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Abstract

A new stochastic method for locating the global minimum of a multidimensional function inside a rectangular hyperbox is presented. A
technique is employed that makes use of the procedure known as grammatical evolution. The method can be considered as a “genetic”
of the Controlled Random Search procedure due to Price. The user may code the objective function either in C++ or in Fortran 77. W
comparison of the new method with others of similar structure, by presenting results of computational experiments on a set of test func
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1. Introduction

A recurring problem in many applications is that of findi
the global minimum of a function. This problem may be sta
as: Determine

x∗ = arg min
x∈S

f (x).

The nonempty setS ⊂ Rn considered here, is a hyper box d
fined as:

S = [a1, b1] ⊗ [a2, b2] · · · ⊗ [an, bn]
Recently several methods have been proposed for the

tion of the global optimization problem. These methods can
divided in two main categories, deterministic and stocha
Random search methods are widely used in the field of gl
optimization, because they are easy to implement and also
they do not depend critically on a priori information about
objective function. Various random search methods have b
proposed, such as the Random Line Search[1], Adaptive Ran-
dom Search[2], Competitive Evolution[3], Controlled Random
Search[4], Simulated Annealing[5–8], Genetic Algorithms
[9,10], Differential Evolution[11,12], methods based on Tab
Search[23], etc. This article introduces a new sampling te
nique for use with conjunction with Controlled Random Sear
The method is based on the genetic programming proce
known as Grammatical Evolution. Performance compariso
other methods is quite favorable as might be verified by
specting the reported results of our computational experim
in Table 1, Section3.2. The suggested approach uses a p
ulation of randomly created moves, that guide the underly
stochastic search towards the global minimum. These ran
moves are produced by applying the method of gramma
evolution. Grammatical evolution is an evolutionary proc
that can produce code in an arbitrary language. The produ
is performed using a mapping process governed by a g
mar expressed in Backus Naur Form. Grammatical evolu
has been applied successfully to problems such as symbol
gression[14], discovery of trigonometric identities[15], robot
control[16], caching algorithms[17], financial prediction[18],
etc. The rest of this article is organized as follows: in Sectio2
we give a brief presentation of the grammatical evolution
of the suggested algorithms. In Section3 we list some experi
mental results from the application of the proposed method
a comparison is made against traditional global optimiza
methods and in Section4 we present the installation and th
execution procedures of the GenPrice.

2. Description of the algorithm

2.1. Grammatical evolution

Grammatical evolution is an evolutionary algorithm that c
produce code in any programming language. The algorithm
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quires the grammar of the target language in BNF syntax
the proper fitness function. Chromosomes in grammatical
lution, in contrast to classical genetic programming[20], are not
expressed as parse trees, but as vectors of integers. Each i
denotes a production rule from the BNF grammar. The a
rithm starts from the start symbol of the grammar and gradu
creates the program string, by replacing non-terminal sym
with the right hand of the selected production rule. The se
tion is performed in two steps:

• Read an element from the chromosome (with valueV ).
• Select the rule according to the scheme

(1)Rule= V modR,

where R is the number of rules for the specific no
terminal symbol.

The process of replacing non-terminal symbols with the r
hand of production rules is continued until either a full progr
has been generated or the end of chromosome has been re
In the latter case we can reject the entire chromosome or we
start over (wrapping event) from the first element of the ch
mosome. In our approach we allow at most two wrapping ev
to occur. If the limit of two wrapping events is reached the ch
mosome is rejected. The rejection of a chromosome means
a large fitness value is assigned to the chromosome and as
sequence it will not be used in the crossover procedure. Fu
details about the grammatical evolution procedure can be fo
in [13,14,19].

2.2. Used grammar

The grammar of the package is a small portion of the gr
mar of the C programming language. The grammar can be
pressed as follows in BNF notation:

<START>::=<expr>
<expr>:=(<expr><binary_op><expr>)

|<func_op>(<expr>)
|<terminal>

<binary_op>::=+|-|{*}|/
<func_op>::=sin | cos | exp | log
<terminal>::=<digitlist>.<digitlist>

|x
<digitlist>::=<digit>

|<digit><digit>
|<digit><digit><digit>

<digit>::=0|1|2|3|4|5|6|7|8|9

The symbol named START denotes the starting symbo
the grammar. As we can see the employed programming
guage supports four functions and at most three digit numb
Note that it is straightforward to extend the function reperto
and upgrade the support to multiple digit numbers.



