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Abstract: We report results of variational calculations of models of nuclear matter in which the nuclear
interaction is approximated by a sum of central, spin, isospin and tensor forces. The models are
based on realistic potentials such as those of Reid, Bethe-Johnson, Hamada-Johnston, and
Gammel-Thaler. The correlation operator in the variational wave function contains central, spin,
isospin and tensor terms. We briefly review the Fermi-hypernetted-chain, and single-operator-
chain (SOC) methods used to calculate the energy expectation value. The energies obtained for
these simple models by various variational and reaction matrix calculations seem to be in reasonable
agreement. Results with the SOC approximation for the v; model of neutron matter, in which the
interaction has only central and spin components, are also reported. These are in good agreement
with the energies obtained by summing multiple operator chains.

1. Introduction
Variational theories of nuclear matter are generally based on the Hamiltonian:
h2
H=% -——Vi+¥ T v°(r,)0% (1.1)
T 2m i<ip

where v” (r;) are functions of |r, — r,|, and O are operators. In principle we must take
as many operators O} as are required to explain the NN scattering data at
non-relativistic energies. However we will consider only the following eight opera-
tors:

05'-1'8 =1,0;:" T Ti " Th (o:- 0'1)(‘1'1 : Tj), Su, Su(‘l't - TI): (L- S)u, and (L - s)u(‘ft y Tj),
(1.2)

where S; and (L - §); are the tensor and spin-orbit operators. For convenience we
will occasionally use the superscripts ¢, o, 7, o7, 1, tr, b and br insteadof p=1, 8 to
denote the O, v” etc.

At least two more operators, containing quadratic spin-orbit terms, and possibly
many more are required to describe realistic potentials in this fashion. Models of
nuclear matter based on Hamiltonians that neglect some of the operator depen-
dences of the potential are popularly called homework models. The simplest of these,

t Supported by NSF PHYS 76-22147.
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114 I. E. LAGARIS etal.

such as v; and v, have only a central potential 1y, while v has a central plusao; - o,
potential and is used for neutron matter ). The models vs and vs respectively have
the operators O%~"° and O%~"® in their Hamiltonians.

We hope to calculate the equation of state E(p) of nuclear matter with a

correlation operator:

Fi= ¥ ()05, (1.3)

p=1,n

and a variational wave function
v,=Il F) . (1.4)
i<j

Here ¢ is the Fermi-gas wave function, and the product of %; is symmetrized
because the ¥, do not commute. The f°, f” and f7" partly simulate the /-dependence
of the correlation due to backflow *) and are non-zero even when v°, v” or v are
zero as in the v; and v, models. The tensor and spin-orbit correlations are generated
respectively by tensor and spin-orbit forces. Thus in eq. (1.3) n =4 in models v,, v,
and v,, while n = 6,8 in models vs and vs respectively.

The v, model has been studied with a more general wave function that contains
three-body and state-dependent two-body correlations. *) In this case the three-
body correlation is found to be negligible, but the state-dependent correlation is not.
The 7, 7 and f°" can simulate the correct state-dependence of correlations only at
small momenta. In the v; model the E(p) calculated with (1.4) is found to be
=(0,5—3.0 MeV too high in the density range k= 1.3-2.0 fm™'. This provides some
indication of the effect of neglecting momentum-dependent terms in the correlation
operator (1.3). How well the wave function (1.4) does in describing the many-body
spin, isospin, tensor etc. correlations is a very open question.

In principle the f* should be obtained by minimizing the energy by generalizing the
methods being developed by Lantto and Siemens. *) However, near equilibrium the
E(p) is not very sensitive to the specific choice of f*, and so we follow an approximate
procedure. A set of #; described by parameters d and B,>1:

Fid, Bo>1)=Fd, )+ L Bf(d,ry) Of (1.5)

P=2.n

is used to calculate the E(p,d, 8,>1). The functions f°(d,r) are obtained by
minimizing the contribution of two-body clusters to the energy, under “healing”
constraints

F(r>d)=1, Vg"(r=d)=6, (1.6)

meant to simulate variation of the many-body cluster contributions %), The opti-
mum healing distance is determined variationally. Eq. (1.6) implies f* >L(r>d)=0,
and the parameters B,-; simply vary the magnitudes of the f*~'(r) in &; since



VARIATIONAL CALCULATIONS 115

f(r>d)=1, there is no B.. The f°(d, r <d) satisfy coupled Schrddinger-type
equations ’) that are easy to solve.

