ME©OAOI TOITTKHY KAI KAGOAIKH:
BEATIXTOIOIHXHY

H ATAAKTOPIKH ATATPIBH

YroPdhheton otny
optobetoa and tn I'evint) Xuvéreuon Edinrc X0vbeonc
Tou Tunuatoc ITAnpogpopintc

Ecetaot Enttponi

amd TOV

KONYTANTINO BOI'KAH

0OC UEPOC TV YTIOYPEDOEWDY TOU YioL TN A

ATAAKTOPIKOY AIITAQMATOY Y¥THN ITAHPO®OPIKH

ToUvioc 2010



Thesis Committee

[saac E. Lagaris (Supervisor), Professor, Department of Computer Sci-
ence, University of loannina

Nikolaos P. Galatsanos, Professor Department of Electrical and Computer
Engineering, University of Patras

Aristeidhs Lykas, Associate Professor, Department of Computer Science,

University of Ioannina

Thesis Approve Committee

[saac E. Lagaris, Professor, Department of Computer Science, University
of Toannina

Nikolaos P. Galatsanos, Professor, Department of Electrical and Com-
puter Engineering, University of Patras

loannis Demetropoulos, Professor, Department of Informatics and
Telecommunications Engineering, University of Western Macedonia
Charalambos Mpotsaris, Department of Regional Economic Development
,University of Central Greece

Aristeidhs Lykas, Associate Professor, Department of Computer Science,
University of loannina

Konstantinos E. Parsopoulos, Assistant Professor, Department of Com-
puter Science, University of Ioannina

Dimitrios Papageorgiou, Assistant Professor, Department of Materials Sci-

ence and Engineering, University of loannina,



EYXAPIZTIES

Oa Hfera va ameubivew T euyaplotieg wou otov emPBAénovta xabnynTth wou x. loadx
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EXTENDED ABSTRACT

Costas Voglis, PhD Computer Science Department, University of loannina Greece. June,
2010. Methods for Local and Global Optimization. Thesis Supervisor: Isaac E. Lagaris

In this thesis new methods for local and global optimization are presented their be-
havior is analyzed and experimentally tested. Also a broad review of standard techniques
for local and global optimization is given.

The issues presented in this thesis vary from one dimensional optimization to stochastic
methods for global optimization applied in problems in many dimensions. FEach topic
described, is presented in clear algorithmic form and compared to standard competitive
methods.

In the topic of local optimization four new techniques are presented and one modifica-
tion of an existing method. Concerning global optimization a stochastic global framework
consisting of four steps is presented. For each step in this framework the contribution of
this thesis is exposed.

This thesis is divided in two main parts: In the first part the research on local op-
timization is presented and in the second part the results for the global optimization

counterpart.

Part 1: Local Optimization

Chapter 2

In Chapter 2 a complete bibliographic survey of the most important methods in local
optimization is presented.

Chapter 3

In this chapter, an algorithm for solving a quadratic programming problem with positive
definite Hessian and bound constraints, that employs a Lagrange multiplier approach is
presented. The quadratic programming problem with simple bounds is stated as:

1
¢(x) = min §$TB:E +274d, (1)
subject to: a; < x; <b;,Viel={1,2,---,n}



where z,d € R" and B is a symmetric, positive definite n X n matrix. The proposed
method falls in the category of active set techniques. The algorithm, at each iteration,
modifies the minimization parameters both in the primal space and in the dual space
(Lagrange multipliers). The method may be profitably used on a number of problems from
the fields of Physics, Chemistry, Computer Science and Engineering. Comparative results
of numerical experiments are reported demonstrating the advantages of the proposed
approach.

The algorithm presented is an infeasible active set algorithm, which generates a finite
number of iterations that are not necessarily descent. In each step the first order opti-
mality condition along with the complementarity constraint are maintained, until primal
and dual feasibility hold. Two closely related methods in the literature are the Projected
Newton method and the infeasible method of Kunisch and Rendl that treats only upper
bounds.