154 I.G. Tsoulos, I.E. Lagaris / Computer Physics Communications 174 (2006) 152–159

n b
h
the
tro

e

th
th
ro
o

etc
the
va

la-
ng

la
ver
are
d a
nd

e-
ter
ter
ge
the
ro
e

ur

he
t ar
new
th

cho
a

-
th

lied
ro-
the

tion
mly,

ran-

-
sed

-
e.

opti-
any
bed
2.3. Description of the Genetic Random Search (GRS)
algorithm

The algorithm named GRS creates random trails that ca
embedded in any stochastic procedure to guide the searc
wards the global minimum. This algorithm is essential for
method Genetically Controlled Random Search method in
duced in this article and its main steps are the following:

INPUT data:

• A point x = (x1, x2, . . . , xn), x ∈ S ⊂ Rn.
• ε, a small positive number. Typical values for this param

ter are 10−4 to 10−5.
• k, a small positive integer, usually between 10 and 20.
• Set selection rate. The value of this parameter denotes

fraction of chromosomes that will pass unchanged to
next generation, and therefore the fraction of new ch
mosomes which will be created through the process
crossover. Typical values for this parameter is 0.1, 0.2,

• Set mutation rate. The value of this parameter controls
average number of changed in a chromosome. Typical
ues for this parameter is 0.02, 0.05, etc.

INITIALIZATION step:

• The initialization of each element of the genetic popu
tion is performed by selecting a random integer in the ra
[0,255].

LOOP step:

• For i = 1, . . . , k Do
– Set xold = x.
– Create a new generation of chromosomes in the popu

tion with the use of the genetic operations (crosso
mutation, reproduction). At first the chromosomes
sorted in a way such that the best of them is place
the beginning of the population and the worst at the e
After that, c = (1 − s) × g new chromosomes are cr
ated through the process of crossover. The parames
denotes the value of selection rate and the parameg
denotes the total number of chromosomes in the
netic population. The new chromosomes will replace
worst in the population at the end of the crossover p
cedure. For every couple of children two chromosom
are selected from the population with the method of to
nament selection i.e.: First a group ofK � 2 randomly
selected individuals is created. The individual with t
best fitness value is selected for mating while the res
discarded. Having selected two chromosomes, two
are created by the process of one-point crossover. In
procedure the chromosomes are cut at a randomly
sen point and the right-hand-side subchromosomes
exchanged, as shown inFig. 1. Crossover does not re
spect the boundaries between the different parts of
chromosomes. After the crossover, mutation is app
to every chromosome in the population; for every ch
mosome in the population and for every element in
e
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Fig. 1. One-point crossover.

chromosome a random number in the range[0,1] is cho-
sen. If this number is less than or equal to the muta
rate, the corresponding element is changed rando
otherwise it remains intact.

– For every chromosomeDo
∗ Split the chromosome uniformly inton pieces, one

for each dimension. Each piece corresponds to a
dom movement and is denoted bypi, i = 1, . . . , n.
On every piecepi the grammatical evolution trans
formation is applied, which is based on the propo
grammar. This determines a univariate functionfi .

∗ Denote by d the vector(d1 = f1(x1), d2 = f2(x2),

. . . , dn = fn(xn)).
∗ Set x+ = x + d .
∗ If x+ /∈ S or f (x+) > y then

· Set x− = x − d .
· If x− /∈ S or f (x−) > y then

Set the fitness value to a very large number.
· Else

Set the fitness value tof (x−).
· Endif

∗ Else
· Set the fitness value tof (x+).

∗ Endif
– Endfor
– Set x = x + dbest, wheredbest the movement that corre

sponds to the chromosome with the best fitness valu
– If |x − xold| � ε, terminate andreturn x as the located

minimizer.
• Endfor
• Return x as the located minimizer.

2.4. Genetically Controlled Random Search (GCRS)

The Controlled Random Search is a population based
mization algorithm and it has been applied successfully to m
problems[24] and is the base of our new procedure descri
below:

Initialization step:

• Set the value for the parameterN . A commonly used value
for that isN = 25n.

• Set a small positive value forε.
• Create the setT = {z1, z2, . . . , zN }, by randomly sam-

pling N points fromS.
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Min_Max step:

• Select the pointszmin ∈ T andzmax∈ T , that yield the min-
imum and maximumf -values correspondingly. Set

(2)fmin = f (zmin) and fmax= f (zmax).

• If |fmax− fmin| < ε, then goto Local_Search step.

New_Point step:

• Select randomly the reduced set̃T = {zT1, zT2, . . . , zTn+1}
from T .

• Compute the centroidG:

G = 1

n

n∑

i=1

zTi
.

