Computer Physics Communications 52 (1989) 223-239
North-Holland, Amsterdam

223

MCL - OPTIMIZATION ORIENTED PROGRAMMING LANGUAGE

C.S. CHASSAPIS, D.G. PAPAGEORGIOU and 1.LE. LAGARIS
Physics Department, Applied Physics Laboratory, University of loannina, P.O. Box, 1186, GR-45 110 loannina, Greece

Received 2 June 1988

MCL is an optimization control language associated with the recently published MERLIN optimization package. It is
developed so as to aid in constructing effective minimization strategies. It is very simple and easy to master. Supports
Fortran-like operations, conditional and unconditional branching, multidimensional arrays, loops, statement functions, 1/0
operations and offers quite a few intrinsic functions. MERLIN has been further developed too, so that now it can be driven by

the object code produced by the MCL compiler.

PROGRAM SUMMARY

Title of program: MCL

Catalogue number: ABHA

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this

issue)

Computer: CDC CYBER-171; Installation: University of Ioan-
nina, Ioannina, Greece

Operating system: NOS 2.5.2 678 /670

Programming language used: ANSI FORTRAN 77
High speed storage required: 31000 words

Number of bits in a word: 60

Peripherals used: terminal, disc

Number of lines in combined program and test deck: 9907
Separate documentation available: manual (129 pages)

Keywords: programming language, compiler, minimization,
data fitting, MERLIN

Nature of physical problem

Many problems in physics, chemistry, applied mathematics as
well as in engineering and in other fields, may be reduced to
minimizing a function of several variables. MCL is a system
designed to enable one to develop systematically efficient
minimization strategies.

Method of solution

An optimization control language associated with the recently
published MERLIN package [1] is developed, to aid in
constructing effective minimization strategies. It is very simple
and easy to master. Supports Fortran-like operations, condi-
tional and unconditional branching, multidimensional arrays,
loops, statement functions, 1/0 operations and offers quite a
few intrinsic functions. MERLIN has been further developed
too [2], so that now it can be driven by the object code
produced by the provided MCL compiler.

Restriction of the complexity of the problem

The size of the compiler tables is set so as to suffice for the
needs of most programs. However, if needed this can be reset
as described in the manual.

Typical running time

Running time heavily depends on the size and complexity of
the input program. The provided test run, took 3.1 CPUson a
CDC Cyber-171.

Unusual features of the program

Provision has been taken so that user-extensions to MERLIN-
2.0 are supported through a special statement (command
EXECUTE).

References

[1] G.A. Evangelakis, J.P. Rizos, L.LE. Lagaris and I.N. De-
metropoulos, Comput. Phys. Commun. 46 (1987) 401.

[2] D.G. Papageorgiou, C.S. Chassapis and 1.E. Lagaris, Com-
put. Phys. Commun. 52 (1989) 241.

0010-4655 /89 /$03.50 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

224 C.S. Chassapis et al. / Optimization oriented programming language

LONG WRITE-UP
1. Introduction

MCL stands for MERLIN Control Language, and is a special purpose programming language. The
recently published MERLIN package [1], is a portable optimization program with six minimization
algorithms and a friendly operating system. MERLIN accepts commands that determine its route of
action. The user may prepare an input file to MERLIN, containing commands that are to be executed
sequentially. This however is a static, rather than a dynamic way of using MERLIN. A more efficient way
is to use it interactively, entering the commands through a terminal. For example, one may realize during
execution, that one of the implemented algorithms has a superior performance and so may decide to use it
repeatedly, or (since MERLIN commands are parametric) one may determine the values for the so called
Panel-parameters that seem to be most effective. On the other hand, this requires quite some time of
on-line experimentation in front of a terminal which is highly undesirable. MCL is built to deal primarily
with this problem. It is a comprehensive and easy to learn language that controls MERLIN dynamically,
in the same way a user would from a terminal, yet it does not require the user’s attention or intervention.
MCL supports branching structures, arithmetic operations and other features described in detail in this
article. To make this possible, we constructed the MCL-compiler and we added to MERLIN an
appropriate “interface” package of subroutines that perform the additional necessary procedures required
by the language (see ref. [2]). The MCL object code (MOC) is input to MERLIN and dictates its execution
at run-time. The MCL compiler is named MCLCOM 1.0 and the new MERLIN code is referred to as:
“MERLIN 2.0 — Enhanced and Programmable Version”. This new 2.0 version [2], apart from being
programmable, offers to the interactive user as well, some new capabilities. For a better understanding of
this article and for immediate use of MCL, one needs to be familiar with the MERLIN optimization
system, at the user level.

2. Description of the language

Only floating point arithmetic is supported. Each number must have at least one digit before the
decimal period. For example:

0.15 is an acceptable number, while 0.15 is not.