Chapter 4

A trust region algorithm for unconstrained and bound constrained nonlinear optimization
problems is presented in Chapter 4. The trust region is a rectangular hyperbox in contrast
with the commonly used hyperellipsoid. The resulting quadratic subproblems are solved
approximately by an adaptation of Powell’s dogleg method for rectangular trust regions
and a the novel quadratic programming algorithm presented in Chapter 3. The problem
we are concerned is

min f(x),

subject to: a; <x; <b;,Viel={1,2,---,n}

where z,a,b € R".

The method developed that adopts a rectangular shape for the trust region. This
geometry has the obvious advantage of the linearity of the subproblem constraints and
in addition allows effortless adaptation to bound constrained problems. The emerging
quadratic subproblems are of the sort:

1
minm(s) = ésTBs +s7g subject to: o < s; < B (2)

S

a modification of Powell’s dogleg technique is developed to obtain an approximate solution
and an exact technique based on quadratic algorithm in Chapter 3.

We embed this scheme in a quasi—-Newton framework that uses a positive definite
approximation to the Hessian matrix. This renders the problem in Eq.4.1 a strictly convex
one, and hence the dogleg technique and the convex quadratic solver are applicable.

Chapter 5

In this Chapter a local search method suitable for supervised training of feed-forward
artificial neural networks, with one hidden layer and sigmoidal activation functions is

v



developed. The resulting Sum-of-Squares objective function is minimized using a hybrid
technique that switches between the Gauss-Newton (GN) approach in the small residual
case, and Newton’s method in case where large residuals are detected. This is done in the
spirit of Fletcher and Xu where instead of Newton’s method, a variable metric method
(BFGS) was preferred in order to avoid the calculation of the Hessian matrix, which in
the general case is both costly and cumbersome. In the special case that is considered
here, the Hessian matrix can be expressed analytically and calculated efficiently by taking
advantage of the properties of the sigmoidal activation function and its derivatives.
The Sum-of-Squares problem is stated as

min F(z) = > f(x),
i=1
subject to: a; <x; <b;,Viel={1,2,---,n}

where f; : R — Ri=1,...,m continuous and differentiable functions and x,a,b € R".

In comparing GN and Newton methods, the GN is generally preferred for zero residual
problem (ZRP) that is when r(z*) = 0, whereas Newton-like methods are preferred for
large residual problems (LRP) or when J; looses rank.

Usually is not known beforehand whether a problem will turn out to have small or large
residuals at the solution. It seems reasonable, therefore, to consider hybrid algorithms,
which would behave like Gauss-Newton if the residuals turn out to be small (and take
advantage of the cost savings associated with these methods) but switch to Newton like
steps if the residuals at the solution are large (with the cost of approximating or computing
second order derivatives).

Chapter 6

In Chapter 6 a software library for numerically estimating first and second order partial
derivatives of a function by finite differencing is presented. Various truncation schemes
are offered resulting in corresponding formulas that are accurate to order O(h), O(h?),
and O(h?), h being the differencing step. The derivatives are calculated via forward,
backward and central differences. Care has been taken that only feasible points are
used in the case where bound constraints are imposed on the variables. The Hessian
may be approximated either from function or from gradient values. There are three
versions of the software: a sequential version, an OpenMP version for shared memory
architectures and an MPI version for distributed systems (clusters). The parallel versions
exploit the multiprocessing capability offered by computer clusters, as well as modern
multicore systems and due to the independent character of the derivative computation,
the speed up scales almost linearly with the number of available processors/cores.

Part 2: Global Optimization

In the second part of this dissertation, algorithms for a certain class of stochastic global
optimization are presented. Stochastic two-phase clustering and sampling techniques are



the main concern of this thesis. These algorithms consist of two phases: a global phase
where the search space is explored using a sampling algorithms and a local phase realized
by a local optimization algorithm. In this thesis the general global optimization problem
is tackled, that can be formulated as:

Find all minima f(z),

subject to: a; <x; <b;,Viel={1,2,--- ,n}

Obviously, if all minima are retrieved the global minimum is found to. This problem is
presented in bibliography [24, 33, 36, 77, 86, 156, 163].
Below a general algorithm of a stochastic two-phase clustering algorithm is presented.