2. The chain summations

The numerator and the denominator of the energy expectation value:

(@& 1 FHIHIZ T F)&)
E= = = 2.1)
(11 FHI& _l;lj F)P)

i<j

are expanded in powers of short-range functions F* (r;),
Fin=f*(n-1, F' (=20, (2.2)

and 27 (r)f*" (r). The resulting terms are represented diagrammatically using the
dictionary of elements shown in fig. 1. We will refer to elements 1-3 of fig. 1 as
correlation lines, and elements 6-8 as derivative lines. Element 5 is called an
interaction line, and

2
PHY =0 ( =V ()80t 0* O 1) 23)

Detailed diagram rules can be found in refs. ”*%); the following discussion is meantl‘l
merely to clarify the notation.

Briefly the diagrams contain two or more points representing coordinates 7. Each
point of a denominator diagram must be connected to another by a correlation line.
Numerator diagrams are divided into four classes W, U, Wr and Ur. The W-
diagrams must contain one interaction line mn, while the U-diagrams have two
derivative lines mn and mo. The Wg(U¥) diagrams have a derivative line mn and a
derivative state line (element 9 of fig. 1) joining mn(mo). Numerator diagrams can
have one or more points other than mn (o) each of which must be connected by a
correlation line to either m, n, (0), or another point.

Exchanges are shown by state lines (element 4 of fig. 1) which must form closed
non-touching loops. The derivative state line in Wr and Uy diagrams must also be in
a closed exchange loop. On momentum summation the state line e™*""* becomes the
familiar Slater function /;:

ly =~ (sin (kgry) — ksry co8 (kery)). 2.4)
(kery)

An exchange loop with (a + 1) particles (and thus (a + 1) state lines) can be produced
by (a) pairwise exchanges. Thus there is an exchange operator:

-1+05+03+07) 2.5)
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Fig. 1. Dictionary of diagrammatic elements.

associated with all but one state lines ; in the loop. The line to be omitted can be
chosen for convenience.

A general cluster exapnsion for noncommuting correlation operators, like %;;, has
been derived previously®). The first term in the expansion is the sum of all
irreducible numerator diagrams. Additional terms coming from separable diagrams
contribute only through commutators of the operators contained in ¥,.

The potential energy and kinetic energy terms having (V2,&,,) are given by
W-diagrams, while U and (Wg+ Ug) respectively give the kinetic energies asso-
ciated With (VnFms) * (VnFimo), and (VuFi) * (V®) terms. The (V2,P) terms give
the Fermi gas kinetic energy Tx(=0.3 #*k%/m). We first consider the irreducible
diagrams which cannot be broken into two pieces at any articulation point. Their
contribution is given by the product of an integral and a C-factor. The integral is over
all r; of all the functions of r; represented by the lines in the diagram, while the
C-factor takes into account the product of operators associated with the lines.

The [] O% can always be written as:

[1 0% = C[10%) +rest, 2.6)

where C([1O%) is independent of any o; or 7, while the rest contains terms that are
linear in at least one o; or 7; and goes away on spin-isospin summation. Due to the
(& [1i<;j F4) in (2.1) the operators Of; in a diagram can occur in various orders, and in
general the C(f] O%) depends upon the order of the operators. Let the probability of
their occurring in a specific order represented by []. Of; be w,. The C-factor of the
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diagram is given by:
X w.C (l'[ Of}) (2.7)

The general rules for calculating C([TO%) are given in ref. °). Their calculation is
simpler for the HOE‘,-“ and hence the E(p) of v models can be calculated more
easily. Henceforth, unless stated explicitly, we will assume p =6, and restrict
ourselves to vs models. The C([[O}) in vs models is non-zero only when the
operators O%=? form closed rings.

The chain equation '°).