• Compute a trial pointz̃ = 2G − zTn+1.
• If z̃ /∈ S or f (z̃) � fmax then goto New_Point step.
• Perform a call to GRS procedure using as starting point

point z̃. This is the step that distinguishes the new met
from the controlled random search[4].

Update step:

• T = T ∪ {z̃} − {zmax}.
• Goto Min_Max step.

Local_Search step:

• z∗ = localSearch(z), where localSearch is a determinis
local search procedure such as BFGS, DFP, etc. The
search procedure used in the GenPrice tool is the B
variant due to Powell[21].

• Return the pointz∗ as the discovered global minimum.

The Local_Search step is applied only at the end of the alg
rithm to ensure that the algorithm will find a true local min
mum and not just an approximation of it.

3. Experimental results

The Genetically Controlled Random Search (GCRS)
tested against

1. The original Controlled Random Search (CRS).
2. The modified Controlled Random Search (PCRS) as

scribed in[26].

We list also results from the Simulated Annealing (SA)
modified by Goffe et al.[8] not for immediate compariso
since the methods are quite different, but only as a refere
point (their codesimann.f is available from the URL:http://
www.netlib.org).

The comparison is made using a suite of well-known
problems. Each method was run 30 times on every prob
using different random seeds. We have measured the a
al
S

s

-

e

t

ty

of the method to discover the global minimum and the nu
ber of function evaluations it required. In all cases the se
tion rate was set to 90% and the mutation rate to 5%.
length of each chromosome was set to 10× d , whered is
the dimensionality of the objective function and the maxim
number of iterations allowed in the GRS method (para
ter K) was set to 10. We used the suggested (Ref.[4]) value
of N = 25n, for the initial population in the methods CR
PCRS and GCRS. Similarly we employed the parameters
gested in the documentation of the Simulated Annealing s
ware, available from the URLhttp://www.netlib.org, namely:
NS = 20, NT = 5, T = 5.0, a = 0.5, TLAST = 4 for SA. All
the experiments were conducted on an AMD ATHLON 240
equipped with 256 MB RAM. The hosting operating syst
was Debian Linux and the used programming language wa
GNU C++. The trial steps produced by the grammatical e
lution were evaluated using the FunctionParser programm
library [22].

3.1. Test functions

Camel
f (x) = 4x2

1 −2.1x4
1 + 1

3x6
1 +x1x2−4x2

2 +4x4
2, x ∈ [−5,5]2

with 6 local minima and global minimumf ∗ = −1.031628453.

Rastrigin
f (x) = x2

1 + x2
2 − cos(18x1)− cos(18x2), x ∈ [−1,1]2 with

49 local minima and global minimumf ∗ = −2.0.

Griewank2
f (x) = 1 + 1

200

∑2
i=1 x2

i − ∏2
i=1

cos(xi )√
(i)

, x ∈ [−100,100]2
with 529 local minima and global minimumf ∗ = 0.0.

Gkls
f (x) = Gkls(x,n,w), is a function withw local minima, de-

scribed in[25], x ∈ [−1,1]n, n ∈ [2,100]. In our experiments
we usen = 2,3 andw = 50.

GoldStein & Price

f (x) = [
1+ (x1 + x2 + 1)2

× (19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)
]

× [
30+ (2x1 − 3x2)

2

× (18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)
]
.

The function has 4 local minima in the range[−2,2]2 and
global minimumf ∗ = 3.0.

Test2N

f (x) = 1

2

n∑

i=1

x4
i − 16x2

i + 5xi

with x ∈ [−5,5]n. The function has 2n local minima in the
specified range. In our experiments we used the cases on =
4,5,6,7.

http://www.netlib.org
http://www.netlib.org
http://www.netlib.org
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Test30N

f (x) = 1

10
sin2(3πx1)

×
n−1∑

i=2

(
(xi − 1)2(1+ sin2(3πxi+1)

))

+ (xn − 1)2(1+ sin2(2πxn)
)

with x ∈ [−10,10]n. The function has 30n local minima in the
specified range. In our experiments we used the cases on =
3,4.

Potential
The molecular conformation corresponding to the glo

minimum of the energy ofN atoms interacting via the Lennard
Jones potential is determined for two cases: withN = 3 atoms
and withN = 5 atoms. We refer to the first case asPotential(3)
(a problem with 9 variables) and to the second asPotential(5)
(a problem with 15 variables). The global minimum for the fi
cases isf ∗ = 3 andf ∗ = −9.103852416.

Neural
A neural network (sigmoidal perceptron) with 10 hidd

nodes (30 variables) was used for the approximation of
function g(x) = x sin(x2), x ∈ [−2,2]. The global minimum
of the training error isf ∗ = 0.0.