General Algorithm 1: Stochastic Two-Phase Clustering

Step 1. Sample search space.
Step 2. Cluster sample points int groups that correspond to the same minimum.
Step 3. From representative points of the cluster start a local search.

Step 4. Check for termination.

In this thesis an alternative methodology to the General Algorithm 1 is proposed.
Instead of applying clustering to identify already found local minima, one can create a
suitable adaptive sampling distribution that will not take samples around already found
local minima. The general algorithm for adaptive sampling distribution creation in the
global optimization framework is given bellow:

General Algorithm 2: Stochastic Two-Phase Distribution Driven

Step 1. Sample from the distribution.
Step 2. Start a local search from the sampled point.
Step 3. Update distribution parameters.

Step 4. Check for termination.

In global optimization bibliography many contributions have been made for every
step of General Algorithm 1. The ideas described in this thesis, follow the same line of
research. Considering steps 1 and 3 of the General Algorithm 2, two alternative sampling
techniques are described in Chapters 8 and 9 respectively. In Chapter 10 a clustering
algorithm is presented, suitable for Step 2 of General Algorithm 1. In Chapter 11 a local
search method appropriate for both general algorithms is presented and finally in Chapter
12 a new termination criterion is introduced.

vi



Chapter 7

In this Chapter an introduction to stochastic, two-phase optimization with clustering is
performed and a detailed bibliographic review is given.

Chapter 8

A stochastic global optimization method based on Multistart is presented. In this, the
local search is conditionally applied with a probability that takes in account the topology
of the objective function at the detail offered by the current status of exploration. As a
result, the number of unnecessary local searches is drastically limited, yielding an efficient
method. Results of its application on a set of common test functions are reported, along
with a performance comparison against other established methods of similar nature.

The method is based on the definition of the region of attraction of the local minimum
and makes use of an mazimum attraction radius in order to define this region. By making
use a probabilistic model around each minimum recognizing the region of attraction of
various shapes and sizes is achieved. When a sample point is detected inside a region of
attraction, a local search is not performed. On the other size, when a sample point is
considered outside all regions of attraction then a local search is performed. The proposed
method can be also seen as a variation of General Algorithm 2, where the sampling is
defined implicitly.

Chapter 9

In this chapter a novel method for selecting candidate starting points for stochastic two-
phase algorithms, is proposed. The sampling method takes into account previous local
searches. The information revealed from the local search forms a normal distribution
around the most recently found local minimum. This is a direct way to implement General
Algorithm 2, presented in introduction. The final sampling distribution is a weighted sum
of all normal distributions created around the retrieved local minima.

Chapter 10

In Chapter 10 a new approach for clustering in stochastic global optimization framework
is presented. The proposed algorithm attempts to cluster sample points around minima
using the global k-means algorithm enhanced with spectral information. The major con-
tribution is a novel way of introducing gradient information into the clustering problem.
Gradient information is proven to be very helpful in defining clusters around minima. Af-
ter the cluster creation step the minima are retrieved using a local optimization method
starting from cluster centers.
The proposed approach can be described in brief in Algorithm 0.1 :
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Algorithm 0.1 The proposed clustering method

S1 Sample points in the region of interest: For this step we use two alternatives:

S2 Concentrate the sample to obtain groups around the local minima: Displace sample
points by using a fraction of the negative gradient or few steps of a local optimizer.

S3 Recognize these groups by the aid of a clustering method: In general out clustering
method consists on two main steps (which will be thoroughly analyzed later):

(a) Estimate the number of clusters k£ formed by the concentrated sampled points

(b) Apply global k-means (or a proposed variation) seeking k clusters.

S4 Stopping condition: Any stopping criterion from the bibliography can be used.

