a local search from there. This
however can be achieved only within a probabilistic framework, since otherwise it
would mean the apriori knowledge of the different regions of attraction. The clustering
approach aims to form clusters of points that belong to the same region of attraction
and then start a local search from only one point of each cluster. To form these

2

clusters one starts from a uniform sample and then applies either a reduction (Becker
and Lago (1970)), in which case a certain fraction of points with the highest function
values is removed, or a concentration (Törn (1978)), where a few number of steepest
descent steps are applied to every point of the sample, aiming to increase the sample
density around the minima. Such methods were devised in Boender et. al. (1982)
and Kan and Timmer I (1987) and paved the way toward the more efficient methods
of Multilevel-Single Linkage (MLSL) (Kan and Timmer II (1987)) and Topographical
MLSL (Törn and Viitanen (1994) and Ali and Storey (1994)).
The new algorithm, described in this article, attempts to find all local minima inside
a bounded set, that are potentially global. These local minima are obtained by a
local search procedure starting from suitably chosen points in a properly maintained
sample. The algorithm tries to identify the regions of attraction as economically as
possible and employs a clustering procedure without the explicit formation of the
clusters. We adopt a modified topographical technique that is based on a gradient
test rather than on comparing function values. We also calculate a typical distance
that depends on the objective function topology in order to set a realistic scale.

2 Gradient–Controlled, Typical–Distance Cluster-

ing (GTC)

We proceed by describing the two key elements that control the clustering, i.e. the
typical distance and the gradient test.

2.1 The Typical Distance

The typical distance is calculated by:

rt =
1

M

M
∑

i=1

|xi − L(xi)| (6)

where xi are starting–points for the local search L, and M is the number of the
performed local searches. This distance, is problem dependent (unlike the critical
distance of Kan (Kan and Timmer I (1987) and Kan and Timmer II (1987))) and
yields an estimate for the mean basin–radius. To see this more clearly, note that if w
is the number of the distinct minima found so far and if Ml is the number of times
the local search discovered the minimizer x∗

l , a basin radius may be defined as:

Rl ≡
1

Ml

Ml
∑

j=1

|x
(j)
l − x∗

l | (7)

where {x
(j)
l , j = 1, · · · , Ml} = {xi, i = 1, · · · , M} ∩ Al, i.e. L(x

(j)
l) = x∗

l .
Since M =

∑w

l=1 Ml, a mean radius over the basins is given by:

< R >≡
w

∑

l=1

Ml

M
Rl =

1

M

w
∑

l=1

Ml
∑

j=1

|x
(j)
l − x∗

l | (8)

Comparing eqs. (6),(7) and (8), it follows that rt = < R >.

3

2.2 The Gradient Test

The gradient test originates from the observation that around a local minimum x∗,
where a cluster develops, the objective function can be approximated by:

f(x) ≈ f(x∗) +
1

2
(x− x∗)T B∗(x− x∗) (9)

where B∗ is the matrix of second derivatives (Hessian) at the minimum. Taking the
gradient of the above we obtain: ∇f(x) ≈ B∗(x − x∗). Similarly for any other point
y in the neighborhood of x∗, ∇f(y) ≈ B∗(y − x∗) and hence by subtracting and
multiplying from the left by (x− y)T we obtain:

(x− y)T [∇f(x)−∇f(y)] ≈ (x− y)T B∗(x− y) > 0 (10)

since B∗ is positive definite.

2.3 The Starting–Point Set

At the start of each iteration, points are sampled from S, and they are all considered
as starting–point candidates. A rejection mechanism is adopted in order to limit
the number of starting points. A point x, ceases to be a candidate, when there
exists a neighbor point p, satisfying |x − p| < rt and (x − p)T (∇f(x) − ∇f(p)) > 0
and in addition there exists a minimizer x∗ with max{|x− x∗|, |p− x∗|} ≤ Rx, and
(x− x∗)T∇f(x) > 0 and (p− x∗)T∇f(p) > 0, where

Rx = max rt (11)

is the maximum value obtained for rt in the course of the algorithm. Note that mutual
exclusion is not allowed. Namely, if a point x is excluded from the starting point set,
due to the presence of point p, then point p cannot be excluded due to the presence
of point x.

2.4 Algorithmic presentation

The algorithm performs iterations. At iteration k let D(k) be the working set of

points, X∗(k) the set of local minima retrieved so far, and r
(k)
t the typical distance.

Initially set k = 0, r
(0)
t = 0, Rx = 0, D(0) = X∗(0) = ∅. The kth iteration is described

below.

2.4.1 GTC Algorithm

1. Sample N points xi, i = 1, · · · , N from S.

2. Set X∗(k+1) = X∗(k), and D(k+1) = {x1, x2, · · · , xN} ∪X∗(k+1)

3. ∀ i = 1, · · · , N
Find the set V = {pi1, · · · , piq} ⊂ D(k+1) of the q nearest neighbors of xi,
that have not been excluded from being starting point candidates due to xi’s
presence.