Gij = O¢Xy, (Xiy + Gyy)), (2.8)

offers a method to sum important diagrams in an orderly fashion. The G;; is the sum
of all chains formed with links X;;.X1 . . . X,,—1,,X,;(n =1, 00), while 8 is an integral
operator that couples the links. The links and chains in nuclear matter are denoted by
X%,y and G%, 4, where p refers to the associated operator O%, and xx' refer to the
exchange pattern at the ends / and j. If / and j are not exchanged xx' =dd; xx' =deif i
is not exchanged and j is exchanged in a closed loop contained within the link or the
chain. The i and j are both exchanged in closed loops inside the G%, ; and X?, ;, while
X?.; and GZ.; have an incomplete exchange loop passing through i and j. This
classification of the X and G with exchange pattern was first suggested by Fantoni
and Rosati '), though our notation is somewhat different than theirs. It is very
convenient because the X . ;x and X, x; cannot form a chain unless x'y = dd, de, ed
or cc.
The & operators are obained from the identity:

s |dseonon=[as 3 emol; 2.9)

=1,6

here ¢, is the azimuthal angle of r; with respect to the axis #;. The chain equations
for dd, de and ee chains in nuclear matter are of the form:

G ’x.x'.l'i =) GW{ (X 3y (X yxr i + Gyrx ki), (2.10)
z
e = j d’re £57 if yy'=dd, de ored
=0 otherwise. 2.11)
The ¢3¢ are given in ref. 5).

The diagrams summed by (2.10) depend upon the chosen link functions X2,.. In
the FHNC/SOC approximation the links are allowed to contain hypernets of G2,
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but only single chains of 0”2 operators. Thus the X%, for example become:

Xoa={f"+ z 6A’(f*+f°asd)’}exp(czd)—1—ezd, (2.12)
X552 =(F° + 1~ G%) exp (Gia)— Gla, (2.13)

where the A? are defined as:
C(070) = A8, (2.14)

The FHNC/SOC approximation should be reasonable when F*=2, f°*? and G%3>
are «1.

The G5, sum all the FHNC diagrams due to the central correlation f° plus
diagrams that have closed single operator rings (SOR) as illustrated in fig. 2.1,2. The
G also contain diagrams with touching SOR’s (2.3 for example) but their C-part is

2.4 25 2.6
7
/
/

i i i J i j
.7 2.8 2.9
e N \\ I

L AN
i i i i i i
2.10 2.4 2.12

Fig. 2. Examples of chain diagrams.
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grossly approximated. ®) However, when f°=2 and G25> are « 1 these ill-treated
diagrams should be very small.

Some of the simpler diagrams summed by the FHNC/SOC G2%2, xx' =dd, de and
e¢ are shown in fig. 2.4-6; these can contain any number of G- dressings which are
not explicitly shown. Due to the SOC restriction diagrams of type 2.7-8 are not
included in the GZ%5%; the operator algebra of these diagrams is non-trivial.
However, when F**? and G252 are both « 1 the neglected diagrams are much
smaller than those summed. It should be noted smallness of the magnitude of F**>
does not imply that the Gi; diagram 2.4 is smaller than 2.9, when f* have a
range > ro. In general when (d/ro)* > 1 the chain diagrams need to be summed. All
but one of the exchange lines in a G chain carry an exchange operator, thus in the
SOC approximation the G2 can have at most one F” or G% link, as illustrated in
diagrams 2.10-12, which merely *“fills up the gap’”. The detailed equations for G%
are given in ref. %).

3. Calculation of the energy

It is convenient to define three matrices K%, L** and Dj, to calculate the energy
from the chain functions G%,.. The K** is defined as:

0.0, =§ ok K (3.1)
From eqs. (3.1), (2.9) and (2.14) we obtain
[ 61 (000t 00 = [ as, 2 K"EIIA (3.2)
The L% is defined as:
[ a6, cot0t0h08 = [ as, s LY, (3.3)
L=+ KA 3.9
The + sign applies when
C(O:m![o{mn OIL'I]OII:I)=0’ (3-5)
and the — sign when
C(Onn{O%n, Om1}041) =0. (3.6)

In the ve problem it can be shown ’) that either (3.5) or (3.6) is valid if K" and £55}
are nonzero. The D;; is used to calculate the contribution of separable diagrams:

C(OmmnlOf1, OnnlOh1) = 84, 8y A'A'D,,. (.7
Useful symmetry properties of the K- and L-matrices are reviewed in ref. ).
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The energy given by the sum of W, U, Wr and Ur diagrams can be calculated
within the FHNC/SOC approximation with the help of matrices A, K, L and the
G?.. We illustrate the method by calculating some of the contributions to W, the
complete calculation is given in ref. ’).