Chapter 11

Stochastic methods based on multistart, that employ a clustering scheme to separate
different regions of attractions have proven to be quite successful. The research in this
direction was pioneered by Rinnoy Kan and its group in a series of articles. Various
authors followed up this line, see for example Torn and Viitanen, Schoen and Locatelli,
Ali and Storey and a host of methods and software implementations have appeared in
the literature. A common feature of these methods is the use of a local search (LS), i.e.
a procedure for locating a local minimum. The characteristics of this procedure play an
important role as far as the performance and the effectiveness of the global method is
concerned. If by z* = L(x) we denote that a local search started at point z, will end up
finding the local minimizer x*, then the region of attraction of a minimizer x* may be
defined as the set A(L,x*) = {x;,2* = L(x;)} and depends in addition to the position of
the minimum z*, on the LS procedure.

If * and y* are distinct local minima A(L,x) N A(L,y) # O provided that the local
search is deterministic. Stochastic LS procedures create overlapping regions of attraction
a fact that in the framework is rather undesirable. Also regions of attraction may be
contiguous or not. Evidently a non—contiguous region can not be described by a single
cluster, and hence the existence of such regions may influence the performance of the
method negatively. So a proper LF for clustering should be such that the regions of
attraction that it creates are contiguous. Vrahatis et al have provided a tool for visualizing
the regions of attraction. An interesting fact is that all of the most successful LS search
create disjoint regions. Hence a LS with contiguous regions of attraction would be very
useful for clustering methods.
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Chapter 12

For a broad class of global optimization problems, it can never be verified in finite time that
the global optimum is identified with certainty. Therefore a need emerges for stopping
rules which decide if the expected benefit of further searching outweighs the required
computational effort.

Stopping rules have to decide for the path between the Scylla of computational effi-
ciency and the Charybdis of the completeness warranty. In other words their objective
is to collect the complete set of the existent local minima with the least computational
effort. The ideal case would be to stop the search as soon as all the minima have been
discovered. Since this is not possible, further searching is necessary to ensure that there
are no left—out minima, a fact that inevitably leads to a compromise. So the stopping
rules, depending on the specific problem at hand, negotiate either for efficiency or for a
degree of completeness.

In this Chapter a new stopping rule is described that can be applied in every multistart-
like global optimization framework. The basic assumption is that one can calculate theo-
retically the relation between the number of recovered minima m and the number of local
searches k for a problem that has w distinct local minima. Also suppose that this is a
relation of the sort

m=N=N®w), N—wask— oo (3)

Imagine now that one applies multistart-based algorithm and plots the number of recov-
ered minima versus the number of local searches.

One then at the k-th local search, may compare the experimental curve with the
theoretical one and find which w is the one that produces the best match. If this is
possible then at k-th local search we will now the number of expected local minima and
hence a very efficient stopping rule may emerge.

The stopping rule proposed is based on the assumption that The probability of locating

a local minimum, among the w distinct ones, by applying a local search is p = %

X



I IEPIAHWH

Béyxne Kovotavtivog tou Ahe€dvdpou xat tne Eugpooivne, PhD Turua IIinpogopuxic,
Havemothuto loavvivey, Iovviog, 2010. MéBodol Tomuric xow Kabohxric Behpiotonotinorg.
Enpiénovrac: Ioadx H. Aayoprc

Y1y napovoa Slateldn tépay ulag avvtoung BBAloypapxic avaoxdnnone Tmv Uebddwy
alyunc yia to mpéPinua tne tomic xat xabohuxic Bektiotonolnong (ehaytotonolnong),
mapouotdlovtal véol alyobplfuot, 1660 v Tomxr 660 xat Yo xabolx BedtioTonolnon,
AVOAVETOL 1) CUUTIEPLPOEE TOUS Xot eEETALETAL TELRAUATLXE 1) ATOGS0GY) TOUC.

To edpoc Oeudtov tne mapovoag dwatpPric Zexwvd and uébodo uovodidoTtatng Tomxng
ehaytotonolnong oL @Tdvel oe otoyaoTixéc uehdodoug yior T Adon Tou TEOBAAUATOC TOU
xafohixol ehayilotou yia ouvaptioec TOAGY ueTaBAntdy. To xdbe Béua mou tepiypdpeTa
ouvodeleTol amd avVaAUTIXEC avagopéc ot Biiloypapia, tapovoidletal oe alyopluixh
uop®n xaL ouyxplvetal ue avtiotolyeg uebodouc.