3.2. Results

In Table 1we list the results for the Simulated Annealing
the column labeled SA, the Controlled Random Search in
column labeled CRS, the modified Controlled Random Se
in the column denoted by PCRS and the results from the
posed Genetically Controlled Random Search in the colu
denoted by GCRS. The numbers in the cells represent th
erage number of function evaluations required by each met
The figures in parentheses denote the fraction of runs tha
cated the global minimum and were not trapped in one of

Table 1
Experimental results obtained by the methods of SA, CRS, PCRS and G
applied on several global optimization benchmarks

Function SA CRS PCRS GCRS

Camel 4820 1852 1409 1504
Rastrigin 4843 1903 1982 428
Griewank2 4832(0.27) 2105 2004 977
Gkls(2,50) 4820 1627 1495 1220
Gkls(3,50) 7228 3349 3059 2056
Goldstein 4842 1923 1456 961
Test2N(4) 9631 6835(0.97) 4831 4280(0.97)
Test2N(5) 12034(0.87) 25270(0.97) 12342 7958
Test2N(6) 14438(0.66) 32801(0.70) 8840(0.87) 9914
Test2N(7) 16840(0.37) 38057(0.40) 11751(0.63) 9740
Test30N(3) 7930(0.23) 3703 2124 1519
Test30N(4) 9858(0.23) 5135 4058 1416
Potential(3) 21404 198046 34985 9265
Potential(5) 36212 188646 39305 9096
Neural 76667(0.93) 122617 94016 14559
l

e

e
h
-

n
v-
d.
o-
e

S

local minima. Absence of this number denotes that the gl
minimum has been recovered in every single run. The
posed GCRS has shown superior performance among its p
This can be deduced from the significantly lower number of
required function evaluations, and the fraction of runs that
ceeded in finding the global minimum. The new ingredien
the algorithm is the GRS procedure, which is based on Gr
matical Evolution. Hence, the observed performance enha
ment is due to this new component. It remains to be see
practice if the performance advantage observed for the pre
benchmark suite, will be maintained in other real world pr
lems as well.

4. Software documentation

4.1. Distribution

The package is distributed in a tar.gz file namedGen-
Price.tar.gz and under UNIX systems the user must iss
the following commands to extract the associated files:

1. gunzipGenPrice.tar.gz.
2. tar xfvGenPrice.tar.

These steps create a directory namedGenPrice with the fol-
lowing contents:

1. bin: A directory which is initially empty. After com-
pilation of the package, it will contain the executab
make_genprice.

2. examples: A directory that contains the test functions us
in this article, written in ANSI C++ and the Fortran 77 ve
sion of the Six Hump Camel function.

3. include: A directory which contains the header files for
the classes of the package.

4. src: A directory containing the source files of the packa
5. Makefile: The input file to themake utility in order to build

the tool. Usually, the user does not need to change this
6. Makefile.inc: The file that contains some configuration p

rameters, such as the name of the C++ compiler, etc.
user must edit and change this file before installation.

4.2. Installation

The following steps are required in order to build the too

1. Uncompress the tool as described in the previous sect
2. cd GenPrice.
3. Edit the fileMakefile.inc and change (if needed) th

five configuration parameters.
4. Typemake.

The five parameters inMakefile.inc are the following:

1. CXX: It is the most important parameter. It specifies
name of the C++ compiler. In most systems running
GNU C++ compiler this parameter must be set to g++.
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2. CC: If the user written programs are in C, set this param
ter to the name of the C compiler. Usually, for the GN
compiler suite, this parameter is set to gcc.

3. F77: If the user written programs are in Fortran 77, set t
parameter to the name of the Fortran 77 compiler. For
GNU compiler suite a usual value for this parameter is g

4. F77FLAGS: The compiler GNU FORTRAN 77 (g77) ap
pends an underscore to the name of all subroutines
functions after the compilation of a Fortran source file.
order to prevent this from happening we can pass s
flags to the compiler. Normally, this parameter must be
to -fno-underscoring.

5. ROOTDIR: Is the location of the GenPrice directory. It
critical for the system that this parameter is set correc
In most systems, it is the only parameter which must
changed.

4.3. User written subprograms

The user can write his objective function either in C, C++
in Fortran 77 in a single file. Each file has a series of functi
in an arbitrary order. However, the C++ files must have the li

extern ‘‘C’’ {

before the functions and the line

}

after them. The meaning of the functions are the following:

1. getdimension(): It is an integer function which returns th
dimension of the objective function.

2. getleftmargin(left): It is a subroutine (or a void functio
in C) which fills the double precision array left with the le
margins of the objective function.