There are three types of operators in MCL. Arithmetic, relational and logical. The arithmetic operators are
the usual ones:

+,—, *, /and **

standing for addition, subtraction, multiplication, division and raise to a power. The relational operators
are:

>, <, >=, <=,:=: and #

and they are equivalent to the Fortran, .GT., .LT., .GE., .LE., .EQ. and .NE. operators.

The logical operators are: NOT, AND, OR and XOR, standing for the usual logical operations in an
obvious notation. The associativity of all of the above operators is from left to right. The rules for
evaluating expressions involving the above relational and logical operators are given in table 1. Note that
an MCL expression is considered by convention FALSE if its value is zero and TRUE otherwise.

C.S. Chassapis et al. / Optimization oriented programming language 225

Table 1

1, if expression = 0

0, otherwise

Exprl, if Expr2 #+ 0
0, otherwise

1,if Expr2 # 0
Exprl, otherwise

NOT expression = {
Exprl AND Expr2 = {

Exprl OR Expr2 = {

Exprl, if Exprl # 0 and Expr2 = 0
Exprl XOR Expr2 = {ExprZ, if Expr2 # 0 and Exprl =0
0, otherwise

Exprl RelOp Expr2 = 1,if Expr.l RelOp Expr2 is true
0, otherwise
RelOp is any of the relational operators:
>, <, <=, >=, =

>

All operators are listed below in order of descending priority:

NOT (highest priority)

* ok

*,/

+ , —

>, <, >=, <=, = H#
AND

OR

XOR (lowest priority)

A valid MCL line can be up to 80 characters long; longer lines are subject to truncation and may lead to
inexplicable errors. Line continuation techniques are not supported. Blank lines, as well as leading blanks,
are ignored. However, they may be used, so as to improve the readability of a program. MCL supports
comment lines. A comment line is specified by the special character >, at the first non-blank position of
an MCL line. Comments may also be appended at the end of any MCL line following the percent
character %.

Symbolic names are alphanumeric strings of up to 30 characters, the first of which must be a letter.
Underscores can be used anywhere in between (even into keywords), for the sake of clarity and are ignored
by the compiler. For example, the symbolic name:

THIS_IS_AN_ACCEPTABLE_NAME_BY_MCLCOM
is a valid 30 character long symbolic MCL name, and equivalent to:
THISISANACCEPTABLENAMEBYMCLCOM (underscores do not count).
All MCL keywords can be used as symbolic names with the exception of the following:

JUST, THEN, FROM, BY and TO.

MCL supports arrays, statement functions and offers to the user a number of intrinsic functions and
MERLIN variables.

There are two kinds of statements in MCL. Declaration and control statements. In every program the
declaration statements must precede the control statements.

226 C.S. Chassapis et al. / Optimization oriented programming language
2.1. Declaration statements

MCL offers two distinct types of declarations, through the VAR and the FUNCTION declaration
statements. VAR declarations must precede FUNCTION declarations.

i) The VAR statement

All variables and arrays used in an MCL program must be declared. An array is a sequence of numbers
referenced by one symbolic name. When an array name is qualified by one or more subscripts, depending
on the array’s dimensionality, it refers to an individual element of the sequence. Subscripts may be any
valid expression. An array can be of any dimensionality, the only limit is imposed by the length of the
MCL line. For simple variables the declaration is as:

VAR A; B; C;...
where A, B, C,... are symbolic names corresponding to simple (not array) variables used in the program.
For arrays the declaration is as:

VAR W([L1:U1, L2:U2,...];...

where W is a symbolic name that will be used to reference the elements of the array. L1, U1, L2, U2,...
are called dimension declarators. The L and U specifiers in a dimension declarator L : U are the lower and
upper dimension bounds, respectively, and they must have integer values (negative, positive or zero). Both
simple variables and arrays can be declared in a single VAR statement.

Some examples of valid VAR statements are

VAR A;PRINCIPIA;NEW _STUFF[1:8,—1:1,—11:100]
VAR VOLUME][—1: +8];ROOT;MINIMUM;PISA

One can have any number of VAR statements in a program, according to his needs. There are a few
variables and arrays that can be used in a program without declaration. These are all intrinsic MERLIN-
variables used to monitor the optimization process. They should never be declared. Their symbolic names
are MCL-reserved keywords and are listed in table 2, along with their significance.

ii) The FUNCTION statement
The FUNCTION declaration statement offers the possibility to reference an expression through a
symbolic name. A statement function is defined in the following manner:

FUNCTION Fname | Argl, Arg2,...]| = Expression

where Fname is the symbolic name used to reference the function, Argl, Arg2,... is the dummy argument
list and Expression is any valid MCL expression using the arguments from the dummy argument list. A
statement function must not contain a forward reference to another statement function and its symbolic
name should not coincide with any of the reserved keywords or with any other symbolic name previously
declared. Array elements and intrinsic variables are not allowed into the dummy argument list of a
function. Some examples of valid FUNCTION statements are given below:

