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In this article, we introduce Newtonian spectral clustering, a method that employs Newtonian
preprocessing to promote cluster perspicuity and trajectory analysis to gain valuable affinity
information. A simple two-body potential is used to model the interaction under the influence of
which the points move according to Newton’s second law. This procedure produces a transformed
data set with reduced cluster overlap, which favors the spectral clustering approach. This is
so, because the affinity matrix can be enriched with information derived from the underlying
interaction model. Special care is also given to estimate the Gaussian kernel parameter, since
its role is important for the clustering procedure. The method is further extended appropriately
to treat problems of high dimensionality. We have tested the proposed methodology on several
benchmark data and compared its performance to that of rival techniques. The superiority of the
new approach is readily deduced by inspecting the reported results. C© 2013 Wiley Periodicals,
Inc.

1. INTRODUCTION

Given a set of data points, the problem of clustering is to discover a number of
subsets, called clusters, that contain points with similar properties. In the literature,
there is a plethora of clustering approaches that have been proposed rather recently.
In this work, we concentrate on the class of methods which are based on spectral
clustering.1, 2 Spectral clustering has become increasingly popular during the past
decade. Such algorithms are based on similarity information between data points.
That is, similar data points (or points with high affinity) are more likely to belong
to the same cluster than points with low affinity. These kinds of algorithms have
proved to be quite successful in numerous application domains, such as computer
vision,3–5 speech recognition,6 bioinformatics,7, 8 and text mining.9

Spectral clustering techniques make use of information obtained from an ap-
propriately defined affinity matrix. Their primary strength is the ability to treat
complex patterns where other well-known methods (such as k-means) either cannot
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be directly applied or fail. The similarity matrix must be built in such a way so as to
reflect the topological characteristics of the data set. In the case where the affinity
is represented by a Gaussian kernel function, the choice of the scaling parameter
(σ ) is crucial. Points close to each other must have a high affinity measure, whereas
the affinity should be reduced for distant points. To face this issue, a self-tuning
methodology is presented in Ref. 10, for example, based on a nearest neighbor
distance.

Sparsity is another desired property, since it offers computational
advantages.1, 11 In computer vision and related problems, where spectral cluster-
ing excels in performance, the similarity matrix is sparse due to the local character
of the similarity measure. Methodologies leading to sparse affinity matrices have
been proposed in the past.1 For instance, the ε-neighborhood technique connects
only points whose pairwise distances are smaller than a prespecified threshold ε.
Another similar method is the (mutual) t-nearest neighbor, where every point is con-
nected only with its t nearest neighbors. However, these methods heavily depend on
the choice of the control parameter (ε or t) that acts as a threshold for cutting some
edges of the associated graph.

We present here an alternative spectral clustering method that consists of two
phases. First, the data points are preprocessed according to a motion scheme, which
has been introduced in an earlier work of ours.12 During this phase, a dynamical
transformation is performed that forces each data point to move toward the center
of its host cluster. In this way, the cluster formation becomes more apparent. At a
second level, the affinity matrix is constructed but not in the usual manner. We have
developed a novel special technique that takes into account information obtained
during the previous phase. The resulting affinity matrix has a sparse structure and at
the same time represents the topological features of the data set with a high degree
of fidelity.

We have further extended the method rendering it capable to handle high-
dimensional data sets and treat problems such as document clustering and object
recognition. This is achieved by choosing a suitable potential model. The proposed
method has been evaluated on a suite of established benchmarks, ranging from syn-
thetic and real continuous data sets, to computer vision applications and problems
with high-dimensional data. For comparison, we also report results from the appli-
cation of a self-tuning method, the standard spectral clustering method, as well as
the classical k-means algorithm.

The remaining of this paper is organized as follows. In Section 2, we lay out
an algorithmic description of the proposed methodology, along with its extension to
high-dimensional spaces. Section 3 presents numerical results in several data sets,
and finally in Section 4 we summarize our conclusions.

