Available online at www.sciencedirect.com

SCIENCE @DIREGT@ Computer Physics
Communications

ELSEVIER Computer Physics Communications 174 (2006) 152—159

www.elsevier.com/locate/cpc

Genetically controlled random search: a global optimization method
for continuous multidimensional functions

loannis G. Tsoulos, Isaac E. Lagatris
Department of Computer Science, University of loannina, P.O. Box 1186, |oannina 45110, Greece
Received 24 July 2005

Available online 27 October 2005

Abstract

A new stochastic method for locating the global minimum of a multidimensional function inside a rectangular hyperbox is presented. A sampling
technique is employed that makes use of the procedure known as grammatical evolution. The method can be considered as a “genetic” modificati
of the Controlled Random Search procedure due to Price. The user may code the objective function either in C++ or in Fortran 77. We offer &
comparison of the new method with others of similar structure, by presenting results of computational experiments on a set of test functions.

Program summary

Title of program: GenPrice

Catalogue identifier: ADWP

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADWP

Program available from: CPC Program Library, Queen’s University of Belfast, N. Ireland

Computer for which the programis designed and others on which it has been tested: the tool is designed to be portable in all systems running the
GNU C++ compiler

Installation: University of loannina, Greece

Programming language used: GNU-C++, GNU-C, GNU Fortran-77

Memory required to execute with typical data: 200 KB

No. of bitsin aword: 32

No. of processorsused: 1

Has the code been vectorized or parallelized?: no

No. of linesin distributed program, including test data, etc.: 13135

No. of bytesin distributed program, including test data, etc.: 78512

Distribution format: tar. gz

Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables.
There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is requir
Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a
nonlinear system of equations via optimization, employing a “least squares” type of objective, one may encounter many local minima that do no
correspond to solutions, i.e. minima with values far from zero.

Method of solution: Grammatical Evolution is used to accelerate the process of finding the global minimum of a multidimensional, multimodal
function, in the framework of the original “Controlled Random Search” algorithm.

Typical running time: Depending on the objective function.

0 2005 Elsevier B.V. All rights reserved.

Y This paper and its associated computer program are available via the Computer Physics Communications homepage on Scletméineesgiencedirect.
com/science/journal/001046p5
* Corresponding author.
E-mail address: lagaris@cs.uoi.gfi.E. Lagaris).

0010-4655/$ — see front mattét 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.09.007

http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADWP
http://www.sciencedirect.com/science/journal/00104655
mailto:lagaris@cs.uoi.gr
http://dx.doi.org/10.1016/j.cpc.2005.09.007
http://www.sciencedirect.com/science/journal/00104655

I.G. Tsoulos, |.E. Lagaris/ Computer Physics Communications 174 (2006) 152—-159 153

PACS 02.60.-x; 02.60.Pn; 07.05.Kf; 02.70.Lq; 07.05.Mh

Keywords: Global optimization; Stochastic methods; Genetic programming; Grammatical evolution

1. Introduction quires the grammar of the target language in BNF syntax and
the proper fitness function. Chromosomes in grammatical evo-
A recurring problem in many applications is that of finding lution, in contrast to classical genetic programnii2@j, are not
the global minimum of a function. This problem may be statedexpressed as parse trees, but as vectors of integers. Each integer
as: Determine denotes a production rule from the BNF grammar. The algo-
rithm starts from the start symbol of the grammar and gradually
creates the program string, by replacing non-terminal symbols

The nonempty sef c R" considered here, is a hyper box de- with the right hand of the selected production rule. The selec-
fined as: tion is performed in two steps:

x* =argminf (x).
xes

§=la1, b1l ® [az, b2] -~ ® [an. bu] e Read an element from the chromosome (with vaf)e
Recently several methods have been proposed for the solu-e Select the rule according to the scheme

tion of the global optimization problem. These methods can be

divided in two main categories, deterministic and stochastic. Rule=V modR, (1)