4

If ∃ pij ∈ V and x∗ ∈ X∗(k+1) such that:

|xi − pij | < r
(k)
t and (xi − pij)

T (∇f(xi)−∇f(pij)) > 0 and
|xi − x∗| < Rx and (xi − x∗)T∇f(xi) > 0 and
|pij − x∗| < Rx and (pij − x∗)T∇f(pij) > 0

Then

xi is not a starting–point.
Else

xi is a starting–point. Start a local search y = L(xi).
Compute the typical distance using eq. (6) and Rx using eq. (11).
If y is a new minimum, then

Update: X∗(k+1) ← X∗(k+1) ∪ {y}
D(k+1) ← D(k+1) ∪ {y}

Endif

Endif

4. Increment k ← k + 1

3 The Double-Box Stopping Rule

The termination rule introduced is tightly coupled to the sampling scheme. A larger
box S2 is constructed that contains S and such that m(S2) = 2 × m(S). At every
iteration the N points in S are collected, by sampling uniformly from S2 and rejecting
points not contained in S. Let Mk be the number of points sampled from S2 at the kth

iteration, so that N points fall in S. Then the quantity: δk ≡
N

Mk

has an expectation

value < δ >= 1
k

∑k

i=1 δi that asymptotically, i.e. for large k, tends to 1
2 . The

variance given by σ2(δ) =< δ2 > − < δ >2 tends to zero as k → ∞. The deviation
σ(δ) is a measure of the uncovered fraction of the search space. We permit iterating
without finding new minima until σ2 < 1

2σ2
last, where σlast is the standard deviation

at the iteration during which the most recent minimum was found. With the above
definitions the algorithm can be stated as:

1. Initially set α = 0

2. Sample N points as described above.

3. Calculate σ2(δ)

4. Apply an iteration of the GTC algorithm, neglecting its first step and using
instead the N points already sampled.

5. If one or more new minima are found, set: α = σ2/2 and repeat from step 2.

6. STOP if σ2 < α, otherwise repeat from step 2.

4 Numerical experiments

Several experiments were performed with a host of test functions. Each experiment
was repeated ten times, each time with a different seed for the random number gen-
erator. The reported results are averages over the ten runs. We compare our method
to Multistart, MLSL (Kan and Timmer II (1987)) and TMLSL (Ali and Storey

5

(1994)), using in all methods the stopping rule employed by Kan in Kan and Timmer

II (1987). Namely, the algorithm stops if
w(M − 1)

M − w − 2
< w +

1

2
, M being the total

number of sample points and w the number of retrieved minimizers. Note that the
local procedure used, is an implementation of BFGS with a line search and analyti-
cally calculated gradient. We also compare to Multistart and to TMLSL using in all
methods the introduced in this article “Double Box Stopping Rule” (DBSR). In the
TMLSL and GTC experiments the number of nearest neighbors considered was set
equal to one.
We report results in tables. We list the objective function name, the number of ex-
isting minima, the number of retrieved minima, the number of function evaluations,
the number of gradient evaluations and the CPU-time in seconds, under the headings
FUNCTION, NOEM, NORM, NOFC, NOGC, and TIME correspondingly.

4.1 Comparing the termination rules

Comparison of Tables I and II, shows the superiority of the DBSR. The CPU time
in the case of Multistart, scales linearly with the number of function and gradient
evaluations. This however is not true with MLSL, since as the sample size increases,
the task of finding the points within the range of the critical radius, becomes heavier
and heavier. In the case of TMLSL and GTC, where the sample size increases only
at the pace of the number of minima, the collection of the nearest neighbors does
not appear to be of major concern. Hence for problems requiring many iterations,
generating thus an oversized sample, MLSL is not suggested. For this reason we have
not performed further experiments with MLSL using our new DBSR. The advantage
of our new stopping rule in TMLSL and GTC is clear as may be readily deduced
comparing Tables IV and V (TMLSL) and Tables VI and VII (GTC).

4.2 Comparing GTC to Multistart

Multistart offers a basis for comparison. It is simple to code and has been extensively
used. There is an overhead in the performance of GTC, that is due to the process
of nearest neighbor searching. This is infered from the quoted CPU-times that are
in disharmony with the numbers of functional/gradient evaluations. For instance in
Tables I and VI for the Shubert function, Multistart performs 7.7×106 functional and
gradient evaluations corresponding to a CPU-time of only 112 seconds, while GTC
performs only 187846 functional and 501505 gradient calls requiring 334 seconds. The
extra time needed by GTC (and the same holds true for TMLSL) is for the nearest
neighbor search. For time consuming objective functions this overhead will hardly be
noticed. The important feature to pay attention at, is clearly the number of calls to
the objective function and its gradient. By inspection of the corresponding tables,
GTC is by far superior to Multistart.