2. NEWTONIAN SPECTRAL CLUSTERING

The overall framework of our method consists of an initial dynamic process
that gathers useful information to strengthen and sparsify the data affinity matrix.
Spectral analysis is performed next, and the clustering solution is found.
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2.1. Newtonian Motion Scheme

Let X = {x1, . . . , xN } be the set of N observations that we want to partition
into K groups. We consider that the data points correspond to particles of unit mass
(mi = 1) located at position xi , interacting via a two-body attractive, short-range
potential. Under this consideration, the data points xi move under the influence of a
force Fi as dictated by the Newton’s second law:

Fi(t) = mi

d2xi(t)

dt2
= d2xi(t)

dt2
, ∀i = 1, 2, . . . , N . (1)

Owing to its complicated nature, there is no analytical solution to the above
equations of motion and therefore they must be solved numerically. In particular, we
integrate them in small time steps δt considering that the forces Fi remain constant
during this short-time interval. In molecular dynamics, the most commonly used
integration algorithm is due to Verlet.13 The basic idea is to write two third-order
Taylor expansions for the positions xi(t), one forward and one backward in time:

xi(t + δt) = xi(t) + vi(t)δt + 1
2Fi(t)δt2 (2)

xi(t − δt) = xi(t) − vi(t)δt + 1
2Fi(t)δt2 , (3)

where vi(t) is the velocity of particle, i.e., the first derivative with respect to time
(dxi(t)/dt). Hence, summing these two equations, we simulate the motion by the
following scheme:

xi(t + δt) = 2xi(t) − xi(t − δt) + δt2Fi(t) . (4)

Let Vij be the potential between particles located at points xi and xj . The force
Fi consists of two parts: One is due to the mutual interaction with the rest of the
points, given by −∇i

∑N
j=1
j �=i

Vij , and the other is a dissipative term that slows down

the motion, given by −cvi(t), where c is a positive constant. Thus we can obtain the
following equation:

Fi(t) = −∇i

N∑
j=1
j �=i

Vij − cvi(t) . (5)

By substituting then Equations 4 and 5 to the basic motion Equation 1, we can obtain
the following general form:

xi(t + δt) =
2xi(t) − (1 − cδt)xi(t − δt) − δt2 ∑N

j=1
j �=i

∇iVij

1 + cδt
. (6)
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Here, it must be noted that we have used the common central difference approxima-
tion for calculating the first and the second derivatives, i.e.,

dxi(t)

dt
≈ xi(t + δt) − xi(t − δt)

2δt
, (7)

d2xi(t)

dt2
≈ xi(t + δt) + xi(t − δt) − 2xi(t)

δt2
. (8)

During all experiments, the value of constant c and the time step δt were set as c = 2
and δt = 10−4, respectively.

In our study, we have considered a potential of Gaussian form given by

Vij = − exp

(
−||xi − xj ||2

2σ 2

)
. (9)

The scaling parameter σ plays an important role of the process, since it determines
the range of the interaction. Section 2.3 presents a mechanism for estimating the
proper value for this parameter.

Since the interaction is attractive, after a time period T , particles belonging to
the same cluster will get closer together, whereas data that move toward different
clusters either repel each other or they are too far away to interact. So an initially
spread-out cluster is being shrunk as a result of the above procedure. The simulation
terminates either after a preset number of steps, or when the positions seem to
remain essentially unaltered. Some typical examples are shown in the first column of
Figure 3, where the original data points (grey) are concentrated (black) after T = 100
steps.

2.2. Constructing a Sparse Affinity Matrix

Integration of the equations of motion (Equation 6) then yields a trajectory
that describes the positions and accelerations of the particles as they vary with time.
From this trajectory, useful information can be gathered for constructing a richer
affinity matrix A.

In particular, at the end of each step t of the dynamic process, a new transformed
data set X(t) = {x1(t), x2(t), . . . , xN (t)} is obtained as the points have been moved
into new positions xi(t) from their reset positions xi = xi(0). Let dij (t) = ||xi(t) −
xj (t)|| denote the distance between two points at this time step t . If this distance
becomes larger, i.e., dij (t) > dij (0), means that these points have moved apart.
Furthermore, two points may tend to move apart, which is expressed by the condition
(xi(t) − xj (t))T (Fi(t) − Fj (t)) > 0. In these situations, it is considered that these
points belong to different clusters and hence their affinity is set to zero (A(t)

ij = 0).
On the other hand, points that either cluster together or have the tendency to come
closer they automatically earn an affinity reward.
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Taking into account the above considerations, we can obtain the following
expression for calculating the elements of affinity matrix at time step t :

A
(t)
ij = b

(t)
ij exp

(
−d2

ij (t)

2σ 2

)
. (10)

