
Concurrent nomadic and bundle search: A class
of parallel algorithms for local optimization

C. Voglis12, D. G. Papageorgiou3, and I. E. Lagaris2

1 Nodalpoint Systems LTD
Athens, Greece

2 Department of Computer Science
University of Ioannina, P.O. BOX 1186

GR–45110, Ioannina, Greece
3 Department of Materials Science and Engineering

University of Ioannina, P.O. BOX 1186
GR–45110, Ioannina, Greece

Abstract. We present a family of algorithms for local optimization that
exploit the parallel architectures of contemporary computing systems
to accomplish significant performance enhancements. This capability is
important for demanding real time applications, as well as, for prob-
lems with time–consuming objective functions. The proposed concurrent
schemes namely nomadic and bundle search are based upon well es-
tablished techniques such as quasi-Newton updates and line searches.
The parallelization strategy consists of (a) distributed computation of
an approximation to the Hessian matrix and (b) parallel deployment of
line searches on different directions (bundles) and from different start-
ing points (nomads). Preliminary results showed that the new parallel
algorithms can solve problems in less iterations than their serial rivals.

Keywords: parallel local search, nomadic search, concurrent search,
nested parallelism, line search, quasi-Newton

1 Introduction

Optimization has broad practical applications in engineering, science and
management. Many of these may either have expensive function evalu-
ations or require real–time response. For example we refer to aircraft
design, molecular modeling, space trajectory planning, optimal sea rout-
ing etc. High performance parallel computing can provide powerful tools
for solving optimization problems.
Nowadays the computing power of a single core CPU has reached a
premium that is improving at a very slow pace. The direction for perfor-
mance enhancement has turned from pushing the CPU clock higher up,
towards creating multi-core parallel architecture systems. However these
hardware developments alone cannot change the picture overnight. Suit-
able software must be developed based on algorithms that can exploit
the parallel features of the hardware in order to reach the desired per-
formance levels. In critical real time applications, an untimely (delayed)

result is at best useless if not costly or catastrophic. In addition, large
scale tough problems with expensive objectives, left aside or abandoned
as hopeless goals due to the extremely long computational times they
required, are now being reconsidered in the light of parallel processing.

Parallelizing a sequential algorithm usually results in minor performance
gains and often the new algorithm is not equivalent to the original. How-
ever, an algorithm designed afresh aiming to exploit parallelism, is natu-
rally expected to attain high levels of performance. Monte–Carlo meth-
ods are inherently parallel and their implementation on parallel systems
is quite straightforward. Global optimization methods are also paralleliz-
able rather easily due to the nature of the problem itself. The case of
local optimization is quite hard and indeed very few inherently parallel
methods exist. Most of them are advertised as parallel by adopting a
parallel linear system solver. Algorithms of that kind are not genuinely
parallel optimization algorithms, since they treat in parallel only the
bookkeeping operations and not the calls to the objective function. The
work of Chen and Han [1], describes a method called “Parallel Quasi-
Newton”, which handles a special case where the objective function is
partially separable and hence updating conjugate subspaces is effective
for large scale sparse optimization problems. In the article of Chen, Fel
and Zheng [2], a “Parallel Quasi-Newton algorithm” is presented that
divides the processors in two groups that operate asynchronously and
avoids updating the Hessian at every iteration. However the gain, if any,
in the case of time consuming objectives is minimal, since the main cost
is not in updating an n×n matrix. Byrd, Schnabel and Shultz [3], discuss
a parallelization scheme for the BFGS method based on estimating the
gradient and part of the Hessian by finite differencing (which lends it
self to extensive parallel computation) and in addition on parallel linear
algebra solvers. A similar philosophy is followed for the Newton method,
in the work by Conforti and Musmanno [4]. Earlier in [5], Laarhoven
presented a method that exploits parallel calls to estimate via updating,
(and not via finite differencing) the inverse Hessian matrix. His work is
based upon a 1973 NASA–report by Straeter [6], that indeed capitalizes
on the capabilities offered by parallel processing systems. Phua et al.
[7], describe a method where line searches are applied in parallel to sev-
eral descent directions produced via different Hessian updates. Among
the various schemes the SR1, BFGS and the Biggs [8] updates are being
considered. An interesting review appeared in 1995 by Schnabel [9], com-
mending on the prospects of parallel non-linear optimization in a broader
framework where also the field of global optimization was considered.