4.3 Comparing GTC to TMLSL

The comparison of GTC to TMLSL is of main interest, since TMLSL is one of the
most successful stochastic global optimization methods. We have used variations of

6

TMLSL to solve problems in molecular mechanics and have developed code contained
in the PANMIN package (Theos et al (2004)). Using Kan’s original termination
criterion, TMLSL stops prematurely in most cases (Table IV, Shubert, Rastrigin,

Gkls, Griewank, Hansen, Camel, Shekel). Table VI shows that GTC also stops early
in the case of Gkls, Camel and Shekel but collects more minimizers than TMLSL.
Finally when the new DBSR is used, comparing Tables V and VII, we see that GTC
misses only a few minima in the case of Gkls(3, 100) and Gkls(4, 100). (TMLSL
misses a few more). The efficiency of each method depends on the number of function
and gradient evaluations. GTC is significantly more efficient. On the average TMLSL
needs twice as many functional/gradient evaluations and in some cases even four times
as many.

TABLE I. Multistart, Kan’s Stopping rule
FUNCTION NOEM NORM NOFC NOGC TIME

Shubert 400 400 7713921 7713921 111.77
Rastrigin 49 49 116122 116122 0.94

GKLS(3,30) 30 15 5085 5085 0.25
GKLS(3,100) 100 56 82622 82622 10.09
GKLS(4,100) 100 25 26083 26083 4.67

Guilin(20,100) 100 100 1741346 1741346 287.54
Griewank-2 529 529 18941873 18941873 263.90

Hansen 527 527 13661461 13661461 227.74
Camel 6 6 2830 2830 0.02

Shekel-10 10 9 10701 10701 0.94

TABLE II. Multistart, Double Box Stopping rule
FUNCTION NOEM NORM NOFC NOGC TIME

Shubert 400 400 615904 615904 8.94
Rastrigin 49 49 18661 18661 0.15

GKLS(3,30) 30 28 195546 195546 9.49
GKLS(3,100) 100 97 7467472 7467472 915.35
GKLS(4,100) 100 97 9890042 9890042 1775.5

Guilin(20,100) 100 100 1617099 1617099 267.09
Griewank-2 529 529 1832773 1832773 26.15

Hansen 527 527 543990 543990 9.07
Camel 6 6 4098 4098 0.03

Shekel-10 10 10 35832 35832 3.13

7

TABLE III. MLSL, Kan’s Stopping rule
FUNCTION NOEM NORM NOFC NOGC TIME

Shubert 400 159 128344 11634 248.30
Rastrigin 49 6 637 237 0.01

GKLS(3,30) 30 6 876 276 0.03
GKLS(3,100) 100 6 779 179 0.04
GKLS(4,100) 100 3 871 71 0.05

Guilin(20,100) 100 12 5776 1776 1.40
Griewank-2 529 4 506 106 0.01

Hansen 527 20 1636 560 0.04
Camel 6 3 499 99 0.01

Shekel-10 10 6 947 207 0.04

TABLE IV. TMLSL, Kan’s Stopping rule
FUNCTION NOEM NORM NOFC NOGC TIME

Shubert 400 165 154926 26306 125.24
Rastrigin 49 20 2597 969 0.20

GKLS(3,30) 30 9 821 521 0.05
GKLS(3,100) 100 12 1490 1004 0.19
GKLS(4,100) 100 3 535 135 0.08

Guilin(20,100) 100 99 400226 380386 89.15
Griewank-2 529 215 1470660 1246240 358.07

Hansen 527 423 528331 82885 602.15
Camel 6 4 415 215 0.01

Shekel-10 10 6 646 276 0.07

TABLE V. TMLSL, Double Box Stopping rule
FUNCTION NOEM NORM NOFC NOGC TIME

Shubert 400 400 360416 61132 287.66
Rastrigin 49 49 27850 15056 1.90

GKLS(3,30) 30 29 125141 78494 11.26
GKLS(3,100) 100 94 16905021 9324132 3749.7
GKLS(4,100) 100 94 9719338 5156518 2635.5

Guilin(20,100) 100 100 1676572 1616692 354.28
Griewank-2 529 528 2006690 1693136 491.53

Hansen 527 527 808274 127356 921.24
Camel 6 6 3641 2881 0.07

Shekel-10 10 10 44162 39044 4.03

8

TABLE VI. GTC, Kan’s Stopping rule
FUNCTION NOEM NORM NOFC NOGC TIME

Shubert 400 400 187846 501505 334.08
Rastrigin 49 49 20657 24591 0.92

GKLS(3,30) 30 9 537 817 0.07
GKLS(3,100) 100 13 1103 1555 0.31
GKLS(4,100) 100 8 466 842 0.30

Guilin(20,100) 100 100 366280 382841 81.82
Griewank-2 529 529 4265130 4711645 806.58