The coefficients b
(t)
ij are binary and are determined by the following rule:

b
(t)
ij =

{
0 if dij (t) > dij (0) or (xi(t) − xj (t))T (Fi(t) − Fj (t)) > 0
1 otherwise

. (11)

Obviously, these parameters enhance the sparsity of the affinity matrix A.
It must be noted that the required number of Newtonian steps T for obtaining

the motion points trajectories is not critical and does not affect the quality of the
affinity matrix and sequentially the clustering solution. Experiments have shown
that in most cases, only a few steps (less than 10) were enough to obtain all the
necessary information. Figure 1 illustrates a typical example of the effect of the
Newtonian dynamic procedure to a simulated data set that has been generated by
two spherical Gaussian distributions (150 points per class). In particular, we show
(a) the transformed data X(t), (b) the binary sparse coefficients b

(t)
ij , and (c) the
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−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

6

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

6

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

6

−3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

6

(a) Transformed data X(t)

(b) Matrix B(t) with binary coefficients b
(t)
ij

(c) Sparse affinity matrix A(t)

Figure 1. The evolution of the proposed Newtonian motion scheme in the case of a simulated
two-class data set.
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constructed affinity matrix A(t) at four time different steps. As it is obvious, even
from the first step (t = 1), the affinity matrix becomes sparse (more than 20% of its
elements are zeroed) without being modified significantly during the next T = 100
steps. Moreover, the clustering performance is exactly the same for all cases.

After constructing the affinity matrix A, the next step to our method is to
operate a spectral clustering algorithm. Spectral clustering techniques takes a graph
theoretical approach toward data clustering. The given N data points are viewed
as nodes of a graph, and they are connected to each other by edges with weights
equal to the degree of similarity. In the literature, there are several variations of
the standard methodology, described in Ref. 2, that we have followed in our study.
According to this scheme, the Laplacian matrix L is then constructed as

L = D−1/2AD−1/2 , (12)

where D is a diagonal matrix with elements Dii = ∑N
j=1 Aij . The Laplacian ma-

trix is known to be symmetric and positive semidefinite. Next, the K normalized
eigenvectors u1, . . . , uK of matrix L (where K is the desired number of clusters)
that correspond to the largest eigenvalues are computed and eventually fed into the
typical k-means algorithm to estimate the final clustering solution.

2.3. Estimation of the Scaling Parameter

As mentioned before, the determination of the scaling parameter σ is crucial
and has to be chosen carefully. Intuitively, its value depends on the nature of data;
sparse data sets require a longer range than dense data sets. An automatic selection of
this parameter was suggested in Ref. 2 by running the clustering algorithm repeatedly
for a number of values of σ and selecting the one which provides the least distorted
clustering solution. However, this may increase significantly the computation time.
Another approach proposed in Ref. 10 assumes that each data point xi has its
own local scaling parameter σi given by the distance to its nth neighbor, where n

being manually selected. A systematic methodology has been initially presented in
a previous work of ours12 that does not need the manual tuning of any parameter. It
is based on order statistics over the nearest-neighbor distance of data points.

Let di
m be the distance between point at xi and its mth nearest neighbor. Then,

the mean value of mth nearest neighbor distance is defined as

d(m) = 1

N

N∑
i=1

di
m . (13)

Obviously, we have that

d(1) < d(2) < · · · < d(N−1) . (14)

These ordered values are known as order statistics. Studying the statistics of this
quantity is useful since it can provide a measure of the appropriate range of the
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Figure 2. Plots of (a) mean distance d(m), (b) variance σ 2
(m) and (c) second difference of σ̃ 2

(m)/m in
the case of two-class data set of Figure 1.

potential around every point particle. In particular, when there are more than one
clusters in an examined data set we can observe some discontinuities of d(m) with
respect to the number of neighbors m. This is happened because, as m grows the
mean nearest-neighbor distance d(m) would be calculated using points outside the
range of the cluster. In Figure 2, (a) we give one such example by plotting the
quantity d(m) for the simulated two-class data set of Figure 1 (150 points per class).
The discontinuity is appeared as m approaches the size of two clusters (150).

Assuming that the nearest neighbor distances are i.i.d. random variables fol-
lowing a distribution with the probability density function fd (y) and a cumulative
distribution function Fd (y) = ∫ y

0 fd (t)dt , it is known that the ordered statistics have
the next pdf:

fd(m) (y) = N!