3. getrightmargin(right): It is a subroutine (or a void functio
in C) which fills the double precision array right with th
right margins of the objective function.

4. funmin(x): It is a double precision function which return
the value of the objective function evaluated at point x.

5. granal(x, g): It is a subroutine (or a void function in C
which returns in a double precision array g the gradien
the objective function at point x.

4.4. The utility make_genprice

After the compilation of the package, the executablemake_
genpricewill be placed in the subdirectorybin in the distri-
bution directory. This program creates the final executable
it takes the following command line parameters:

1. -h: Prints a help screen and terminates.
2. -p filename: Thefilename parameter specifies th

name of the file containing the objective function. The u
ity checks the suffix of the file and it uses the appropr
compiler. If this suffix is .cc or .c++ or .CC or .cpp, the
it invokes the C++ compiler. If the suffix is .f or .F or .fo
-

e
.

d

e
t

.

s
s

f

d

then it invokes the Fortran 77 compiler. Finally, if the suf
is .c it invokes the C compiler.

3. -o filename: Thefilename parameter specifies th
name of the final executable. The default value for this
rameter is GenPrice.

4.5. The utility GenPrice

The final executableGenPrice has the following com-
mand line parameters:

1. -h: The program prints a help and it terminates.
2. -c count: The integer parametercount specifies the

number of chromosomes for the Genetic Random Se
procedure. The default value for this parameter is 20.

3. -s srate: The double parametersrate specifies the
selection rate used in the Genetic Random Search pr
dure. The default value for this parameter is 0.10 (10%

4. -m mrate: The double parametermrate specifies the
mutation rate used in the Genetic Random Search pr
dure. The default value for this parameter is 0.05 (5%).

5. -r seed: The integer parameterseed specifies the see
for the random number generator. It can assume any int
value.

6. -o filename: The parameterfilename specifies the
file where the output from theGenPrice will be placed.
The default value for this parameter is the standard out

4.6. A working example

Consider the Six Hump Camel function given by

f (x) = 4x2
1 − 2.1x4

1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2,

x ∈ [−5,5]2
with 6 local minima. The implementation of this function
C++ and in Fortran 77 is shown inFigs. 2 and 3. Let the file with
the C++ code be namedcamel.cc and that with the Fortran
codecamel.f. Let these files be located in theexamples
subdirectory. Change to theexamples subdirectory and creat
theGenPrice executable with themake_genprice com-
mand:

../bin/make_genprice -p camel.cc

or for the Fortran 77 version

../bin/make_genprice -p camel.f

Themake_genprice responds:

RUN./GenPrice IN ORDER TO RUN THE PROBLEM

RunGenPrice by issuing the command:

./GenPrice -c 10 -r 1

The resulting output appears as:

FUNCTION EVALUATIONS = 1310
GRADIENT EVALUATIONS = 20
MINIMUM = 0.089842 -0.712656 -1.031628
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extern “C”{
int getdimension()
{

return 2;
}

void getleftmargin(double *left)
{

left[0] = −5.0;
left[1] = −5.0;

}

void getrightmargin(double *right)
{

right[0] = 5.0;
right[1] = 5.0;

}

double funmin(double *x)
{

double x1=x[0],x2=x[1];
return 4*x1*x1-2.1*x1*x1*x1*x1+

x1*x1*x1*x1*x1*x1/3.0+x1*x2-4*x2*x2+4*x2*x2*x2*x2;
}

void granal(double *x, double *g)
{

double x1=x[0],x2=x[1];
g[0]=8*x1-8.4*x1*x1*x1+2*x1*x1*x1*x1*x1+x2;
g[1]=x1-8*x2+16*x2*x2*x2;

}
}

Fig. 2. Implementation of Camel function in C++.

integer function getdimension()
getdimension= 2
end

subroutine getleftmargin(left)
double precision left(2)
left(1) = −5.0
left(2) = −5.0
end

subroutine getrightmargin(right)
double precision right(2)
right(1) = 5.0
right(2) = 5.0
end

double precision function funmin(x)
double precision x(2)
double precision x1,x2
x1=x(1)
x2=x(2)
funmin=4*x1**2-2.1*x1**4+x1**6/3.0+x1*x2-4*x2**2+4*x2**4
end

subroutine granal(x,g)
double precision x(2)
double precision g(2)
double precision x1,x2
x1=x(1)
x2=x(2)
g(1)=8.0*x1-8.4*x1**3+2*x1***5+x2;
g(2)=x1-8.0*x2+16.0*x2**3;
end

Fig. 3. Implementation of Camel function in Fortran 77.
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