Hansen 527 527 1223284 1731469 819.77
Camel 6 5 248 443 0.01

Shekel-10 10 9 4748 5046 0.52

TABLE VII. GTC, Double Box Stopping rule
FUNCTION NOEM NORM NOFC NOGC TIME

Shubert 400 400 31674 59044 28.98
Rastrigin 49 49 4449 5090 0.16

GKLS(3,30) 30 30 80275 134247 16.15
GKLS(3,100) 100 97 4160897 5663373 1482.3
GKLS(4,100) 100 96 2564480 3878680 1437.7

Guilin(20,100) 100 100 792052 827892 177.68
Griewank-2 529 529 1032445 1140113 191.41

Hansen 527 527 82572 109020 42.28
Camel 6 6 844 1705 0.05

Shekel-10 10 10 20226 21597 2.25

9

4.4 Test Functions

We list the test functions used in our experiments, the associated search domains and
the number of the existing local minima.

1. Rastrigin.
f(x) = x2

1 + x2
2 − cos(18x1)− cos(18x2)

x ∈ [−1, 1]2 with 49 local minima.

2. Shubert.

f(x) = −
2

∑

i=1

5
∑

j=1

j{sin[(j + 1)xi] + 1}

x ∈ [−10, 10]2 with 400 local minima.

3. GKLS.
f(x) = Gkls(x, n, w), is a function with w local minima, described in Gaviano
et al (2003).
x ∈ [−1, 1]n, n ∈ [2, 100]

4. Guilin Hills.

f(x) = 3 +

n
∑

i=1

ci

xi + 9

xi + 10
sin

(

π

1− xi + 1/(2ki)

)

x ∈ [0, 1]n, ci > 0, and ki are positive integers. This function has
∏n

i=1 ki min-
ima. In our experiments we chose n = 20 and arranged ki so that the number
of minima is 100.

5. Griewank # 2.

f(x) = 1 +
1

200

2
∑

i=1

x2
i −

2
∏

i=1

cos(xi)
√

(i)

x ∈ [−100, 100]2 with 529 minima.

6. Hansen.

f(x) =

5
∑

i=1

i cos[(i− 1)x1 + i]

5
∑

j=1

j cos[(j + 1)x2 + j]

x ∈ [−10, 10]2 with 527 minima.

7. Camel.

f(x) = 4x2
1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2

x ∈ [−5, 5]2 with 6 minima.

8. Shekel-10.

f(x) = −
m

∑

i=1

(

1

(x−Ai)(x −Ai)T + ci

)

10

where: A =

































4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6

































c =

































0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5

































x ∈ [0, 10]4 with 10 minima.

5 Conclusions

We presented “GTC”, a new stochastic Global Optimization method, that takes in
account the topology of the objective function to effectively decide when to apply
a local search. The mean basin radius, sets a realistic scale and this seems to be
important. In addition a new stopping rule is introduced based on a space-covering
rational, which works very well in practice. The comparison with well established
Multistart based methods, favors GTC and hence encourages its application to hard
practical problems.

11

References

Ali, M.M. and Storey, C.(1994), Topographical Multilevel Single Linkage, Journal of
Global Optimization 5, 349-358.

Becker, R.W. and Lago, G.V.(1970), A global optimization algorithm, in Proceedings
of the 8th Allerton Conference on Circuits and Systems Theory.

Boender, C.G.E. and Rinnooy Kan, A.H.G and Timmer, G.T. and Stougie, L.(1982) ,
A stochastic method for global optimization, Mathematical Programming, 22, 125-
140.

Gaviano, M. and Ksasov, D.E. and Lera, D. and Sergeyev, Y.D.(2003), Software for

generation of classes of test functions with known local and global minima for global

optimization, ACM Trans. Math. Softw. 29, 469-480

Rinnooy Kan, A.H.G and Timmer, G.T.(1987), Stochastic global optimization meth-

ods. Part I: Clustering methods, Mathematical Programming, 39, 27-56.

Rinnooy Kan, A.H.G and Timmer, G.T.(1987), Stochastic global optimization meth-

ods. Part II: Multi level methods, Mathematical Programming, 39, 57-78.

Theos, F.V and Lagaris, I.E and Papageorgiou, D.G.(2004), PANMIN: sequential and

parallel global optimization procedures with a variety of options for the local search

strategy, Comput. Phys. Commun. 159, 63-69

Törn, A.A.(1978) A search clustering approach to global optimization, in Dixon,
L.C.W and Szegö, G.P. (eds.), Towards Global Optimization 2, North-Holland,
Amsterdam.

Törn,A. and Viitanen,S (1994) Topographical Global Optimization Using Pre–Sampled

Points, Journal of Global Optimization 5, 267-276.

12