(m − 1)!(N − m)!
fd (y)[Fd (y)]m−1[1 − Fd (y)]N−m . (15)

Given a probability density function fd (y), one can then calculate the variance σ 2
(m)

for the mth nearest neighbor distance. We have studied this quantity for several
choices of pdf fd (y), where the required integrations are made numerically. In all
cases, we have observed that it follows a quadratic form with respect to the number
of neighbors m. When there are two or more clusters within the data set, d(m)

acquires discontinuities and the cumulative quantity σ 2
(m) is given by a superposition

of translated quadratics; see Figure 2b.
In our approach, we calculate the sample variance σ̃ 2

(m) of any value of m as
obtained by

σ̃ 2
(m) = 1

m

m∑
k=1

(
d2

(k) − (d(k))
2
)
, (16)

where d2
(k) denotes the second moment of ordered mean nearest neighbor distance as

computed by samples, i.e., d2
(k) = 1

N

∑N
i=1(di

k)2. Considering the quadratic form of

the variance, the quantity
σ̃ 2

(m)

m
is linear in m and thus its second difference vanishes.
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Hence, the value for the range of the potential σ 2 is estimated by finding the number

of neighbors m∗ for which the second difference of
σ̃ 2

(m)

m
(with respect to m) vanishes.

An example is shown in Figure 2c. Note that for the determination of σ , one may
choose a range of m values around m∗, without affecting the method’s performance.

2.4. Algorithmic Description

The overall scheme of the proposed approach is summarized in Algorithm 1.

Algorithm 1. Newtonian Spectral Clustering

Input: Data set X = {x1, . . . , xN }; Number of clusters K .
1. Estimate the scaling parameter σ 2, by finding the value m∗ where the second

difference of σ̃ 2
m

m
(Equation 16) vanishes. Set σ 2 = σ̃ 2

m∗ .
2. Integrate the Newton’s equations of motion (Equation 6) for T steps.
3. At the end of the process, calculate the sparse affinity matrix A (Equations 10

and 11) and then the Laplacian matrix L (Equation 12).
4. Construct the matrix U = [u1, u2, . . . , uK ] from the normalized eigenvectors

of L that correspond to its K largest eigenvalues.
5. Apply the k-means algorithm to the N lines of U and obtain the final clustering

solution.

2.5. Working with High-Dimensional Data

An important challenge in clustering is treating high-dimensional data, such
as documents, gene expressions, or images. Since spectral clustering is a common
technique used for this purpose, we have tried to adjust the proposed method to deal
with such problems. For this purpose, we have selected the kernel cosine similarity
measure for computing the proximity between each pair of data:

Vij = xT
i xj , (17)

where we assume that the vectors are first normalized. The above rule is also used
as the potential function during the Newtonian preprocessing (see Equation 6).

The introduction of such kind of potential requires an alternative motion scheme
of data points. Now, the interaction is not always attractive as in the case of Gaussian
kernel. Naturally, any particle is influenced positively from similar data (that belong
to the same cluster) and their interaction is attractive (positive force). In the opposite
case, dissimilar data vectors have a repulsive effect to the particle and thus offering
a negative sign force within its motion update rule. Taking into account the above
observations, the formulation of the force Fi (Equation 5) now becomes as

Fi(t) = −
N∑
j=1
j �=i

γ
(t)
ij xj − c

dxi(t)

dt
, (18)
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where the coefficients γ
(t)
ij correspond to the status of the interaction (sign of force)

among pairs of data, i.e.

γ
(t)
ij =

{+1 if V
(t)
ij > V (t)/2

−1 otherwise
(19)

The quantity V (t) is the mean similarity value among all pairs of data in the current
motion step. In fact, V (t)/2 acts as a threshold similarity value for distinguishing
between attractive and repulsive data points. As it is obvious, this threshold is
modified at each step during the recursive dynamic procedure due to the shrinking
effect of data.

3. EXPERIMENTAL RESULTS

Several experiments have been performed in an attempt to examine the effec-
tiveness of the proposed Newtonian spectral clustering approach (NSC). We have
considered both simulated data sets and other widely used benchmarks. Comparison
has been made with the self-tuning spectral clustering approach (STSC) that was
proposed in Ref. 10 as well as with the standard spectral clustering (SC)a and the
traditional k-means algorithm.b In the case of the STSC method, the local scaling
parameter σi for each point xi was calculated from the distance of its nth nearest
neighbor. As it was expected, choosing the proper value of n significantly affects the
performance of spectral clustering and therefore we have tried to tune it manually
in all experiments. A satisfactory value was around a 10% of the total size N of data
set.