Random search methods are widely used in the field of global where R is the number of rules for the specific non-

optimization, because they are easy to implement and also since terminal symbol.

they do not depend critically on a priori information about the

objective function. Various random search methods have beefhe process of replacing non-terminal symbols with the right

proposed, such as the Random Line Se§t¢thAdaptive Ran- hand of production rules is continued until either a full program

dom Searclfi?], Competitive Evolutiori3], Controlled Random has been generated or the end of chromosome has been reached

Search[4], Simulated Annealind5-8], Genetic Algorithms In the latter case we can reject the entire chromosome or we can

[9,10], Differential Evolution[11,12], methods based on Tabu start over (wrapping event) from the first element of the chro-

Search[23], etc. This article introduces a new sampling tech-mosome. In our approach we allow at most two wrapping events

nigue for use with conjunction with Controlled Random Searchto occur. If the limit of two wrapping events is reached the chro-

The method is based on the genetic programming proceduraosome is rejected. The rejection of a chromosome means that

known as Grammatical Evolution. Performance comparison t@ large fitness value is assigned to the chromosome and as a con-

other methods is quite favorable as might be verified by insequence it will not be used in the crossover procedure. Further

specting the reported results of our computational experimenigetails about the grammatical evolution procedure can be found

in Table 1 Section3.2 The suggested approach uses a popin [13,14,19]

ulation of randomly created moves, that guide the underlying

stochastic search towards the global minimum. These rando&?2. Used grammar

moves are produced by applying the method of grammatical

evolution. Grammatical evolution is an evolutionary process The grammar of the package is a small portion of the gram-

that can produce code in an arbitrary language. The productiomar of the C programming language. The grammar can be ex-

is performed using a mapping process governed by a granpressed as follows in BNF notation:

mar expressed in Backus Naur Form. Grammatical evolution

has been applied successfully to problems such as symbolic reSTART>: : =<expr > _

gression[14], discovery of trigonometric identitigd5], robot ~ <€XPr>: =(<expr><bi nary_op><expr >)

control[16], caching algorithm§l7], financial predictiorj18], | < “nC_—Opr(<expr>)

etc. The rest of this article is organized as follows: in Sec#ion <bi naryl :;ir -m:2|a_ |>{*} |/

we give a brief presentation of the grammatical evolution and, e .

. . ; . func_op>::=sin | cos | exp | log
of the suggested algorithms. In Secti®mwe list some experi- i or i nal > : =<di gitlist> <digitlist>

mental results from the application of the proposed method and | x

a comparison is made against traditional global optimizationdi gi t | i st >: : =<di gi t >

methods and in Sectiof we present the installation and the | <di gi t ><digi t>
execution procedures of the GenPrice. | <di gi t ><di gi t ><di gi t >

<digit> :=0|1|2|3|4|5|6|7|8|9
2. Description of the algorithm
The symbol named START denotes the starting symbol of
2.1. Grammatical evolution the grammar. As we can see the employed programming lan-
guage supports four functions and at most three digit numbers.
Grammatical evolution is an evolutionary algorithm that canNote that it is straightforward to extend the function repertoire
produce code in any programming language. The algorithm reand upgrade the support to multiple digit numbers.

154

|.G. Tsoulos, |.E. Lagaris/ Computer Physics Communications 174 (2006) 152-159

2.3. Description of the Genetic Random Search (GRS)
algorithm

The algorithm named GRS creates random trails that can be

embedded in any stochastic procedure to guide the search to-
wards the global minimum. This algorithm is essential for the
method Genetically Controlled Random Search method intro-
duced in this article and its main steps are the following:

INPUT data:

A pointx = (x1, x2,...,x,), x €S C R".

e ¢, a small positive number. Typical values for this parame-

ter are 104 to 107°.

e k, a small positive integer, usually between 10 and 20.
e Set selection rate. The value of this parameter denotes the

fraction of chromosomes that will pass unchanged to the
next generation, and therefore the fraction of new chro-
mosomes which will be created through the process of
crossover. Typical values for this parameter is 0.1, 0.2, etc.
Set mutation rate. The value of this parameter controls the
average number of changed in a chromosome. Typical val-
ues for this parameter is 0.02, 0.05, etc.