. The W-diagrams are divided into four classes Wy, W., W, and W, as illustrated in
fig. 3.1-4. Diagrams of any class can have any number of G5, . chains, and any
exchange pattern, neither of which are shown in fig. 3. The only operators in W,

el
eonR—
m iljvk n m ijk n
Wy (3.1) We (3.2)
G'
OR : 5
— <:S OR
m i‘j.k n m i'j'k n
Ws (3.3) Weg (3.4)
OR
6l OR
m ijk n m )k n
OR
(3.5) (3.6)
OR OR OR
(3.7) (3.8)

Fig. 3. Classification of W diagrams.

diagrams are the O, O..., O%, associated with the %', H,., and %,.,, and
possibly the O, associated with the exchange of mn. Please avoid confusion
between operator labels i, j, k, , m, n. . . and particle labels m, n, 0 . ... We get:

Wo=3p mzl . ErHFR K A% (1+ G )+ GS)

—p Y Y | ErfHIF L KK A™ (3.8)
Lik=1,6 :'-_1146
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where h° takes into account the hypernetted Gy chains:

h°=exp (Ga), (3.9
the generalized Slater function £ contains the G¢. chains:
ZL(r)= —Il(ker)+4 G:(r), (3.10)

and the K and A matrices give the C-factor.

The W. diagrams have the operators O;;0%5,0%...0%4 in G52, where
1,2,3...a are the internal points in the chain, in addition to the operators
0., O’y O%,. and possibly O%,.. Their C-part depends upon the order of the
operators I, I". i, j, k and n (we denote O.,, by i for brevity), while the positions of
operators p, q...in the middle of the chain are irrelevant. The C-factor of W,
diagrams has to be calculated with eq. (2.7). The probabilities w depend upon the
exchange pattern xx’ and so the W(xx'), which give the contribution of Gir-, to
W, have to be separately evaluated.

Let us consider W.(de) diagrams in which the operator !” comes from exchange
and may be placed at either end of the product. The I’ may be associated with ¥,,; or
! .1 and so we have to consider orders: I"ijkl’, I"ijl'k, I"il'jk and I"] 'ifk all occurring
with probability w = 1. The C-part in these orders can be calculated in terms of the
A-, K-, L- and ¢-matrices, and we obtain:

Wide)=p I % [drfHGL AR
Lik=1,6 I=2,6
m=1.6

+KUmp Km y glkmyp imy pe(14+GS),  (3.11)

all the £-functions being contained in the Gi..

In the W, diagrams (fig. 3.3) the operator ring (OR) that can be separated at the
articulation point n can be formed either with an f4;f5, element (I =2) or with a
Gy .n1Fr1. The contribution of these separable diagrams is proportional to the
difference between the C-factor of the connected diagram and the product of the
C-factors of the two separated pieces. Let us consider the simplest of the W,
diagrams in which there are no central G}, dressings or exchanges, and the OR is
ff.,ff.l. The difference between C-factors is then:

CWi, Bili, Y —cijk)C(ll) =K "™ A*A' (Dy + Dy + Dy). (3.12)

In this way we can calculate the operator parts of W, diagrams in terms of A ; K- and
D-matrices.

It is possible to treat W, diagrams (3.3) exactly as vertex corrections at vertices m
and n of W, diagrams (3.1) ’)] The diagrams of type (3.5) and (3.6) can be treated as
corrections at the vertices within G4,. Vertex factors can be easily inserted in the
chain eq. 2.10-11 ®)] The W, diagrams (3.4), and those of type (3.7) can also be
summed with a very reasonable accuracy of =0.2 MeV as corrections to diagrams
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(3.2) and (3.3) respectively. However, the diagrams of type (3.8) are neglected at this
stage, the magnitude of their contribution could be =5-10% of W,.

