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. First order necessary optimality condition 

0* =g  yields: 
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Hessian is: 
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 with eigenvalues βλ ±= 22,1 . It is positive definite if 

2|| <β , in which case we have a minimum.  For 2±=β , 0* =g  cannot be 
satisfied and hence no extrema exist. In all other cases the extremum is saddle. 

2) First order necessary optimality condition 0* =g  yields:    
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Substituting these values we get 0* =f . The Hessian is: [ ]TT aaIaa −  and 

since the second term is of rank one with eigenvalue aaT , it follows that the 
Hessian is positive semidefinite which indicates a minimum. 
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−=′ . (Positive semidefinite). gHxx ′−= λ0 satisfies the 

constraint bxcxc TT == 0 , since 0=′HcT . 

4) 0<gpT  since it is a direction of descent. This means that one can write: 

bagp +−= ,  where the vector b is normal to g, and  0>a . )0( =gbT .  

Substituting we get: 
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0>HssT . This is obvious if one notes that 
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5)  
a. )()( pQxdxfd +−=⇒−∇= . Since it passes from the origin we have: 

pd −= . The equation of a line passing from the origin along this 
direction is: 0,)( >−= λλλ px . Hence the function becomes: 

ppQpp TT λλ −2
2
1 . Minimizing that wrt λ  yields: 
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c −= , (the Cauchy point). 

b. The Newton point is: pQxN
1−−= . The path from the Cauchy to the 

Newton point is given by: 10),()( ≤≤−+= µµµ cNc xxxx . 

Substituting this in the quadratic function and taking the derivative wrt 
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which is an ascending function of � . Its maximum is at � =1, and its 
value is vanishing. Hence the gradient wrt �  is negative. 