INITIALIZATION step:

The initialization of each element of the genetic popula-
tion is performed by selecting a random integer in the range
[0, 255].

LOOP step:

Fori=1,...,k Do

— Set xolg = x.

— Create a new generation of chromosomes in the popula-
tion with the use of the genetic operations (crossover,
mutation, reproduction). At first the chromosomes are
sorted in a way such that the best of them is placed at
the beginning of the population and the worst at the end.
After that,c = (1 — 5) x g new chromosomes are cre-
ated through the process of crossover. The parameter
denotes the value of selection rate and the parameter

Crossover point

300 400 9 1211 100 40 30

40 30 10 11 9 50 300 400

Children

9 12 11 10

10119 5

Parents

Fig. 1. One-point crossover.

chromosome a random number in the rafgyd] is cho-
sen. If this number is less than or equal to the mutation
rate, the corresponding element is changed randomly,
otherwise it remains intact.
For every chromosomBo
x Split the chromosome uniformly inta pieces, one
for each dimension. Each piece corresponds to a ran-
dom movement and is denoted by, i =1,...,n.
On every piecep; the grammatical evolution trans-
formation is applied, which is based on the proposed
grammar. This determines a univariate functjgn
x Denote by d the vector(dy = fi(x1),dz = fa(x2),
coesdn = fn(xn)).
* Setxp =x+d.
* Ifxy ¢ Sor f(xy)>ythen
- Setx_=x—d.
- Ifx_¢Sorf(x_)>ythen
Set the fitness value to a very large number.
- Else
Set the fitness value tg (x_).
- Endif
* Else
- Set the fitness value tg (x4).
* Endif
Endfor
Set x = x + dpes; Wheredpestthe movement that corre-
sponds to the chromosome with the best fithess value.
If |x — xold| < €, terminate andteturn x as the located
minimizer.

denotes the total number of chromosomes in the ge- ® Endfor o
netic population. The new chromosomes will replace the e Return x as the located minimizer.

worst in the population at the end of the crossover pro-

cedure. For every couple of children two chromosomes2.4. Genetically Controlled Random Search (GCRS)

are selected from the population with the method of tour-

nament selection i.e.: First a group &f> 2 randomly The Controlled Random Search is a population based opti-

best fitness value is selected for mating while the rest argyoplems[24] and is the base of our new procedure described
discarded. Having selected two chromosomes, two neWg|ow:

are created by the process of one-point crossover. In that

procedure the chromosomes are cut at a randomly chanitialization step:

sen point and the right-hand-side subchromosomes are

exchanged, as shown Fig. 1 Crossover does not re- e Set the value for the parametéf. A commonly used value
spect the boundaries between the different parts of the for thatisN = 25x.
chromosomes. After the crossover, mutation is applied e Set a small positive value fos.
to every chromosome in the population; for every chro- e Create the setT = {z1,z22,...
mosome in the population and for every element in the pling N points fromsS.

,zZN}, by randomly sam-

I.G. Tsoulos, |.E. Lagaris/ Computer Physics Communications 174 (2006) 152—-159 155

Min_Max step: of the method to discover the global minimum and the num-
))) ber of function evaluations it required. In all cases the selec-
o Select the pointsmin € T andzmax € 7', thatyield the min- tjon rate was set to 90% and the mutation rate to 5%. The

imum and maximuny'-values correspondingly. Set length of each chromosome was set to 1@, whered is
the dimensionality of the objective function and the maximum
Jmin= [(zmin) and fmax= f(zmax)- (2) humber of iterations allowed in the GRS method (parame-
o If | fmax— fmin| <€, then goto Local_Search step. ter K) was set to 10: We used th(=T suggested (Rdj. value
of N = 25, for the initial population in the methods CRS,
New_Point step: PCRS and GCRS. Similarly we employed the parameters sug-