'Oco agopd v Tomxy Pehtiotonoinon nopovoidlovtal oe auth TN StatelT| T€ooepELS
véeg Texvxéc xou Ula tpomoroinon undpyouocac teyvixrc. Mo and Tig véeg uebodoug
Tou aopd Uovodidotaty Tomixy| ehayloToroinon Ho ueketnbel oto mhatoo tne Kaboluweic
Elaytotonoinong, agol avantiyOnxe yua vo Aoet tpofAfiuata 610 yevixd nialoto Kabohuxric
Elayiotonolnong.

H noapovoa dwatpi3) ywelletal oe duo tufuata: Xto mp®dto Tufua napouctdlouue to
gupruaTa Tou agopolv Tomxy ehaylotorolnon xol oto devtepo, uebodoloyia yia xaboixn
ehaytotonoinon. Axoloubel cuvontixy| teptypagr Tou xdbe TuHUATOC.

lo Turuo: Tomuxy) EAaylotonoinoy
20 Kegdlawo

Y10 devtepo Kegdhato napouoidlovue ua extevy| BUSAMOYEAQXY avapoed 0TI TLO CTUAVTIXES
TEYVXEC TOTUXC EhayLoTOTOlNONS, EEXLVOVTOS amd TOV 0ploUd Tou ehayloTOU, TIC XAVES
xa avaryateg ouvirxeg yia TNy Unopdn Tou xoL TPoYweoVTAC ot alyoplbuoug avdhoya ue Thy
TAneogoplo mou SlabéTouue yia TNV avuxeevixr ocuvdptnor. Awrédaue Ty Tallvounon
Twv Uebodwy xat’ apy v ot uovodidoTtateg xat tohudidoTateg ol xatd devtepov oe uebédoug
Tou deV YpnoLorololy Tapaydyous, oe Uebddoug mou yenoluomololy 1n nopdywyo xat oe
uehddoug mou yenoulorololy TpdTtec xol devtepec Tapay®dyouc. H aldvoldn auty tpoorabet
vo. oploel Tig Bdoelg Tévw oTic onole oTnplytnxe N €peuva xat vo emdellel Tol onuelol TOU



epeuvrinxay xau avantiyfnxay tepattépw.

30 Kegdiawo

Y10 Kegdhoawo 3, nopouoidletar yta véa Teyvixy v TNy enthuon Tou TEoPAAUATOC TOU
xupToU TETpaYwVIXOU TpoypauuaTiouwoy (convex quadratic programming) ue anhid Gpla
(bound constraints). To npéBinua mou Advetal neplypd@eToL WC:

1
¢(z) = min §xTBa: +21d,
uné tov Teploptoud: a; < x; < b, Vie I ={1,2,--- n}

orov z,d € R" xa B ouuuetpixde, Betxd opiouévoc n X n nivaxoag. To ouyxexpuuévo
TEOBANUA, av xaL opxeTd e€eldixeLUEVo, Bploxel TAnldpa epapuoyYdV 68 TPOBAAUATA XATACKEVEDY,
unyavixne, Plotateixic, LTOAOYLOTIXAC QUOLXAC axdua xoL Tallvounonc Sedouévwy ota
mhalol g unohoyloTixrc vonuooUvng. 'Evag axéua Baoikdc Adyog mou uog odrynoe

va aoyohnfolue UE TO oLYXEXPLUEVO TROBATUA elval OTL TpoXURTEL GOV UTOTPOPANUA GE
uebddoug Tomxnc ehayloTonolnong mou yernotuonololy Teployés euntotoolvne. Tétoteg
uéfodot, mou Ha mapouciactoly oto enduevo Kegdharo tng SwatePric, anattody oe xdfe
emavdAnd| Toug TNy eniAuoT evHg TEOPARUATOC XUPTOU TETPAYWYLXOU TROYEUUUATIONOU UE
anhoU¢ TEPLOPLOUOUC OTLC UETAPANTES.

H erihuon axolouvbel tnv uebodoloyia twv tolhariacloctdy Lagrange xou ixavonotet
Tic ouvbrxec Kunh-Tucker yio v Unapln ehaylotou.