FUNCTION G[A,B.C]=A**B—B**C
FUNCTION ROOT[A,B,C] = (—B+SQRT[B**2—4+ A * C])/(2 * A)
FUNCTION F[A,B] = 3. * A — X[3] + B » x VALUE + FFF/2

Since the user may find a bit confusing the use of both commas and semicolons as separators and the use

C.S. Chassapis et al. / Optimization oriented programming language 227

Table 2

X[1:DIM] Current values of the minimization parameters

L[1:DIM] Lower bounds for the minimization parameters

R[1:DIM] Upper bounds for the minimization parameters

FIX{[1: DIM] Fix-status for the minimization parameters, zeros correspond to fixed variables

GRAD[1:DIM] Partial derivatives of the objective function

MARG(1:DIM] Bound-status for the minimization parameters, the values: —1, 1, 2 and 0, indicate the existence of:
lower, upper, lower and upper, and no bound, correspondingly

STEP[1 : DIM] Current values for the search-steps

TCOUNT Total number of calls to the objective function

PCOUNT Number of calls to the objective function, counted since the last issue of a RESET statement

VALUE The current value of the objective function

DIM The number of the minimization parameters (i.e. the dimensionality of the objective function)

PRECISION Equals to: 10”9, where 4 is the estimated number of significant digits used by the machine

BACKUP Equals 1, 2, 3 for the BACKUP options: NOBACK, LASTBACK, FULLBACK

DERIVA Equals 1, 2 for the DERIVA options: ANAL, NUMER

PRINTO Equals 1, 2, 3 for the PRINTO options: NOPRINT, HALFPRINT, FULLPRINT

USERSO Equals 1, 2 for the USERSO options: ROOKIE, EXPERT

CALLBY Equals 1, 2 for the CALLBY options: NAME, INDEX

PROCES Equals 1, 2 for the PROCES options: BATCH, IAF

PANEL Equals 1, 2 for the PANEL options: PANEL-OFF, PANEL-ON

of both parentheses and square brackets as grouping marks, the following simple rule should be kept in

mind:

Array subscripts, as well as function arguments, are separated by commas and grouped by brackets, while
statement parameters are separated by semicolons and grouped by parentheses.

MCL offers a number of intrinsic functions whose names are reserved keywords, and need no declaration.
They are all listed in table 3 along with their meaning,.

When referencing an intrinsic or a statement function, the arguments can be either simple variables or
valid MCL expressions.

2.2. Control statements

These are divided in the following categories: Assignment, /0, Conditional and Unconditional
flow-control, Loop and MERLIN statements.

2.2.1. Assignment statement
The assignment statements are used to store a value in a given variable or array element. The syntax is

as:

V = Expression

where V is the symbolic name of a simple variable or array element, whose contents are to be replaced by
Expression. We must point, that V' cannot be any of the intrinsic MERLIN variables or array elements.
For these there are special statements that one should use.

Expression can be any valid MCL expression. A few examples are shown in table 4.

228 C.S. Chassapis et al. / Optimization oriented programming language

Table 3
Intrinsic functions (all names are reserved)

ABS[X]
TRUNC[X]
ROUNDI[X]

SQRTIX]

LOG10{X]

LOG[X]

SIN[X]

COS[X]

TAN[X]

ASIN[X]

ACOS[X]

ATAN[X]

SINH[X]

COSH[X]

TANH[X]

ASINH[X]
ACOSHIX]
ATANH[X]

MOD[X,, X,]
MIN[X,, X,,....X n]
MAX[X,, X,,....Xn]
MEAN[X,, X5....,X]
FACT[X]

(X1

integer part of X
nearest integer to X
VX

tog;o(X)

In(X)

sin(X)

cos(X)

tan(X)

arcsin(X)

arccos(X)

arctan(X)

sinh(X)

cosh(X)

tanh(X)

arcsinh(X)
arccosh(X)
arctanh(X)

X, modulo X,
min{X, X,,..., Xy}
max{X;, X,,...,Xn}
Xy +X,+ -+ XN)/N
factorial of the nearest integer to X

2.2.2. Input / output statements

MCL handles its input via the GET statement and its output via the DISPLAY statement.

i} The GET statement
The syntax is either:

GET A, B;...; D

or

GET 4; B,...; D FROM FileName

where 4, B,..., D are symbolic names of simple variables or array elements. FileName is the name of the
file, where the corresponding values reside. For every GET statement, all the corresponding input data
must be in a single line.