gested in the documentation of the Simulated Annealing soft-
e Select randomly the reduced st = {z1y, 21, .-, 21,4, Ware, available from the URbttp://www.netlib.org namely:

fromT. Ns=20,Nr =5,T =5.0,a =05, TLAST =4 for SA. All
e Computethe centroidG: the experiments were conducted on an AMD ATHLON 2400+
equipped with 256 MB RAM. The hosting operating system
1< was Debian Linux and the used programming language was the
ZZT GNU C++. The trial steps produced by the grammatical evo-

lution were evaluated using the FunctionParser programming
e Computea trial pointz = 2G — z7,, ;. library [22].
e IfZ¢ Sor f(2) > fmaxthen goto New_Point step.
e Perform acallto GRS procedure using as starting point the3.1. Test functions
point Z. This is the step that distinguishes the new method

from the controlled random searH. Camel
F) =4x2 - 2.1xF 4+ 2x8 + xqx0 — 4x2 + 4x3, x €[5, 512
Update step: with 6 local minima and global minimurfi* = —1.031628453.
o T=TU{z} — {zZmax}- Rastrigin

e Goto Min_Max step. £(x) = x2+ x2 — cog(18x1) — COg18xy), x € [—1, 1]2 with

49 local minima and global minimuri* = —2.0.
Local_Search step: g m

e z* = localSearcty), where localSearch is a deterministic Criewank2 costxp) 5
local search procedure such as BFGS, DFP, etc. The local /) = 1+ 250 17 — [T “Jo 0 * €[-100 100
search procedure used in the GenPrice tool is the BFG®ith 529 local minima and global minimurfi* = 0.0.
variant due to Powe[R21].

e Return the point* as the discovered global minimum. Gkls

f(x) = GKkls(x, n, w), is a function withw local minima, de-
The Local_Search step is applied only at the end of the algo- scribed in[25], x € [-1,1]", n € [2,100]. In our experiments
rithm to ensure that the algorithm will find a true local mini- we usen = 2, 3 andw = 50.
mum and not just an approximation of it.
GoldStein & Price

3. Experimental results 2
f@)=[1+G14+x2+1)

The Genetically Controlled Random Search (GCRS) was x (19— 14x1 + 3x% — 14xp + 6x1x2 + 3x) |
tested against x [30+ (2x1 — 3xp)2
1. The original Controlled Random Search (CRS). X (18— 32x + 12’55 +48x2 — 36x1x2 + 27x§)]'

2. The modified Controlled Random Search (PCRS) as de-

. . The function has 4 local minima in the range2, 2]2 and
scribed in[26]. ge2.2]

global minimumf* = 3.0.

We list also results from the Simulated Annealing (SA) a
modified by Goffe et al[8] not for immediate comparison
since the methods are quite different, but only as a reference 1< 4 2
point (their codesi mann. f is available from the URLhttp:// /) = 2 in —16x] + 5x;
www.netlib.org. i=1

The comparison is made using a suite of well-known testvith x € [—5,5]". The function has 2 local minima in the
problems. Each method was run 30 times on every problerspecified range. In our experiments we used the cases-of
using different random seeds. We have measured the abili#, 5, 6, 7.

est2N

http://www.netlib.org
http://www.netlib.org
http://www.netlib.org

156 |.G. Tsoulos, |.E. Lagaris/ Computer Physics Communications 174 (2006) 152-159

Test30N local minima. Absence of this number denotes that the global
1 minimum has been recovered in every single run. The pro-
fx)= ESin2(3JTX1) posed GCRS has shown superior performance among its peers.