In the present article we present optimization algorithms suitable for ex-
ecution on parallel systems. Our main focus is to accelerate the solution
process without much concern for the amount of utilized resources such
as the number of processors/cores, memory size, disc space, communi-
cation switches etc. One line we pursue is based on a population of M
neighbouring points xi which are used to obtain, via SR1 updating, ap-
proximations to the corresponding M Hessians. Next, from each of these
M points, a line search is started in the direction determined by:

hi = −B−1
i gi ≡ −Higi, ∀i = 1, 2, . . . ,M

Bi, Hi and gi denote a modified Hessian, its inverse and the gradient at
the point xi correspondingly. From the new points that emerged after
the line–searches, we pick the one with the lowest function value and
repeat the process anew; i.e. we pick M − 1 additional points in its
neighbourhood, estimate the corresponding (M) Hessian matrices and
so on so forth, until a termination criterion prevails.
A second approach comes from noticing that trust region methods solve
a modified Hessian problem (B + aI)h = −g, where a is a parameter
determined by the constraint |h(a)| ≤ ρ, ρ being a proper trust radius
controlled externally according to the quality of the quadratic local fit
to the objective function.
From the current point we calculate M directions hi, by picking M values
ai, for the parameter a inside a proper range. In the next step, a line
search is started along each direction hi. From the resulting new points,
the best one is selected as the current point. This process is repeated
until a convergence criterion is satisfied.
The detailed procedures are described in section (2). Benchmarking ex-
periments have been performed and the results are presented in section
(3). Conclusions and directions for further research are contained in sec-
tion (4).

2 Algorithmic presentation

In this section we describe in detail the proposed algorithmic schemes. We
start with the nomadic search and then we analyse the bundle search. We
conclude the section with the presentation of a nested combined scheme.

2.1 Concurrent nomadic search

Concurrent nomadic search’s main iteration step consists of four basic
operations:
– Definition of a nomadic group, i.e. a set of M points x1, x2, · · · , xM .
– Estimation of a positive definite approximation to the corresponding

Hessians Bi ≈ ∇2f(xi), i = 1, . . . ,M .
– Solution of the linear systems: Bihi = −∇f(xi), to obtain search

directions hi, i = 1, . . . ,M .
– Application of M line search procedures to compute the new points

as: xi + αihi, i = 1, . . . ,M .
The algorithm starts by creating a set of M points x1, x2, · · · , xM rel-
atively close to each other and randomly chosen in the vicinity of x1,
which is considered to be the starting point. Each point is assigned a
Hessian matrix Bi, i = 1, . . . ,M which is estimated via SR1 updates
from the rest M−1 points. The SR1 update formula shown in Eq. (1) has
been already used for estimating a Hessian from neighboring points [10,
11].

B′i = Bi +
(y −Bis) (y −Bis)

>

(y −Bis)
> s

(1)

s = xi − xj , y = ∇f(xi)−∇f(xj)

Equation (1) is applied for every point xi using information commu-
nicated by the rest M − 1 points. This procedure can be performed
concurrently at the extra communication cost of broadcasting location
(xi) and gradient (∇f(xi)) information. Since the SR1 update does not
maintain positive definiteness, we modify each Hessian matrix using a
variant of Choleski decomposition. The Hessian is first decomposed into
Choleski LDLT factors and if the diagonal matrix D contains negative
elements, it is modified so as to enforce positive definiteness. The search
direction hi, is determined by replacing the estimated Hessian Bi, with a
convex combination B′i ≡ (1− µi)Bi + µiI, with µi ∈ [0, 1], that creates
directions that are Newton–dominant for low values of µi and gradient–
dominant for high values of µi. Note that µi is calculated so as to favour
a Newton–dominant direction for points with a relatively low objective
value, and a gradient–dominant direction for points with a relatively high
objective value, as indicated by relation (2).