Table 4

Plain expressions MCL-expressions
Tri=ax?+bx+c TRI=A*X**2+B*X+C
z=m+1/a Z=M+1/A

a;=x;—1 Alll = X[1]-1

y = arctan(x) Y = ATAN[X]

y=vx Y =SQRTIX]
(x<0U(y=1) (X <0)OR (Y >=1)

(x>0)N(y<1) (X > 0) AND (Y <=1)

C.S. Chassapis et al. / Optimization oriented programming language 229

When the first format is used, MERLIN’s default input file is assumed. Upon execution, the contents of
A, B,..., D assume the input values, in an one to one correspondence from left to right. A few examples
follow:

GET A;I;B[I - 2];PRESSURE;FIRST_ROOT
GET C;D FROM SPECIAL_FILE

ii) The DISPLAY statement
The syntax is either:
DISPLAY A; B;...; D
or
DISPLAY 4; B;...; D TO FileName

where 4, B,..., D are either expressions or character-strings delimited by single quotes. Character-strings
may contain any character except the single quote (") and can be at most 60 characters long. Each
arithmetic expression is evaluated and its value is output. For each delimited character-string the output
consists of the string itself. Note that underscores do appear in the output if they are part of a string.

FileName is the name of the file, to which the output is directed. When the first format is used,
MERLIN’s default output file is assumed. In the examples below

DISPLAY 'FINAL_VALUE IS’;FF;’CENTIMETERS’

DISPLAY 'NEW PERIOD’;SQRT/[4 * X[1]] TO FILE1
we obtain the following output in the default output file, and in FILE1, respectively (assuming FF = 13.0
and X[1] = 1).

FINAL_VALUE IS 13. CENTIMETERS

NEW PERIOD 2.

As you may observe, the output format for numbers is fixed.
It should be kept in mind that the following filenames are reserved by MERLIN and cannot be used for
1/0:

HELP, DATA, STORE, INIPO, DISPO, BACKUP and MACROF.

2.2.3. Conditional flow-control statements

(i) The Block-If

A Block-If consists of the IF condition THEN, ELSE and ENDIF statements. Each IF condition THEN
statement must be balanced by an ENDIF statement. A Block-If provides for the selective execution of a
particular block depending on the validity of the condition. The syntax of the Block-If is:

IF condition THEN

Block of: statements, label-lines, comments
ELSE

Block of: statements, label-lines, comments
ENDIF

with condition being any valid MCL expression.

230 C.S. Chassapis et al. / Optimization oriented programming language

The ELSE statement and the second block are optional. If condition is true, the first block is executed
and the control transfer to the statement immediately following the ENDIF statement. If condition is false,
then, if a second block exists, it is executed and the control transfer to the statement immediately following
the ENDIF statement.

No jumps are allowed inside an IF-block from a point not belonging to that block (via a MOVE statement
described later on).

Each block may contain more than one Block-If constructs. Since each Block-If must be terminated by an
ENDIF, there is no ambiguity in the execution path. Note that both ENDIF and END IF are acceptable.
The following is part of an MCL program, that may serve as an example of a Block-If structure:

IF (X[K] <= 77.9) AND (VALUE <= 1.0E-3) THEN
SIMPLEX (NOC = 100 * MEAN[RATE[1],RATE]|2]])
SHORTDIS

ELSE
ROLL % use ROLL with the default parameters.
GRADDIS (ERR = 0.00094)

ENDIF % end of Block-If structure.

(ii) The WHEN statement
This is a one-line conditional statement. Its syntax is:

WHEN condition JUST ncnlcs

with ncrles being any control statement besides the LOOP and the conditional statements.

If condition is true, then the ncnlcs statement that appears immediately after the JUST keyword is
executed. If the condition is false, the control transfers to the statement of the next line and the ncnics
statement are ignored.

As an example one may have:

WHEN TRUNC[J] :=: 11 JUST MINIMAL = VALUE

2.2.4. Unconditional flow-control statements
These refer to the statements MOVE, FINISH and PAUSE.
The MOVE is the only unconditional branching statement supported by MCL and its syntax format is:

MOVE TO word

where word is the symbolic name of the label at which the control is to be transferred. A label-line has the
form:

word :

where word is the label name, and it can be any valid MCL symbolic name. Note that it has to be followed
by a colon. Labels are used inside a program as addresses where the control may be transferred. Duplicate
label names are not allowed.

The FINISH statement results in program’s termination. The control is transferred to MERLIN’s
operating system. The syntax format is:

FINISH

If an MCL program ends without a FINISH statement, even though this is not aesthetically pleasing, it
will not cause any problems, since the compiler places a FINISH at the end of the object code anyway.