Since we were aware of the true class label of data, all clustering methods were
evaluated using two criteria:

� the purity, which is the percentage of correctly classified data after labeling each cluster
with the label of its dominant class (most frequent among the data belong) and

� the normalized mutual information (NMI), which is an information-theoretic measure
based on the mutual information of the true labeling (�) and the clustering (C) normalized
by their respective entropies:

NMI (�, C) = I (�, C)

[H (�) + H (C)]/2
, (20)

where

I (�, C) =
∑

k

∑
j

P (ωk, cj ) log
P (ωk, cj )

P (ωk)P (cj )
, (21)

aBoth methods NSC and SC use the same value of scaling parameter σ 2 as estimated from the
proposed technique.
bThe performance of k-means was obtained by selecting the best result among 50 different runs
with different initialization.
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Table I. Comparative results using five known experimental data sets.

Performance of

Experimental
NSC STSC SC k-means

data set Purity NMI Purity NMI Purity NMI Purity NMI

CRABS 0.94 0.84 0.93 0.83 0.93 0.83 0.93 0.82
(N = 200,K = 4, M = 2)
Iris 0.95 0.83 0.91 0.79 0.94 0.83 0.89 0.76
(N = 150,K = 3, M = 4)
Wine 0.98 0.93 0.98 0.91 0.97 0.88 0.97 0.88
(N = 178,K = 3, M = 13)
Breast Cancer Wisconsin 0.92 0.59 0.90 0.55 0.91 0.56 0.90 0.55
(N = 569,K = 2, M = 32)
Heart 0.70 0.15 0.70 0.13 0.69 0.12 0.64 0.06
(N = 768,K = 2, M = 8)

H (�) = −
∑

k

P (ωk) log P (ωk) , H (C) = −
∑

k

P (ck) log P (ck) . (22)

P (ωk), P (cj ), and P (ωk, cj ) are the probabilities of a data point being in class ωk , cluster
cj , and in their intersection, respectively, and are calculated based on set cardinalities
(frequencies).

The first series of experiments was performed on four two-dimensional simu-
lated data sets presented in Figure 3. By considering different levels of noise, we
performed 50 experiments for each noise value and kept record of the mean value
of both evaluation criteria for every method. In the same figure, we also compare
the normal with the proposed sparse Laplacian matrix L as calculated after T steps.
The depicted results are illustrated in Figure 4. As it was expected, all methods
displayed almost identical behavior when studying the first two Gaussian data sets,
since they were generated by K Gaussian densities that have the same spherical-
type covariance matrix. The superiority of our method is apparent in the plots of
the other two data sets, which are non-Gaussian and more complex. These results
show that choosing the proper value of the Gaussian kernel parameter and simul-
taneously appropriate sparsifying the data affinity matrix has a potential impact to
the performance of spectral clustering and can improve significantly the quality of
clustering.

Additional experiments were made using five known benchmarks. The first
one is the CRAB data set of Ripley,14 that contains N = 200 data belonging to four
clusters (K = 4). Here, we have created a two-dimensional data set by projecting
the data on the plane defined by the second and third principal components. We have
also studied four known benchmarks from the UCI repository15: the Fisher iris, the
wine, the breast cancer Wisconsin, and the heart data set. Table I summarizes the
results of the four comparative approaches. As it is obvious, the proposed clustering
method gives slightly better performance than the others, where in some cases the
difference is quite noticeable.
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(b) Gaussian data with K = 4 classes (150 per class)
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(d) Moon & sun dataset K = 2 classes (250 per class)

Figure 3. The effect of the Newtonian procedure to spectral clustering in the case of four simu-
lated data sets. Obviously, the proposed sparsification of the Laplacian matrix has an increased
discrimination ability.
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Figure 4. Comparative results on the simulated data sets of Figure 3 in terms of the degree of
noise level (variance).
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Figure 5. Comparative clustering results in two synthetic data sets.