µi =
f(xi)− Fs

Fb − Fs
, ∀i = 1, 2, · · · ,M (2)

where Fs = min f(xi) and Fb = max f(xi). The algorithm then performs
concurrently M line searches along the hi directions and computes M
new points xi + λihi, where λi is the step calculated by the line search
procedure. From that point onwards, concurrent nomadic search can ei-
ther keep these new points and repeat the procedure or maintain the
best point and resample M − 1 points anew (periodic reset).
In Figure (1) we provide a two dimensional illustration of the basic steps
and in Algorithm (1) we lay out a detailed description. We consider that
the function and gradient evaluations as well as the line searches are the
time consuming parts of the algorithm. If M computational resources
are available the concurrent execution of the nomadic search can be
performed in two steps: (i) computing the function and its gradient and
(ii) performing the line search. The line search procedure contains a small
(bounded) number of successive function and gradient evaluations.
Nomadic search differs from a Newton method that estimates the Hes-
sian with SR1 updates, in that not only one, but M Hessians are being
estimated and M line–search procedures are applied. Since the extra ef-
fort is undertaken in parallel, and assuming the availability of M cores,
there is no time surcharge. Note also that the Hessians are further trans-
formed via the convex combination with the identity matrix, so that the
resulting search directions are properly biased towards the gradient or
the Newton direction, as dictated by the respective local values of the
objective function. Another important feature of the proposed algorithm
is that it does not require O(n) points for approximating the Hessian,in
contradistinction to Straeter’s approach [6] or to numerical differentia-
tion of the gradient.

2.2 Bundle search algorithm

Bundle search maintains a single point and a set of N descent directions
(the bundle) originating from it, along each of which a line–search is

1

3

2

4

(a) Communicating for SR1 up-
dates

1

3

2

4

1
2

3

4

(b) M line searches in parallel

Fig. 1. Nomadic search algorithm 2-D illustration

Algorithm 1: Nomadic search algorithm
Input: Objective function, f : X ⊂ Rn → R; number of points: M; , small radius: R, a

small number ε > 0
Output: Best detected solution: x∗, f

(
x∗
)
.

1 Select at random M − 1 points, x2, x3, · · · , xM , such that
|x1 − xj | ≤ R, ∀j = 2, · · · ,M.

2 Calculate fi = f(xi), gi = ∇f(xi) ∀i = 1, 2, · · · ,M (in parallel)

3 if termination then
x∗ = x1 f

(
x∗
)
= f1

return
end

4 for i = 1, 2, · · · ,M do
Use SR1 updates from all other points xj with j 6= i, to obtain an approximate

Hessian Bi ≈ ∇
2f(xi).

Decompose (Choleski) Bi = LiDiL
T
i , and modify Di so as to render Bi positive

definite.
end

5 Calculate Fs = min
i
{fi} and Fb = max

i
{fi}

6 Calculate µi = (1 − ε)
fi − Fs

Fb − Fs
, ∀i = 1, 2, · · · ,M (in parallel)

7 Solve
[
(1 − µi)Bi + µiI

]
hi = −gi, ∀i = 1, 2, · · · ,M (in parallel)

8 Apply a line–search ∀i = 1, 2, · · · ,M as: (in parallel)

λ∗i = arg min
λ

f(xi + λhi)

Set fi = f(xi + λ∗i hi) (already calculated during the line–search).

9 Set: xi ← xi + λ∗i hi, ∀i = 1, 2, · · · ,M (in parallel)

10 Find the index k for which fk = min
i
{fi}, ∀i = 1, 2, · · · ,M

11 Swap x1 and xk

12 if periodic reset then
Repeat from Step 1

else
Repeat from Step 2

end

to be concurrently applied. The algorithm begins with an estimation of
the Hessian matrix, using the same technique as in the case of Nomadic
search. The N descent directions are calculated by solving in parallel, N
linear systems of the form:

[(1− µi)B + µiI]hi = −g, ∀i = 1, 2, . . . , N

where the quantities µi are appropriately chosen in [0, 1] The bundle con-
tains directions that are biased towards the steepest descent for large µi

and towards the Newton direction for small µi. The rationale behind this
choice is to exploit the steepest descent if the current point is far from
the minimum, and the Newton direction if it is close to it. In Figure 2
we illustrate on the left side, information communication for Hessian
approximation, and on the right side the extend of the bundle. In Fig-
ure 2(b) direction h1 corresponds to the Newton (−B−1g) while hN to

the steepest descent (−g) direction. In two dimensions the bundle resem-
bles a uniform fan of descent directions between −g and −B−1g. In the
case of problems of higher dimensionality, the directions of the bundle
are not coplanar. After having applied the line searches, the bundle algo-
rithm keeps the point x′ = x+λJhJ with the lowest function value. The
next iteration involves random sampling of M−1 points around the kept
one and estimation of the new Hessian matrix via M − 1 SR1 updates.
A complete description of the bundle search is presented in Algorithm 2.