C.S. Chassapis et al. / Optimization oriented programming language 231

Table §

> This program calculates the sum of the ten elements of array A
VAR [;SUM;A[1:10]
SUM =0
I=0
START:
I=1+1
> Read a value for A[I] from the file: MYFILE
GET A[l] FROM MYFILE
SUM = SUM+A[]]
> Check if all ten elements are added.
WHEN I <10 JUST MOVE TO START % repeat the procedure
> Output; the message: SUM =,
> and the value of the variable SUM, to file RESULT.
DISPLAY 'SUM =’;SUM TO RESULT
> Terminate program’s execution:
FINISH % Control is transfered to MERLIN.

The PAUSE statement results in execution’s suspension. This command is only for interactive
MCL-use. One can resume execution with an entry from the keyboard. The syntax format is:

PAUSE

An example illustrating the use fo MCL features described so far, is shown in table 5.
2.2.5. Loop structure

A) The LOOP statement
This statement provides the means for repeating a block of statements. Its syntax is:

LOOP Var FROM init TO final BY step
Block of statements, label-lines or comments
ENDLOOP
or
LOOP Var FROM init TO final
Block of statements, label-lines or comments
ENDLOOP

where Var is a simple variable used to control execution of the loop statement, referred to as the loop
control variable, and init, final and step are expressions. Upon LOOP entry, the expressions init, final and
step are calculated. If the second form of the statement is used (where step is omitted), step defaults to 1.
Var is then assigned the value of init and the program proceeds normally until the ENDLOOP statement
is reached. Var is then incremented by the value of step and checked against the value of final. If this
value has been reached or exceeded, the program proceeds with the statement immediately following the
ENDLOQOP. Otherwise the control transfers to the statement following the LOOP statement, and the
above process is repeated.

232 C.S. Chassapis et al. / Optimization oriented programming language

Nested LOOP structures are allowed. For example the following is an acceptable part of an MCL
program.

LOOP A FROM 1 TO 10
LOOP B FROM 4 TO 19 BY 0.1
XT=XT*B+A
END LOOP
END LOOP

Each LLOOP statement must have a corresponding ENDLOOQP statement, which can be written either as:
ENDLOOP or as: END LOOP

If a variable is used as a loop control variable, it should not be used as a control variable in another
loop nested inside the first one. Loop control variables should not be assigned any value, via an
assignment or GET statement inside the loop they control. The only way to enter a LOOP is by its initial
LOOP statement. Attempting to transfer the control inside the loop-block, from the outside, will result in
an error.

Block-ifs and loops should be properly nested. This means that:

i) all biock-ifs inside a loop-block must be terminated (by an ENDIF statement), before the corre-
sponding ENDLOOP is encountered, and

i1) all loops inside a block-if must be terminated (by an ENDLOOP statement) before the correspond-
ing ELSE or ENDIF is found.

B) The EXIT statement
This statement is used to exit a loop and transfer program control to the statement immediately
following the corresponding ENDLOOP. Its syntax is simply:

EXIT
An example of its use follows:

LOOP I FROM 1 TO 10
XT=XT=*1
WHEN I :=: A JUST EXIT
ENDLOOP

EXIT can be used only inside a LOOP-block.

2.2.6. MERLIN statements
These statements instruct MERLIN for the route of action and are in direct correspondence with the
synonymous MERLIN commands an interactive user would issue to guide the minimization process.
There are parametric and non-parametric MERLIN statements. The EXECUTE statement, that has no
synonymity with any of the MERLIN commands, is in close connection with the MERLIN macros and it
is described at the end of this section.

a) Non-parametric MERLIN statements

These are: ADJUST, FULLBACK, HALFBACK, NOBACK, ANAL, NUMER, FULLPRINT,
HALFPRINT, NOPRINT, INDEX, NAME, MODEDIS, SHORTDIS, VALDIS, CATALOG, MEMO,
LOOSALL, STEPALL, RESET, REVEAL, PANELON, PANELOFF, STOP and RETURN.

The syntax format is:
CommandName

where CommandName is any of the above statements.

C.S. Chassapis et al. / Optimization oriented programming language 233

b) Parametric MERLIN statements
These statements use order independent parameters and are distributed among the following catagories:

(i) simple parametric statements,
(ii) special parametric statements and
(iii) special assignment statements.

Each parameter may be specified at most once.

(i) Simple parametric statements

These are the statements: RANDOM, CONGRA, DFP, BFGS, ROLL, SIMPLEX, GRAPH, AUTO
(associated with panels) and
GRADCHECK, GRADDIS, ACCUM, PICK, REWIND, HIDEOUT, DISCARD, QUIT (associated with
input parameters).

Their syntax format is:

CommandName (K, =V; Ky=V,;,...,; Kyn=Vy)
CommandName can be any simple parametric statement, K,, K,,..., K, are keywords identifying either
the panel or other input parameters, V3, V;,..., Vy are either expressions or filenames depending on the

nature of the keyword.