This can be deduced from the significantly lower number of the
required function evaluations, and the fraction of runs that suc-
ceeded in finding the global minimum. The new ingredient in
the algorithm is the GRS procedure, which is based on Gram-
+ (o — 1)2(1+ 5"‘2(27”11)) matical Evolution. Hence, the observed performance enhance-

with x € [—10, 10". The function has 30local minima in the ment is due to this new component. It remains to be seen in

specified range. In our experiments we used the cases-of practice if the performance advantage observed for the present
3 4. benchmark suite, will be maintained in other real world prob-

lems as well.

n—1

X Z((x,- — 1)2(l+ sin2(3nx,-+1)))

i=2

Potential

The molecular conformation corresponding to the globa
minimum of the energy oW atoms interacting via the Lennard—
Jones potential is determined for two cases: viith- 3 atoms
and withN = 5 atoms. We refer to the first caseRatential (3)
(a problem with 9 variables) and to the secondPatential (5)
(a problem with 15 variables). The global minimum for the first
casesisf* =3 andf* = —9.103852416.

|4. Softwar e documentation
4.1. Distribution

The package is distributed in a tar.gz file nan@en-
Pri ce. t ar. gz and under UNIX systems the user must issue
the following commands to extract the associated files:

1. gunzipGenPri ce. tar. gz.

Neural .
A neural network (sigmoidal perceptron) with 10 hidden 2. tarxfvGenPri ce. tar.

nodes (30 variables) was used for the approximation of th
function g(x) = x sin(x?), x € [—2, 2]. The global minimum
of the training error isf* = 0.0.

eFhese steps create a directory nan@ediPr i ce with the fol-
lowing contents:

1. bin: A directory which is initially empty. After com-
pilation of the package, it will contain the executable
make_genprice.

In Table 1we list the results for the Simulated Annealing in 2. examples: A directory that contains the test functions used
the column labeled SA, the Controlled Random Search inthe ;v ic o icle written in ANSI C++ and the Fortran 77 ver-

column labeled CRS, the modified Controlled Random Search sion of the Six Hump Camel function
in the column_ denoted by PCRS and the results_ from the PrO-3 “include: A directory which contains the header files for all
posed Genetically Controlled Random Search in the column the classes of the package

denoted by GCRS. The numbers in the cells represent the avz ¢ A girectory containing the source files of the package.

erage number of function evaluations required by each method M akefile: The input file to therake utility in order to build
The figures in parentheses denote the fraction of runs that lo- the tool. Usually the user does not need to change this file.
cated the global minimum and were not trapped in one of theg \; oy efijeinc: The file that contains some configuration pa-

rameters, such as the name of the C++ compiler, etc. The

Table 1 user must edit and change this file before installation.
Experimental results obtained by the methods of SA, CRS, PCRS and GCRS

applied on several global optimization benchmarks

3.2. Results

4.2. Ingtallation
Functon SA CRS PCRS GCRS
Camel 4820 1852 1409 1504 The following steps are required in order to build the tool:
Rastrigin 4843 1903 1982 428
Griewank2 — 483.27) 2105 2004 977 L . .
GKIs2.50) 4820 1627 1495 1220 1. Uncompre;s the tool as described in the previous section.
GkIs(3,500 7228 3349 3059 2056 2. cd GenPrice.
Goldstein 4842 1923 1456 961 3. Edit the fileMakefi | e. i nc and change (if needed) the
TestzN(4) 9631 6830.97) 4831 42800.97) five configuration parameters.
TestN(5) 1203@.87) 252700.97) 12342 7958 4. Typemake
Test2N(6) 1443@.66) 328040.70) 88400.87) 9914 ' '
Test2N(7) 1684(.37) 380570.40) 1175X0.63) 9740 _ _ _ _ .
Test30N(3) 793(.23) 3703 2124 1519 The five parameters ikbkef i | e. i nc are the following:
Test30N(4) 9858.23) 5135 4058 1416
POte”tia:ﬁ 21404 198046 34985 9265 1. CXX: It is the most important parameter. It specifies the
Potential(5) 36212 188646 39305 9096 - -

++

Neural 76667093 122617 94016 14559 name of the C++ compiler. In most systems running the

GNU C++ compiler this parameter must be set to g++.