Similar to the nomadic search, bundle search performs two time con-
suming tasks. Function and gradient calculation for the SR1 updating of
the Hessian, and the line searches. Assuming again that we do have N
processing units available, a single iteration of the bundle search costs
as much as a single function plus gradient evaluation and a line search.
The communication costs are reduced in comparison to nomadic search,
since in this scheme we have to update only one Hessian matrix.

1

3

2

4

(a) Communicating for single
SR1 update

h1

hM

(b) Following M directions in
parallel

Fig. 2. Bundle search 2-D example

Algorithm 2: Bundle search algorithm
Input: Objective function, f : X ⊂ Rn → R; number of directions: N; number of points:

M; small radius: R, a small number ε > 0
Output: Best detected solution: x∗, f

(
x∗
)
.

1 if termination then
x∗ = x f

(
x∗
)
= f

return
end

2 Decompose (Choleski) B = LDLT , and modify D so as to render B positive definite.

3 Solve
[
(1 − µi)B + µiI

]
hi = −g, ∀i = 1, 2, · · · , N (in parallel)

where µi ∈ [0, 1], ∀i = 1, · · · , N.

4 Apply a line–search ∀i = 1, 2, · · · , N as: (in parallel)

λ∗i = arg min
λ

f(x + λhi)

Set fi = f(x + λ∗i hi) (already calculated during the line–search).

5 Find the index k for which fk = min
i
{fi}, ∀i = 1, 2, · · · , N

6 Set: x ← x + λ∗khk.

7 Set f ← fk, and g ← ∇f(xk)
8 Select at random M − 1 points, x2, x3, · · · , xM , such that
|x − xj | ≤ R, ∀j = 2, · · · ,M.9 Calculate the Hessian approximation at x via SR1

using the adjacent points x2, x3, · · · , xM .

10 Go to 1

2.3 Nested nomadic and bundle search

In order to take advantage of both nomadic and bundle search method-
ologies, we propose a nested scheme that involves an outer iteration fol-
lowing nomadic search and an inner iteration with bundles of directions.
In this scheme we maintain M points xi, i = 1, . . . ,M and perform all–
to–all SR1 updates to approximateM Hessian matricesBi, i = 1, . . . ,M .
From each point we then define N directions by following the bundle
search methodology. The points xi, i = 1, . . . ,M of the next iteration
are taken from the results of the N line searches. In this nested scheme
we define M ×N line search tasks in parallel (Step 8 of Algorithm 3). In
Algorithm 3 we present the nested scheme.
The nested scheme is even more demanding on computational resources,
but we expect to further reduce the length of execution times. Efficient
implementation of nested schemes need advanced runtime support [12,
13] which is currently available and supported by OpenMP API.

Algorithm 3: Nested nomadic and bundle scheme
Input: Objective function, f : X ⊂ Rn → R; number of points: M; number of directions

N small radius: R, a small number ε > 0
Output: Best detected solution: x∗, f

(
x∗
)
.

1 Select at random M − 1 points, x2, x3, · · · , xM , such that
|x1 − xj | ≤ R, ∀j = 2, · · · ,M.

2 Calculate fi = f(xi), gi = ∇f(xi) ∀i = 1, 2, · · · ,M (in parallel)

3 if termination then
x∗ = x1 f

(
x∗
)
= f1

return
end

4 Estimate Bi ≈ ∇
2f(xi) and decompose so as to render it positive definite

∀i = 1, 2, · · · ,M (in parallel)

5 Calculate Fs = min
i
{fi} and Fb = max

i
{fi} needed in µi = (1 − ε)

fi − Fs

Fb − Fs
6 Solve

[
(1 − µi)Bi + µiI

]
hi = −gi, ∀i = 1, 2, · · · ,M (in parallel)

// For all points

for i = 1, 2, . . . ,M do
// Begin bundle search

for j = 1, 2, . . . , N do

7 Solve
[
(1 − µ̃j)Bi + µ̃jI

]
hj = −gi, where µ̃j = (1 − ε)

j − 1

N − 1
.