For the panel-associated statements as well as for the GRADCHECK and GRADDIS statements, one
needs not to specify all of the keywords since there exist default values. For the rest of them all keywords
have to be specified.

In table 6, we list the identifiers for the panel-associated statements, in the same order as they appear in
the MERLIN-Panels. Similarly in table 7, we list the identifiers for the statements ACCUM, PICK,
GRADCHECK, GRADDIS, REWIND, HIDEOUT, DISCARD and QUIT along with their allowed
values.

A few examples follow:

ACCUM(NOC = 1000;NOP = 3;TARGET = 1 0E-13)
DFP(NOC = 300;TOL = 0.06)

For statements associated with only one input parameter, the corresponding keyword may be omitted. For
example the statements: GRADCHECK(0.00018) and GRADCHECK(ERR = 0.00018) are equivalent.

Table 6

Statement Keys

RANDOM NOC,VEX,STEP,CSIZE, FAIL,LINE,PRI,CANCEL
CONGRA NOC, TOL.ERR,USEG,PRLLWALL,CANCEL

BFGS NOC,TOL,ERR,USEG,USEH,PRLLWALL,CANCEL
DFP NOC,TOL,ERR,USEG,USEH,PRI,WALL,CANCEL
ROLL NOC,TOL,STEP,FAIL,PRLWALL,CANCEL
SIMPLEX INIT,INITOL,INCALL, TOLNOC,PRI,CANCEL
GRAPH VAR,NOP,FROM,TO,LINES,COLS,CANCEL

AUTO NOC,TARGET,CANCEL

234 C.S. Chassapis et al. / Optimization oriented programming language

Table 7
Statement Keys Type
ACCUM NOC.NOP, TARGET Expression
PICK REC Expression
FILE File name
GRADCHECK ERR Expression
GRADDIS ERR Expression
REWIND FILE File name
HIDEOUT FILE File name
DISCARD FILE DISPO,STORE,BACKUP
QuUIT FLAG Expression

As a further illustration, a portion of an MCL program involving the GRAPH statement follows.

LOOP I FROM 1 TO DIM

AROUND = X[I],/1000.

GRAPH(VAR = I;FROM = X[I] - AROUND;TO = X[I} + AROUND)
END LOOP

(ii) Special parametric statements
These are the statements: DEMARGING, FIX, LOOSE and INIT. They obey the following syntax:

CommandName (K, - V,; Ky Vi oKy Vy)

The specifiers K, K,,..., Ky, can be:

X for the FIX and LOOSE statements,

L or R for the DEMARGIN statement, and

X or L or R for the INIT statement.

Vi, Vy,....Vy, are expressions for DEMARGIN, FIX and LOOSE, while for the INIT valid filenames.
Note that in the INIT statement each specifier can be used only once. For example the statement:

INIT(X.FIL1;X.OTHER) 1s illegal.
A few examples follow:

FIX(X.1;X.5) % Fixes the variables X[1] and X[5]
DEMARGIN (L.2;R.4) % Removes the left margin for X[2] and the right margin for X[4]
LOOSE(X.7;X.1) % Looses variables X[7] nand X[1]

INIT(X.STARTX;L.LMAR) % The arrays X and L are assigned values residing in the files
% STARTX and LMAR correspondingly

(iii) Special assignment statements
These are the statements POINT, STEP, MARGIN and GODFATHER, and obey the following
syntax:

CommandName(K, Vi =E ,; K, Vs, =E 5;...;. Ky.Vy=E_y)

K,, K,,..., Ky, are:
X, for the POINT and GODFATHER statements,

C.S. Chassapis et al. / Optimization oriented programming language 235

L or R, for the MARGIN statement and,

S, for the STEP statement.

Vi, Va,..., Vy, are expressions.

E,, E,,,..., E, 5, are either expressions or, in the case of the GODFATHER statement, valid MERLIN
names.

One may wonder why instead of using simple assignment statements, we employ the POINT, MARGIN
and STEP statements to assign values to the corresponding intrinsic arrays X[1:DIM], L[1:DIM],
R[1:DIM] and STEP[1:DIM]. The reason is that changing values of the intrinsic arrays X[1:DIM],
L[1: DIM] and R[1: DIM] is quite dangerous. MERLIN has several safeguards to protect the user from
such traps. In the case of array STEP[1: DIM], there is no danger, and it could have been done through a
simple assignment statement. However, the philosophy we followed throughout was to drive MERLIN’s
operating system, without affecting its internal structure.