4. Results

The Reid v and BJ-II vgs models are obtained by expressing the 'So, *S; —
’D,, 'Py, and *P,—>F; potentials in the Reid '*) and Bethe -Johnson-II **) inter-
action modelsas ¥, v*(r)O'~"%, The (L - §) potentials are neglected in the vs models.
The HJ vs model is obtained by neglecting the (L - §) and quadratic spin—orbit terms
in the Hamada-Johnson '4) potential, while the Gammel-Thaler 5200 '°) (GT-
5200) potential is itself of a v form.

The o+ and #r correlations and chains are most important in nuclear matter, and
the f, 7, G% and G3, in the Reid v model are shown in fig. 4 for d =2.25 ro, and
Bi-26=1.The G'** are very long ranged, and particularly the GZ:+ are comparable
to f'=2. For such cases the 8(Xy, Gy;) term in Gy [eq. (2.10)] is important, and it is
necessary to solve the integral chain equations. However, the f'=? and G'=>are very
small in magnitude and thus the SOC approximation should be valid.

T 1 T
0.04[- e .
(oM Ggq 1 10
0.02 :\m -
) ':\ —
Y p
-0.02F N\, T -
\ 2
\\ ‘:s;'xfcr
o - rd
-0.041 Nty .
1 1 1
0 ] 2 3

Fig. 4. The f~, f", G% and G4, in nuclear matter at kg=1.6fm™*, d =2.25 r, Byx1 = 1.

The energy is more sensitive to 8,, and d than to 8,,, and it is very insensitive to
Bo B. and B.. The equilibrium value of B,. is close to unity, however that of B, is
generally <1. The E(kF, d, B;) for Reid (BJ-II) v¢ model at its minimum is given in
table 1 (2). The f°, f™ and f°" lower the energy by 2(5) MeV. There is a very large
cancellation between the two-body and many-body cluster contributions (MBCC)
due to f°, f™ and f°". The largest contribution of f* and f™ to MBCC is via the W,.
The E(p) of these models is shown in fig. 5, along with the “experimental” E(p) and
crude estimates of that of the vg models ’). The difference between vs and vg is
significant and indicates the importance of (L - §) contributions to nuclear energy.
Unfortunately, the vg models are much harder to treat accurately.

The recent '®) Reid vs model results obtained with the Brueckner-Bethe-Gold-
stone (BBG) method are also shown in fig. 5. The curve labled BBG includes two-
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TABLE 1
Reid 06 E(kp=1.6 fm™', d =2.5 r) in MeV

Br=1 Bir=1

Bi 8i=1 Bim24=04 Bi=2,4=0 Biaz=0
Te 31.85 31.85 31.85 31.85
2-body —-65.76 -59.16 -52.75 -10.75
Wo(MB) -6.91 —6.30 -5.28 1.97
W, 13.02 6.46 0.77 0
W, 18.30 12.21 10.35 0
Wo -2.97 -1.01 0.05 0
Wg(MB) -1.07 -0.20 0.48 0.18

+Ug
U -0.91 -0.80 -0.60 1.93
E -14.45 -16.95 -15.13 25.18

TABLE 2
BI-Il veE(kp=1.2 fm™", d = 2.25 ro) in MeV
Bir=1.1 Bir=11

B 8i=1 Bi=24=06 Bia24=0 x2=0
Tr 17.92 17.92 17.92 17.92
2-body -39.70 -35.48 -24.17 —-8.40
Wo(MB) -0.82 -0.98 —-0.80 -0.12
W, 343 1.85 -0.58 0
w, 14.68 10.73 6.79 0
W -1.03 -0.56 0.25 0
We(MB) 0.62 0.42 0.12 -0.01

+Up
U -0.19 -0.54 -0.78 0.45
E -5.09 -6.64 -1.25 9.83

and three-hole-line contributions, and estimates of four-hole-line contributions. It is
significantly below the LOBT curve which includes only the two-hole-line contribu-
tion. A plausible estimate of errors in the ve results at kg = 1.6 fm ™" may be made as
follows. The error due to truncating the chain summations in the present variational
calculation is plausibly given by the magnitude of W, and is ~1 MeV. However, we
expect the E(kp=1.6fm™") to decrease by ~1 MeV if k-dependent terms are
included in the correlation operator %, which gives AE,,..= +0 to —2 MeV. The
error in BBG E(kg= 1.6 fm™") is~+2 MeV '®)]. The BBG and variational results
are certainly in agreement within these errors at kr=1.6 and 1.8 fm™. At kg=
1.4 fm™! the difference between the two calculations is marginally larger than the
estimated errors.