8 Apply a line–search λ∗j = arg min
λ

f(xi + λhj)

Set f̃j = f(xi + λ∗j hj).

end

9 Find the index k for which fk = min
j
{f̃j}, ∀j = 1, 2, · · · ,M

10 Set: xi ← xi + λ∗khk, fi ← fk, and gi ← ∇f(xk).

end

11 Find the index k for which fk = min
i
{fi}, ∀i = 1, 2, · · · ,M

12 Swap x1 and xk

13 if fresh restart then
Repeat from Step 1

else
Repeat from Step 2

end

3 Numerical experiments

We have implemented all parallel algorithms in Matlab in order to mea-
sure their effectiveness with respect to the number of iterations. It is not

a true parallel implementation, e.g using Matlab’s parallel toolbox, but
it is used as a proof of concept for the efficiency of the nomadic, bun-
dle and the combined search. The comparison is made against two well
known quasi–Newton sequential algorithms: BFGS and SR1, each with
a line search. All methods in the comparison table share the same line
search code. The basic computational cost of these methods per iteration
is one function and gradient evaluation and one line search. Consider-
ing the communication costs negligible with respect to function/gradient
evaluation, it is plausible to claim that one iteration of a sequential quasi–
Newton algorithm and that of our proposed parallel methodologies, take
the same amount of time. Hence in this study we compare the number
of iterations to provide a proof–of–concept, expecting that the estimated
speedup is close to that of a real parallel implementation.
We used a part of the well established Moré optimization test func-
tions [14] and some instances from the Dixon-Szego test set. For ev-
ery test function we report the number of iterations each algorithm
performed in order to reach the target minimizer starting from a pre-
specified point. All numbers reported are averages of twenty runs with
different random seeds. We have experimented with values of M =
8, 16, 48, 64. In Table 1 we present relative speedups, with respect to
serial BFGS and DFP methods, up for the cases M = 8, 16 and in Ta-
ble 2 for the cases M = 48, 64. In the last row we present the average
speedup for all test functions.
By inspecting the result tables we can see that the proposed parallel
algorithms can result in 6 times less iterations than their serial com-
petitors which represent the state–of–the–art in the field on numerical
optimization. A closer look reveals that in some cases (eg. Quadratic 50,
100, Rosenbrock 10, Brown and Dennis, Trigonometric) the speed up
in terms of iterations is noteworthy when M is greater than 16. These
results indicate that with a proper implementation and a sufficiently
heavy objective function evaluation, nomadic, bundle and nested con-
current searches may be used to accelerate convergence by a substantial
factor. Is is obvious though that the speedup does not scale well with M .
This can be attributed to the fact that near the minimum all directions
tend to coincide with the Newton direction, hence in these last iterations
the alternatives offer almost no advantage. Dynamic allocation of com-
putational resources and batch optimization schemes may increase the
overall ratio.

4 Conclusions

We have presented three parallel methods for the problem of local opti-
mization with line searches. A multipoint or concurrent nomadic search,
a multi–direction or concurrent bundle search, and a combination of the
two. All use SR1 updates from randomly sampled points to estimate re-
quired Hessian matrices. Preliminary simulation results clearly indicate
that they may significantly reduce the number of iterations, and conse-
quently the overall computational time, needed by well established and
widely used serial rival methods.

Table 1. Speedup in iterations for M = 8, 16

MP (8) MD(8) Nested(4x2) MP (16) MD(16) Nested(4x4)

SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS
Heli 3 1.40 1.80 1.75 2.25 1.11 1.42 1.62 2.08 1.50 1.93 1.40 1.80
Gaussian 3 1.86 1.71 1.63 1.50 1.86 1.71 2.17 2.00 2.17 2.00 2.17 2.00
Var Dim. 2 2.00 2.00 2.00 2.00 1.60 1.60 2.00 2.00 2.00 2.00 2.00 2.00
Watson 2 1.60 1.80 1.60 1.80 1.60 1.80 1.60 1.80 1.60 1.80 1.60 1.80
Brown 4 16.00 55.56 24.00 83.33 12.00 41.67 16.00 55.56 18.00 62.50 16.00 55.56
Gulf 3 5.81 1.33 5.55 1.27 6.78 1.56 6.42 1.47 7.63 1.75 7.18 1.65
Trigon 2 1.67 1.17 2.00 1.40 1.67 1.17 2.00 1.40 2.00 1.40 2.00 1.40
Rosen. 2 3.00 2.54 2.44 2.06 1.44 1.22 2.05 1.74 4.33 3.67 2.05 1.74
Beale 2 1.44 1.56 1.63 1.75 0.57 0.61 1.86 2.00 1.86 2.00 0.65 0.70
Wood 4 0.59 0.68 0.79 0.89 0.71 0.81 0.73 0.83 0.81 0.93 0.92 1.04
Cheby. 2 1.50 1.50 1.20 1.20 0.86 0.86 1.50 1.50 2.00 2.00 1.00 1.00
Cubic 2 3.48 1.30 3.64 1.36 1.48 0.56 3.64 1.36 5.33 2.00 1.18 0.44
De Jong1 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
De Jong2 2 1.50 1.31 1.41 1.24 0.65 0.57 1.50 1.31 1.50 1.31 0.67 0.58
Goldstein 2 1.33 1.44 2.00 2.17 1.33 1.44 1.71 1.86 2.00 2.17 1.71 1.86
Branin 2 1.00 1.00 2.00 2.00 1.00 1.00 1.20 1.20 1.50 1.50 1.00 1.00
Shekel5 4 2.83 2.50 3.40 3.00 2.83 2.50 2.83 2.50 3.40 3.00 3.40 3.00
Shekel10 4 1.50 2.00 1.80 2.40 1.29 1.71 1.50 2.00 1.80 2.40 1.50 2.00
Six hump 2 6.00 1.60 7.50 2.00 4.29 1.14 6.00 1.60 7.50 2.00 5.00 1.33
Colville 4 1.57 2.07 1.29 1.71 0.69 0.91 1.22 1.61 1.47 1.93 1.10 1.45
Bazaraa 2 5.50 4.50 2.20 1.80 1.69 1.38 1.83 1.50 2.20 1.80 7.33 6.00
Quadratic 2 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00
Var Dim. 10 2.78 2.78 2.78 2.78 3.13 3.13 2.78 2.78 3.57 3.57 3.13 3.13
Watson 10 2.45 2.20 1.07 0.96 1.75 1.57 3.27 2.93 1.11 1.00 2.58 2.32
Trigon 10 2.80 3.93 3.23 4.54 3.23 4.54 4.67 6.56 3.82 5.36 3.50 4.92
Rosen. 10 4.86 1.69 8.95 3.11 3.94 1.37 7.88 2.74 10.94 3.81 5.12 1.78
Quadratic 10 20.00 8.67 30.00 13.00 12.00 5.20 60.00 26.00 60.00 26.00 20.00 8.67
Var Dim. 50 2.09 0.36 1.44 0.25 1.28 0.22 1.64 0.29 2.09 0.36 1.92 0.33
Watson 50 1.45 0.90 0.47 0.29 0.74 0.46 2.44 1.51 0.34 0.21 0.95 0.59
Trigon 50 2.24 2.55 3.70 4.22 2.74 3.13 3.27 3.73 3.70 4.22 4.72 5.39
Rosen. 50 1.57 0.91 1.02 0.59 1.19 0.69 2.14 1.23 2.24 1.29 1.89 1.09
Quadratic 50 15.73 7.82 15.73 7.82 6.92 3.44 28.83 14.33 43.25 21.50 12.36 6.14
Var Dim. 100 1.57 43.48 1.89 52.63 0.92 25.64 1.29 35.71 2.77 76.92 2.57 71.43
Watson 100 1.32 7.35 0.39 2.16 0.66 3.69 1.54 8.55 0.86 4.78 0.98 5.46
Trigon 100 7.93 1.77 4.79 1.07 9.49 2.12 8.34 1.86 9.68 2.16 9.88 2.20
Rosen. 100 1.84 0.81 1.00 0.44 2.00 0.88 2.40 1.05 1.53 0.67 2.02 0.88
Quadratic 100 7.90 6.52 5.03 4.15 2.44 2.01 15.09 12.45 18.44 15.22 5.03 4.15

Speedup: 3.84 5.17 4.20 6.08 2.75 3.61 5.65 5.92 6.46 7.49 3.80 5.86

Table 2. Speedup in iterations for M = 48, 64

MP (48) MD(48) Nested(12x4) MP (64) MD(64) Nested(16x4)

SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS
Heli 3 1.62 2.08 1.75 2.25 1.91 2.45 1.62 2.08 1.75 2.25 1.91 2.45
Gauss 3 2.17 2.00 1.86 1.71 2.17 2.00 2.17 2.00 2.17 2.00 2.17 2.00
VarD 2 2.00 2.00 2.67 2.67 2.00 2.00 2.00 2.00 2.67 2.67 2.67 2.67
Wats 2 1.60 1.80 2.67 3.00 1.60 1.80 1.60 1.80 2.00 2.25 2.00 2.25
Brow 4 16.00 55.56 20.57 71.43 18.00 62.50 16.00 55.56 18.00 62.50 18.00 62.50
Gulf 3 7.18 1.65 10.17 2.33 8.13 1.87 7.63 1.75 12.20 2.80 8.13 1.87
Trigon 2 2.00 1.40 1.67 1.17 2.00 1.40 2.00 1.40 2.00 1.40 2.00 1.40
Rosen. 2 3.90 3.30 3.00 2.54 1.77 1.50 3.55 3.00 3.25 2.75 2.05 1.74
Beale 2 1.86 2.00 1.63 1.75 1.18 1.27 2.17 2.33 1.63 1.75 1.00 1.08
Wood 4 0.88 1.00 0.81 0.93 1.22 1.39 0.96 1.09 0.88 1.00 1.38 1.56
Cheby. 2 1.50 1.50 1.50 1.50 1.00 1.00 1.50 1.50 1.50 1.50 1.00 1.00
Cubic 2 3.81 1.43 5.33 2.00 3.81 1.43 4.44 1.67 5.33 2.00 3.64 1.36
Jong1 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Jong2 2 1.60 1.40 1.85 1.62 1.60 1.40 1.60 1.40 1.85 1.62 0.89 0.78
Gold 2 2.00 2.17 2.40 2.60 1.71 1.86 1.71 1.86 2.40 2.60 2.00 2.17
Branin 2 1.20 1.20 1.50 1.50 1.20 1.20 1.20 1.20 1.50 1.50 1.20 1.20
S5 4 2.83 2.50 3.40 3.00 3.40 3.00 2.83 2.50 3.40 3.00 3.40 3.00
S10 4 1.50 2.00 1.80 2.40 1.50 2.00 1.50 2.00 1.80 2.40 1.50 2.00
Hump 2 6.00 1.60 10.00 2.67 5.00 1.33 6.00 1.60 7.50 2.00 5.00 1.33
Colv 4 1.57 2.07 1.38 1.81 1.16 1.53 1.57 2.07 1.38 1.81 1.29 1.71
Baza 2 2.75 2.25 2.20 1.80 5.50 4.50 3.67 3.00 2.20 1.80 4.40 3.60
Quad 2 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00
VarD 10 4.17 4.17 4.17 4.17 3.57 3.57 4.17 4.17 4.17 4.17 3.57 3.57
Wats 10 3.50 3.14 1.58 1.42 3.27 2.93 3.50 3.14 1.48 1.33 3.50 3.14
Trigon 10 4.20 5.90 10.50 14.75 5.25 7.38 3.82 5.36 4.67 6.56 6.00 8.43
Rose 10 8.57 2.98 12.31 4.28 9.61 3.34 7.43 2.58 12.71 4.42 10.65 3.70
Quad 10 60.00 26.00 60.00 26.00 60.00 26.00 60.00 26.00 60.00 26.00 60.00 26.00
VarD 50 1.92 0.33 1.92 0.33 2.30 0.40 2.09 0.36 1.92 0.33 2.30 0.40
Wats 50 3.45 2.14 0.83 0.51 2.22 1.38 4.00 2.48 1.16 0.72 2.63 1.63
Trigon 50 4.05 4.62 3.40 3.88 5.00 5.71 3.15 3.59 3.54 4.04 4.72 5.39
Rose 50 3.36 1.93 9.09 5.24 3.33 1.92 5.38 3.10 9.26 5.33 3.70 2.13
Quad 50 57.67 28.67 86.50 43.00 28.83 14.33 173.00 86.00 173.00 86.00 34.60 17.20
VarD 100 1.71 47.62 1.50 41.67 2.57 71.43 1.71 47.62 1.33 37.04 2.57 71.43
Wats 100 1.08 6.02 1.31 7.30 2.54 14.08 1.29 7.19 1.43 7.94 2.17 12.05
Trigon 100 11.52 2.57 20.17 4.50 20.17 4.50 13.83 3.09 16.13 3.60 16.69 3.72
Rose 100 3.97 1.74 6.33 2.77 4.18 1.83 4.03 1.77 11.90 5.21 4.50 1.97
Quad 100 33.20 27.40 55.33 45.67 15.09 12.45 41.50 34.25 55.33 45.67 20.75 17.13
Speedup: 7.31 7.19 9.65 8.81 6.43 7.53 10.77 8.99 11.82 9.46 6.70 7.72