Some examples follow:

GODFATHER(X.1 = PRESSURE; X.2 = VOLUME; X.3 = TEMPERTUR)
POINT(X.1 = 7; X.2 = SQRT[4 * 2 + 1] /3)

MARGIN(L.1 =8; R * *2=19)

STEP(S.1 = 5; S.2=0.001)

¢) The EXECUTE statement
This statement is in close connection with the MERLIN macros. Embeds a preconstructed macro in the
code at compile time, The syntax is as:

EXECUTE macroname

or

EXECUTE macroname FROM FileName

where macroname is a MERLIN macro-name as described in ref. [1] and FileName is the name of the file
where the macro resides.
In the first format, where there is no filename specification, MERLIN’s file MACROF is assumed.
MCL programmers do not really need to use preconstructed macros, since they can develop easier and
more efficiently any strategy that may be included in a macro. However, in extended versions of
MERLIN, in which a user has added his own commands, the EXECUTE statement is the only way to
embed these commands in an MCL program.

2.3. An MCL program for automatic minimization

The program shown in table 8, is the MCL implementation of MERLIN’s automatic procedure invoked
by the AUTO command. The strategy followed, whose flow chart is shown in fig. 1, is described below.

The methods BFGS, ROLL, SIMPLEX and RANDOM are invoked one after the other. For each of
them, a rate is calculated by dividing the relative drop in the function’s value by the number of calls spent.
The method with the highest rate is then invoked again. The same procedure is applied repeatedly. If all
rates assume vanishing values, then all the method tolerances are set to zero and the methods are applied
in the following succession:

ROLL,RANDOM,BFGS,SIMPLEX.

236 C.S. Chassapis et al. / Optimization oriented programming language

Table 8

> AN MCL ALTERNATIVE TO THE AUTO STRATEGY.
VAR TOTAL_CALLS; TARGET_VAL; CALLS; VAL_ BEFORE; WORK _ POSITION
VAR MEAN_ RATE; RATE[1:4]; BEST_ RATE; DENOMINATOR
DISPLAY ’.. ENTER TOTAL CALLS ALLOWED AND TARGET VALUE’
GET TOTAL _CALLS; TARGET_VAL
VAL_ BEFORE = VALUE
CALLS = T_COUNT
RESET
LOOP:
BFGS(NOC = 300)
WORK _ POSITION =1
MOVE TO DETAILS
RATE1_ READY:
ROLL(NOC = 300)
WORK _ POSITION = 2
MOVE TO DETAILS
RATE2_READY:
SIMPLEX(NOC = 300)
WORK _ POSITION = 3
MOVE TO DETAILS
RATE3_ READY:
RANDOM(NOC = 300)
WORK _ POSITION = 4
MOVE TO DETAILS
RATE4_ READY:
BEST_ RATE = MAX[RATE[1],RATE[2],RATE[3, RATE[4]] % GET HIGHEST RATE.
WHEN BEST_ RATE :=: RATE][1] JUST BFGS % INVOKE AGAIN,
WHEN BEST_ RATE :=: RATE[2] JUST ROLL % THE METHOD WHICH,
WHEN BEST_ RATE :=: RATE[3] JUST SIMPLEX % SEEMS TO WORK IN
WHEN BEST_ RATE :=: RATE[4] JUST RANDOM % THE BEST WAY.
WHEN VALUE <=TARGET_VAL JUST FINISH
MEAN _ RATE = MEAN[RATE[1},RATE[2], RATE[3], RATE[4]]
IF MEAN _ RATE <=0.00005 THEN
ROLL(NOC = 350;TOL = 0)
RANDOM(NOC = 5000;FAIL = 20)
BFGS(NOC = 350;TOL = 0)
SIMPLEX(NOC = 350; TOL = 0)
ELSE
WHEN T_COUNT - CALLS < TOTAL _CALLS JUST MOVE TO LOOP
ENDIF
FINISH % MCL PROGRAM USED ALL CALLS ALLOWED, OR RATES TOO LOW.
>
DETAILS: % THE RATE CALCULATIONS ARE PERFORMED HEREIN.
WHEN VALUE <=TARGET_VAL JUST FINISH
DENOMINATOR = ABS[VAL _ BEFORE] * P_COUNT + PRECISION
RATE[WORK _ POSITION] = ABS{VALUE-VAL _ BEFORE]/DENOMINATOR
RESET
VAL _ BEFORE = VALUE
WHEN WORK _ POSITION:=:4 JUST MOVE TO RATE4_ READY
WHEN WORK _ POSITION:=:3 JUST MOVE TO RATE3_READY
WHEN WORK _ POSITION:=:2 JUST MOVE TO RATE2_ READY
MOVE TO RATE1_ READY

C.S. Chassapis et al. / Optimization oriented programming language

TARGET_VALUE

start by entering
TOTAL_CALLS and

lVALUE {old} ~VALUE {new) |

| vaLug (o1 | scaris

A

I Calculate BFGS rate

n

Calcutate ROLL rate

S SV PO PR,

J

Calculate SIMPLEX rate

2
.