We have also tested the effectiveness of our method to computer vision appli-
cations. At first, we have used two synthetic data sets with K = 3 different objects.
Figure 5 illustrates the comparative clustering results. As it is obvious, our method
manages to effectively discriminate three target objects, in comparison with the other
two methods that provide objects with significant overlapping areas. Moreover, we
have considered the task of intensity-based image segmentation. For this purpose,
we have selected six colored images from the Berkeley segmentation databasec pre-
sented in Figure 6, all with resolution of size 150 × 150. The segmentation results
of each method are illustrated in Figure 6, where in the reconstructed images every
pixel takes the intensity value of the cluster center that belongs. It is interesting
to notice here that our method creates much smoother regions in comparison with
the other two spectral methods. We believe that if we take into account additional
features, such as spatial and texture. the quality of the resulting segmentation will
be improved.

3.1. Experiments with High-Dimensional Data

Finally, we have studied the performance of our method when dealing with
high-dimensional data to study the impact of the proposed motion scheme in such
spaces. At first, we have examined the digits and object image recognition problem.
For this purpose, we have selected two known data sets:

chttp://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html
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Figure 6. Segmentation results obtained by three comparative clustering methods in six real
colored images.
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Figure 7. Evaluation of comparative methods in terms of the number of clusters for two high-
dimensional data sets (a) the OCR and (b) the Coil-20.

� The UCI handwritten digits data set15 consisted of nearly 750 samples per digit, where
each one is described with a 64 (8 × 8) dimensional vector.

� The Coil-20 object image database,16 which is a collection of gray-level images of 20
objects. For each object, there are 72 images copies (taken around the object at the pose
interval of 5 deg) of size 128 × 128, i.e., vectors of 16,384 components.

Comparison has been made only with the typical SC algorithm, since the
self-tuning spectral clustering (STSC) method considers only RBF kernels.

In this series of experiments, we have additionally examined the impact of the
number of clusters on the performance of the method. For this reason, we considered
several number of clusters, varying from 2 to Kmax (10 and 20 for each data set,
respectively), where we took several permutations of data from different classes.
Figure 7 illustrates the obtained results for both evaluation criteria, where for each
number of clusters (K) we show the mean value of both evaluation metrics on all
random permutations. Our method significantly outperforms the standard spectral
clustering approach, especially for a large number of clusters.
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Table II. Document data used in our experiments and the accuracy results obtained by both
NSC and SC methods.

Performance of

Document data set NSC SC

Name Description Purity NMI Purity NMI

Talk3 N = 300,K = 3, M = 4515 0.80 0.48 0.71 0.35
Science4-400 N = 400,K = 4, M = 4855 0.71 0.44 0.70 0.42
Science4-2000 N = 2000,K = 4, M = 10250 0.76 0.47 0.73 0.42
Multi5 N = 500,K = 5, M = 5589 0.75 0.57 0.63 0.50

Another interesting application in large spaces is document clustering that
aims at the division of a collection of documents into groups based on their terms
similarity. In our study, each input document has been transformed into a feature
vector equal to the size of the corpus vocabulary, such that every feature denotes
the weight of the corresponding term. We have applied the TF-IDF (term frequency,
inverse document frequency) weighting scheme for creating feature vectors. During
our experimental study, we have selected subsets of documents from the popular
20-newsgroup collectiond described in Table II. The first set (Talk3) consists of docu-
ments of the talk subjects (politics.guns, politics.mideast, politics.misc), the next two
of scientific documents (crypt, electronics, med, space), and the fourth set has doc-
uments from five newsgroups (comp.graphics, rec.motorcycles, rec.sport.baseball,
sci.space, and talk.politics.mideast). Table II presents the obtained comparative re-
sults. As it can be observed, our method improves, in some cases significantly, the
performance of the typical SC framework, showing that the proposed scheme of
constructing sparse affinity matrix is worthwhile in high-dimensional data. Several
other experiments were made using other subsets from the same data collection
where we took similar results.

4. CONCLUSIONS

In this study, we presented a novel clustering method, the Newtonian spectral
clustering, that inherits from Newtonian clustering information such that renders
possible the formation of a proper affinity matrix that is sparse and contains enriched
information. An extension of this approach has also been presented to deal with high-
dimensional data such as images and documents. We have applied the method to
several benchmark problems, and we noticed performance superior to the standard
spectral clustering approach. It is our intention to further pursue and develop the
method to study interesting application areas with a complex type of data such as
time series, multimedia data, and discrete sequences. Furthermore, another future
research direction is to construct appropriate kernel functions for them so as to
obtain better motion quality and therefore to improve the clustering performance.

dhttp://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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