For the nomadic search algorithm the selection of points for the next
iteration is an issue that needs further examination. This is a practical,
yet important issue, since it may affect seriously the performance of the
method. For the Hessian of the maintained point (or points) one may
consider to either discard the existing information and proceed as in the
initialization step using the SR1 scheme, or to continue updating the
existing Hessian. Another question that may arise in the second case,
is whether a periodic reset is then necessary and at what frequency.

In addition, the Hessian may also be updated right after the linesearch
application, for instance via a BFGS or any other Quasi-Newton formula.
It is a matter of further investigation if this will enhance the methods
performance or not. Most Hessian issues referred to above, need to be
investigated for the case of the bundle search as well. We intend first
to implement these methods in a real parallel system (MPI multicore
cluster) and then we would like to address the above important issues.

Acknowledgments

This work is co-financed by the European Union and Greece Operational
Program “Human Resources Development” - NSFR 2007-2013 - Euro-
pean Social Fund.

References

1. M.-Q. Chen and S.-P. Han. A parallel quasi-Newton method for
partially separable large scale minimization. Annals of Operations
Research, 14:195–211, 1998.

2. Z. Chen, P. Fel, and H. Zheng. A parallel quasi-Newton algorithm
for unconstraint optimization. Computing, 55:125–133, 1995.

3. R.H. Byrd, R.B. Schnabel, and G.A. Shultz. Parallel quasi-Newton
methods for unconstrained optimization. Mathematical Program-
ming, 42:273–306, 1988.

4. D. Conforti and R. Musmanno. A parallel asynchronous Newton
algorithm for unconstrained optimization. Journal of optimization
theory and applications, 77:305–322, 1993.

5. P.J.M. van Laarhoven. Parallel variable metric algorithms for uncon-
strained optimization. Mathematical Programming, 33:68–81, 1985.

6. T. A. Straeter. A parallel variable metric optimization algorithm.
NASA Technical Note D-7329, Hampton, VA, 1973.

7. P.K.H. Phua, W.Fan, and Y.Zeng. Self-scaling parallel quasi-Newton
methods. In Fourth International Conference on Optimization: Tech-
niques and Applications,Australia, 1998.

8. M. C. Biggs. A note on minimization algorithms which make use of
non-quadratic properties of the objective function. J. Inst. Maths.
Apllics., 12:337–338, 1973.

9. Robert B. Schnabel. A view of the limitations, opportunities, and
challenges in parallel nonlinear optimization. Parallel Computing,
21:875–905, 1995.

10. H Fayez Khalfan, Richard H Byrd, and Robert B Schnabel. A the-
oretical and experimental study of the symmetric rank-one update.
SIAM Journal on Optimization, 3(1):1–24, 1993.

11. W Tu and RW Mayne. Studies of multi-start clustering for global
optimization. International journal for numerical methods in engi-
neering, 53(9):2239–2252, 2002.

12. C. Voglis, P.E. Hadjidoukas, V.V. Dimakopoulos, I.E. Lagaris, and
D.G. Papageorgiou. Task-parallel global optimization with applica-
tion to protein folding. In High Performance Computing and Simu-
lation (HPCS), pages 186–192. IEEE, 2011.

13. P. Hadjidoukas, C. Voglis, V. Dimakopoulos, I. Lagaris, and D.G. Pa-
pageorgiou. High-performance numerical optimization on multicore
clusters. Euro-Par 2011 Parallel Processing, pages 353–364, 2011.

14. Jorge J Moré, Burton S Garbow, and Kenneth E Hillstrom. Testing
unconstrained optimization software. ACM Transactions on Mathe-
matical Software (TOMS), 7(1):17–41, 1981.