[P PR S

Calculate RANDOM rate

)

|

Determine method with highest
rate and use it again

NO

Fig. 1. Flow chart of the MCL implementation of MERLIN’s automatic procedure.

2.4. A tactic in MCL handling constraints

all calls
exausted

all rates
near zero
?
YES

(FINISH ye——| SIMPLEX |

237

One may observe that the MCL program is considerably more compact and easier to follow than the
corresponding MERLIN’s Fortran-code (subroutine MAGIC). This is a general rule. It is much easier to
write MCL programs, than FORTRAN additions to MERLIN.

The following is a naive MCL program, for a three-variable problem with one equality constraint. We

follow the suggestion given in Merlin’s [1] manual. If the problem is:
Minimize f(x, y, z), subject to: g(x, y, z) =0,
we construct the function: F(x, y, z, t) = f(x, y, z) + t * (g(x, V, 2))*

Fix the t-parameter to a positive value and minimize F with respect to x, y, z. Then enhance t and repeat.

> SIMPLE-MINDED MCL PROGRAM FOR ONE EQUALITY CONSTRAINT
VAR [; SUM
POINT(X.1 = 3;X.2 = 2;X.3 =55;X.4 =0.1) % initialize variables
PANELOFF % disable panel prompting
EAT:

LOOP I FROM 1 TO 10

POINT(X.4 = 10 » X[4]) % set the fourth parameter

FIX(X.4) % fix the fourth parameter

238 C.S. Chassapis et al. / Optimization oriented programming language

BFGS(NOC = 500) % invoke the BFGS method.
SIMPLEX % invoke the SIMPLEX method.
ENDLOOP
> Calculate the sum of the absolute values of the gradient components to use it as a termination criterion.
SUM =0.
LOOP I FROM 1 TO 3
SUM = SUM + ABS[GRADII]]
ENDLOOP
>
IF SUM < 1.E-3 THEN
SHORTDIS % print results
FINISH % done.
ELSE
STEPALL % calculate search steps
ROLL(NOC = 500) % invoke the ROLL method
DFP(NOC = 500) % invoke the DFP method
MOVE TO EAT % repeat
ENDIF

3. Description of the MCL compiler

A detailed description of the MCL compiler package (MCLCOM 1.0) can be found in the developers
manual (see appendix). Only some general features are discussed here.

The compiler is written in ANSI-FORTRAN 77 and it is truly portable. It can be considered as a
two-pass compiler. During the first pass, four operations take place on each line of the MCL program,
with the exception of comments and blank lines which are skipped. Packing, that eliminates irrelevant (to
the compiler) blank spaces and underscores; lexical analysis, that transforms each line into tokens
(syntactic entities that ease the code generation); parsing, that performs syntax-checks and arranges for
appropriate error-messages, and assembling, that creates the basic object code, which however may not be
executable at this stage (assembling and parsing are closely interrelated). The second pass, takes care of the
loops, of the jumps and of the associated labels, checks the validity of the nesting structures and generates
the MERLIN Object Code (MOC), which is executable from the new MERLIN-2.0 package [2].

Three files are associated with the compiler

(i) The file where the MCL-program resides.
(ii) The file where the MOC is disposed at.
(iii) The error list file.

The error list file, contains the incorrect lines (if any) of an MCL program, along with a brief explanation
of the errors. When incorrect lines have been detected, MOC is not generated.

The file-names for these three files may be specified when MCLCOM is invoked, together with some
additional parameters which define the compiling environment. The additional parameters are:

(i) BOUNDS
which if selected, the generated object code, performs special checks to prevent array boundary violation.

(ii) DEBUG

C.S. Chassapis et al. / Optimization oriented programming language 239

which if selected, each time a run-time error occurs, MERLIN 2.0, apart from the error message, will issue
additional information concerning the line of the MCL source program, which caused the error.

Acknowledgements

The authors would like to thank Dr. G.A. Evangelakis, Dr. I.C. Demetriou, T.M. Liakopoulos and Prof.
LN. Demetropoulos for illuminating discussions.

Appendix. Description of the developers manual

This manual is a technical reference to both MCL and its compiler. The complete syntactic definition of
MCL (in Extended Backus Naur Form) can be found there, together with a detailed description of the
compiler, and with modification and installation directives. All routines are described one by one. An
informal description of the MOC instruction set is given. Furthermore a complete list of the error
messages is given together with their meaning and correction hints.

References

[1] G.A. Evangelakis, J.P. Rizos, LLE. Lagaris and I.N. Demetropoulos, Comput. Phys. Commun. 46 (1987) 401.
{2] D.G. Papageorgiou, C.S. Chassapis and LE. Lagaris, Comput. Phys. Commun. 52 (1989) 241.