The E(kg= 1.3 fm™ ") in Reid, BJ-II, HJ and GT-5200 v models are compared in
table 3, and the E(p) of HJ and GT-5200 models are compared with the results of
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Y T T T T
BJ-IT-vg
-5 ' -
!
LOBT - Reid - vg~ /
-Iof » i
*\
s BJ-I-vg
= -is|- V) .
w Expt. Reid-vg
-20+ BBG - Reid - v‘>\-/ .
\
-25F Reid-vg~" Mo
- 1 1 1 1
3OO 0.5 1.0 1.5 20 2.5
ke(tm™)

Fig. 5. A comparison of the calculated energies for Reid and BJ models with the “experiment” and the
results of calculations based on the Brueckner-Bethe-Goldstone method.

TABLE 3
Eun(ke= 1.3 fm™") for various potentials in MeV

Model Reid ve BJ- vg HJ v¢ GT-5200

dfry 2.25 2.25 2.35 242
Bi=24 0.4 0.6 0.5 0.75
Bioss 1.0 1,1 1.0 1.0

Tr 21.03 21.03 21.03 21.03
2-body —42.28 -37.55 -37.04 -50.28
Wo(MB) -0.21 -3.96 -0.15 1.77
W, 2.79 4.01 2.31 343
w, 6.44 11.71 5.19 6.83
Wa —0.42 -0.87 -0.35 —0.66
Wr(MB) 0.26 -0.17 0.23 0.69

+Ur

U -0.59 -0.76 -0.23 -0.32
E -12.98 —6.56 -9.01 -17.51

Benhar et al. (BCFR) '°) and Kurten ef al. ') (KRC) in fig. 6. The KRC energies are
much lower than ours, however they truncate the cluster expansion at the three-body
level, and the second-order correlated basis perturbation term at the two-body level.
Probably a more accurate calculation with their approach will give higher energies.
Our results are in fair agreement with those of BCFR, whose calculation is probably
closest to ours in principle. However, there are large differences between the present
and the BCFR calculation, particularly in the treatment of W, and W,. Thus the
agreement is very encouraging but not yet fully understood.
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Fig. 6. A comparison of the results of variational calculations for the HJ vs and GT5200 models.

Using a somewhat different wave function Owen 2) has calculated the E(p) of
model v; of neutron matter which contains the v and f°. With his choice of the
variational wave function he could sum all hypernetted operator chain diagrams, and
thus obtain presumably reliable upperbounds for the E(p). Our FHNC/SOC results
(table 4) are very similar to his and thus indicate that SOC is a good approximation.
Owen also does a calculation he calls “SOC” with which he fails to obtain a
variational minimum in E(d). However, we believe that his “SOC” calculation is
significantly different from ours.

TABLE 4
v3 E(p, d, B,) in units of fm and MeV

4 Epin (d/ro)min (B+)min E(dmin, B> =0) E(Owen)
0.17 174 19 0.8 17.8 17.0
0.3 28.8 23 0.5 29.2 28.2
0.4 39.9 24 0.45 40.3 38.8

The v; is a very difficult model to test the effect of non-central correlations. The f~
has a very small effect on its E(p) (table 4) due to very large cancellations: at
p =0.3fm™> the E(8, =0, .5) are 29.2 and 28.8 MeV, while the W.(8, =0,.5) are 0
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and 7.4 MeV respectively. The error in the E(p) of our calculation, as estimated from
the magnitude of W, is ~0.4 MeV at p = 0.3 fm™>; it is much smaller than leading
terms in the energy such as W, but it is still of the same order as the net gain in energy
due to /.

The authors wish to thank Dr. B. D. Day and Dr. J. C. Owen for communicating
their results to us.

Note added in proof: Recent calculations of the Reid and BJ vg models by Lagaris
and Pandharipande indicate that the difference between the vs and vs model energies
is much smaller than shown in fig. 5.
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