I.G. Tsoulos, |.E. Lagaris/ Computer Physics Communications 174 (2006) 152—-159 157

2. CC: If the user written programs are in C, set this parame- then it invokes the Fortran 77 compiler. Finally, if the suffix
ter to the name of the C compiler. Usually, for the GNU is .c it invokes the C compiler.
compiler suite, this parameter is set to gcc. 3. -0 filenane: Thefil enane parameter specifies the
3. F77: If the user written programs are in Fortran 77, setthis name of the final executable. The default value for this pa-
parameter to the name of the Fortran 77 compiler. For the rameter is GenPrice.
GNU compiler suite a usual value for this parameter is g77.
4. FTTFLAGS: The compiler GNU FORTRAN 77 (g77) ap- 4.5. The utility GenPrice
pends an underscore to the name of all subroutines and
functions after the compilation of a Fortran source file. In ~ The final executabl&enPri ce has the following com-
order to prevent this from happening we can pass somg!and line parameters:
flags to the compiler. Normally, this parameter must be set
to -fno-underscoring. 1. - h: The program prints a help and it terminates.

5. ROOTDIR: Is the location of the GenPrice directory. Itis 2- - C count: The integer parameterount specifies the
critical for the system that this parameter is set correctly. number of chromosomes for the Genetic Random Search

In most systems, it is the only parameter which must be procedure. The default value for this parameter_ i_s 20.

changed. 3. -s srate: The double parametesr at e specifies the
selection rate used in the Genetic Random Search proce-
dure. The default value for this parameter is 0.10 (10%).

4. -m nr at e: The double parametem at e specifies the

mutation rate used in the Genetic Random Search proce-

dure. The default value for this parameter is 0.05 (5%).

-r seed: The integer parametsreed specifies the seed

for the random number generator. It can assume any integer

4.3. User written subprograms

The user can write his objective function either in C, C++ or
in Fortran 77 in a single file. Each file has a series of functions
in an arbitrary order. However, the C++ files must have the lines

extern ' C’ { value.

)) 6. -0 fil enane: The parametefi | enane specifies the
before the functions and the line file where the output from th€enPr i ce will be placed.
} The default value for this parameter is the standard output.

after them. The meaning of the functions are the following: 4.6 A working example

1. getdimension(): It is an integer function which returns the Consider the Six Hump Camel function given by
dimension of the objective function. 1

2. getleftmargin(left): It is a subroutine (or a void function f(x) = 4x? — 2.1x7 + ~x% + x1x2 — 4x3 4 43,
in C) which fills the double precision array left with the left 2 3
margins of the objective function. x€[=35,3]

3. getrightmargin(right): Itis a subroutine (or a void function with 6 local minima. The implementation of this function in
in C) which fills the double precision array right with the C++ and in Fortran 77 is shown ffigs. 2 and 3Let the file with
right margins of the objective function. the C++ code be namexzhnel . cc and that with the Fortran

4. funmin(x): It is a double precision function which returns codecanel . f. Let these files be located in tlexanpl es
the value of the objective function evaluated at point x. subdirectory. Change to tiexanpl es subdirectory and create

5. granal(x,g): It is a subroutine (or a void function in C) the GenPri ce executable with therake_genpri ce com-
which returns in a double precision array g the gradient ofmand:
the objective function at point x. ./ bi n/ make_genprice -p canel . cc

4.4. The utility make_genprice or for the Fortran 77 version

./ bin/ make_genprice -p canel.f

After the compilation of the package, the executatd&e
genpri ce will be placed in the subdirectolyi n in the distri-
bution directory. This program creates the final executable anBUN. / GenPri ce | N ORDER TO RUN THE PROBLEM
it takes the following command line parameters:

Themake_genpri ce responds:

RunGenPr i ce by issuing the command:

