SOLUTION MANUAL

7-10-2004

1) The gradient is: $g = \begin{pmatrix} 2x + \beta y + 1 \\ 2y + \beta x + 2 \end{pmatrix}$. First order necessary optimality condition

$$g^* = 0$$
 yields: $\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \frac{1}{4 - \beta^2} \begin{pmatrix} 2\beta - 2 \\ \beta - 4 \end{pmatrix}$, hence $f(x^*, y^*) = \frac{2\beta - 5}{4 - \beta^2}$. The

Hessian is: $\begin{bmatrix} 2 & \beta \\ \beta & 2 \end{bmatrix}$ with eigenvalues $\lambda_{1,2} = 2 \pm \beta$. It is positive definite if

 $|\beta| < 2$, in which case we have a minimum. For $\beta = \pm 2$, $g^* = 0$ cannot be satisfied and hence no extrema exist. In all other cases the extremum is saddle.

2) First order necessary optimality condition $g^* = 0$ yields:

$$2\left(\sum_{k}a_{k}^{2}\right)x_{i}^{*}=2a_{i}\left(\sum_{k}a_{k}x_{k}^{*}\right), i=1,2,...,n.$$
 It follows that: $x_{i}^{*}=a_{i}\frac{x_{1}^{*}}{a_{1}}.$
Substituting these values we get $f^{*}=0$. The Hessian is: $\left[a^{T}a\ I-aa^{T}\right]$ and

since the second term is of rank one with eigenvalue $a^T a$, it follows that the Hessian is positive semidefinite which indicates a minimum.

- 3) $H' = H \frac{Hcc^{T}H}{c^{T}Hc}$. (Positive semidefinite). $x = x_{0} \lambda H'g$ satisfies the constraint $c^{T}x = c^{T}x_{0} = b$, since $c^{T}H' = 0$.
- 4) $p^{T}g < 0$ since it is a direction of descent. This means that one can write: p = -ag + b, where the vector *b* is normal to *g*, and a > 0. $(b^{T}g = 0)$. Substituting we get: $H = I + (a-1)\frac{gg^{T}}{g^{T}g} + \frac{bb^{T}}{b^{T}b}$. Let a vector $s \neq 0$. Prove that $s^{T}Hs > 0$. This is obvious if one notes that $s^{T}s - \frac{(s^{T}g)^{2}}{\sigma^{T}\rho} \ge 0$.

5)

a. $d = -\nabla f(x) \Rightarrow d = -(Qx + p)$. Since it passes from the origin we have: d = -p. The equation of a line passing from the origin along this direction is: $x(\lambda) = -\lambda p$, $\lambda > 0$. Hence the function becomes:

$$\frac{1}{2}\lambda^2 p^T Q p - \lambda p^T p$$
. Minimizing that wrt λ yields: $\lambda = \frac{p^T p}{p^T Q p}$ hence
 $x_c = -\frac{p^T p}{p^T Q p} p$, (the Cauchy point).

b. The Newton point is: $x_N = -Q^{-1}p$. The path from the Cauchy to the Newton point is given by: $x(\mu) = x_c + \mu(x_N - x_c), \quad 0 \le \mu \le 1$. Substituting this in the quadratic function and taking the derivative wrt

$$\mu \text{ we get:} \frac{\partial f}{\partial \mu} = \mu (x_N - x_c)^T Q (x_N - x_c) + (x_N - x_c)^T Q x_c + (x_N - x_c)^T p$$

which is an ascending function of μ . Its maximum is at $\mu = 1$, and its value is vanishing. Hence the gradient wrt μ is negative.