1. - h: Prints a help screen and terminates. ./ GenPrice -c 10 -r 1
2. -p filenane: Thefil enane parameter specifies the The resulting output appears as:
name of the file containing the objective function. The util- '
ity checks the suffix of the file and it uses the appropriatecUncTI ON EVALUATI ONS = 1310
compiler. If this suffix is .cc or .c++ or .CC or .cpp, then GRADI ENT EVALUATI ONS = 20

it invokes the C++ compiler. If the suffix is .for .F or .for M NIMUM = 0.089842 -0.712656 -1.031628

158

|.G. Tsoulos, |.E. Lagaris/ Computer Physics Communications 174 (2006) 152-159

extern “C"{
int getdimension()

{
}

void getleftmargindouble *left)

{

return 2;

left[0] = —5.0;
left[1] = —5.0;
}

void getrightmargindouble *right)
{

right[0] =5.0;

right[1] =5.0;
}

double funmin(double *x)

double x1=x[0],x2=x[1];
return 4*x1*x1-2.1*x1*x1*x1*x1+
XL*XL*X1*X1*X1*X1/3.0+X1*X2-4*X2*X2+4*X2*X2*X2*X2;
}

void granal@louble *x, double *g)

{
double x1=x[0],x2=x[1];
g[0]=8*x1-8.4*x1*X1*x1+2*Xx1*x1*x1*X1*x1+X2;
g[1]=x1-8*x2+16*X2*X2*X2;

}

}

Fig. 2. Implementation of Camel function in C++.

integer function getdimension()
getdimension= 2
end

subroutine getleftmargin(left)
double precision left(2)

left(1) = —5.0
left(2) = -5.0
end

subroutine getrightmargin(right)
double precision right(2)

right(1) =5.0
right(2) =5.0
end

double precision function funmin(x)

double precision x(2)

double precision x1,x2

x1=x(1)

X2=x(2)

funmin=4*x1**2-2. 1*x1**4+x1**6/3.0+X1*X2-4*X2**2+4*Xx2**4
end

subroutine granal(x,g)

double precision x(2)

double precision g(2)

double precision x1,x2

x1=x(1)

X2=x(2)
0(1)=8.0*x1-8.4*x1**3+2*x1***5+x2;
g(2)=x1-8.0*x2+16.0*x2**3;

end

Fig. 3. Implementation of Camel function in Fortran 77.

References

[1] H.A. Bremermann, A method for unconstrained global optimization,
Math. Biosci. 9 (4,8) (1970) 1-15.

[2] E.J. Beltrami, J.P. Indusi, An adaptive random search algorithm for con-
strained optimization, IEEE Trans. Automat. Control 17 (4) (1972) 1004—
1007.

[3] R.A. Jarvis, Adaptive global search by the process of competitive evolu-
tion, IEEE Trans. Systems Man Cybergenetics 75 (4) (1975) 297-311.

[4] W.L. Price, Global optimization by controlled random search, Com-
put. J. 20 (1977) 367-370.

[5] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated an-
nealing, Science 220 (4) (1983) 671-680.

[6] P.J.M. van Laarhoven, E.H.L. Aarts, Simulated Annealing: Theory and
Applications, D. Riedel, Boston, 1987.

[7] A. Corana, M. Marchesi, C. Martini, S. Ridella, Minimizing multimodal
functions of continuous variables with the “Simulated Annealing” algo-
rithm, ACM Trans. Math. Software 13 (1987) 262—-280.

[8] W.L. Goffe, G.D. Ferrier, J. Rogers, Global optimization of statisti-
cal functions with simulated annealing, J. Econometrics 60 (1994) 65—
100.

[9] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Publishing Company, Reading, MA, 1989.

[10] Z. Michaelewizc, Genetic Algorithms- Data Structures= Evolution
Programs, Springer-Verlag, 1996.

[11] R. Storn, K. Price, Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces, J. Global Optimization 11
(1997) 341-359.

[12] M.M. Ali, A. Torn, Optimization of carbon and silicon cluster geometry
for Tersoff potential using differential evolution, in: C.A. Floudas, P.M.
Pardalos (Eds.), Optimization in Computational Chemistry and Molecular
Biology, Kluwer Academic Publisher, 2000, pp. 287-300.

[13] M. O’Neill, Automatic programming in an arbitrary language: Evolv-
ing programs with grammatical evolution, PhD Thesis, University of
Limerick, Ireland, August 2001.

[14] M. O'Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language, Genetic Programming, vol. 4,
Kluwer Academic Publishers, 2003.

[15] C. Ryan, M. O'Neill, J.J. Collins, Grammatical evolution: solving
trigonometric identities, in: Proceedings of Mendel 1998: 4th Inter-
national Mendel Conference on Genetic Algorithms, Optimization
Problems, Fuzzy Logic, Neural Networks, Rough Sets, Brno, Czech
Republic, 24-26 June 1998, pp. 111-119.

[16] M. O'Neill, J. Collins, C. Ryan, Automatic generation of robot behaviors
using grammatical evolution, in: Proc. of AROB 2000, the 5th Internat.
Symp. on Atrtificial Life and Robotics, pp. 351-354.

[17] M. O'Neill, C. Ryan, Automatic generation of caching algorithms, in:
K. Miettinen, M.M. Mkel, P. Neittaanmki, J. Periaux (Eds.), Evolution-
ary Algorithms in Engineering and Computer Science, Jyvskyl, Finland,
30 May-3 June 1999, John Wiley & Sons, 1999, pp. 127-134.

[18] A. Brabazon, M. O’Neill, A grammar model for foreign-exchange trad-
ing, in: H.R. Arabnia, et al. (Eds.), in: Proceedings of the International
Conference on Artificial Intelligence, 23-26 June 2003, vol. I, CSREA
Press, 2003, pp. 492-498.

[19] M. O’Neill, C. Ryan, Grammatical evolution, IEEE Trans. Evolutionary
Comput. 5 (2001) 349-358.

[20] J.R. Koza, Genetic Programming: On the Programming of Computer by
Means of Natural Selection, MIT Press, Cambridge, MA, 1992.

[21] M.J.D. Powell, A tolerant algorithm for linearly constrained optimization
calculations, Math. Programm. 45 (1989) 547.

[22] J. Nieminen, J. Yliluoma, Function Parser for C++, v2.7, available from
http://www.students.tut.fi/~warp/FunctionParser/

[23] D. Cvijoivic, J. Klinowski, Taboo search. An approach to the multiple
minima problems, Science 667 (1995) 664—666.

http://www.students.tut.fi/~warp/FunctionParser/

I.G. Tsoulos, |.E. Lagaris/ Computer Physics Communications 174 (2006) 152-159 159

[24] M.M. Ali, C. Storey, A. Torn, Application of some stochastic global opti- for global optimization, ACM Trans. Math. Software 29 (2003) 469—
mization algorithms to practical problems, J. Optim. Theory Appl. 95 (3) 480.
(1997) 545-563. [26] F.V. Theos, I.E. Lagaris, D.G. Papageorgiou, PANMIN: sequential and
[25] M. Gaviano, D.E. Ksasov, D. Lera, Y.D. Sergeyev, Software for gener- parallel global optimization procedures with a variety of options for the

ation of classes of test functions with known local and global minima local search strategy, Comput. Phys. Comm. 159 (2004) 63—-69.

	Genetically controlled random search: a global optimization method for continuous multidimensional functions
	Introduction
	Description of the algorithm
	Grammatical evolution
	Used grammar
	Description of the Genetic Random Search (GRS) algorithm
	Genetically Controlled Random Search (GCRS)

	Experimental results
	Test functions
	Camel
	Rastrigin
	Griewank2
	Gkls
	GoldStein & Price
	Test2N
	Test30N
	Potential
	Neural

	Results

	Software documentation
	Distribution
	Installation
	User written subprograms
	The utility make_genprice
	The utility GenPrice
	A working example

	References