Ye %dbe enavdindmn opilovtar tpla clvola dewxxtdy, xat avatifeviol Tiwég 1600 OTIg
TUPEAUETEOUS T 660 oL 6Toug ToAanAactaoteg Lagrange A,y avdioyo ue 1o 6Ovoho mou
avixouv. Me Tov TpbT0 auTd ETLTUYYEVOUUE VoL AUVouUe o€ xdbe emavaAndn éva ypouuxo
oVotnua To oAU n Té&ng, and TN AUor Tou onotlou Bu TpoxVYouy Ta GUVOL TNG EROUEVNS
enavaindne.

Baowd uroloyiotind xéotoc tou akyoptBuou elval n Aon oe xdfe eravdindn evoc
Yeauutxol cuoTthuatoc To Tohd n tdinc. Extetauéva newpduata oe mAnfoc mpayuatindy
XL TEYYNTGOV TROBANUATWY AmodeELXYUOUY TNV AV TEROTNTA TNE UEDHBOU, EVOVTL AVTUY WVLOTIXGY
TEYVIXOV oTT BAloypadplia.

40 Kegpdiowo

To Kegdhato 4, mepthaudver UeAétn Tou ToBAAUATOC TOTUXNC EAAYLOTOTONONE UE ATAd
HpLOL YPNOULOTOLOVTAS TNV TEYVIXT TWV TEpLoy GOV euttotoolvre (trust region). To npdBinua

TOU Uag anaoyoAel oe authAv TNV TeplnTwon elva To:

i £ (),

und tov Teploptoud: a; < x; < b, Vie I ={1,2,--- n}

émou x,a,b € R". Lougova ue tnv uéhodo tne teptoyfic euntotoolvne 1 ouvdptnon f(x)
npooeyYlleToL TOTXE Ue €Va XUPTO TETPAYWVLXO LOVTEAO TO OTolo ehayloToTolelTal o€ xdbe
emavaAnYn un6 Tov TEpLOpLOUG ULag TEpLoyTc EVBLapEpovTOS (trust region).

xi



H reproyn evdiagépovtog atny BiBAoypagla elvat cuviboc ogatpixy| (6nou xo xabopileto
amd po axtiva Ag). Yty nopoboa SwotplBr, tapouotdlouue Uta SLUQOPETLXT| TPOGEYYLO
yenowonotdvtac urep-ophoydvia (hyperrectangle) neproyy| evdiagpépovroc (tou xabopileton
and TNV Thevpd Tou unep-ophoywviov Ay).

H emhoyy auty| Paoiletar otny anhy tapatienon 6t edv 1o TpéPAnua €yel Hdn anid
bpla ooy meploptolols, 1N Touh Tov athdv oplov ue to unep-opboydvio TNg meployic
eumioToouvng elvan entong unep-opboydvio. "Etol to unompdBinua mtou mpénel va Aufel oe
%&0e enavdhndn elvat cav autd Tou uelethoaue oto Kegdhalo 3, Snhadn xupty TeTpaywvixt
OLUVAQETNOT) UE TEPLOPLOUOUG ATAS OpLa.

To uronpdBinua Aovetar ue duo teywixés. Mia mpooeyyloTixt| Bactouévn otny Teyvixy
xuvéroug (dogleg) mou avéntule o Powell xau o axpBric yenotdonowdvtog tov alybptbuo
mou neplypddoue oto Kegpdhowo 3 tne SwatpBric. H mpooeyyiotins) Adon nou napovoldlovue
elva ehagpdc Tpomoroinuévr ya va Tatpldlel otny unep-opboydvia Teploy i euntoTooVTC.
And v dAAn yepld 1 axpBric Ador, av xal utoloyloTixd o axplB, cuyxhivel TayUtepa
oto Tomx6 eldyloto. O alydplbuoc umep-ophnoydviag meployrc euniotoovvne pall ue
Tic duo uebbdoug emihuong Tou TETPAYWVIXOU UTOTPOBAUATOS JOXLUAOTNXE EXTEVHS GE
TEOBAAUOTO UE TEPLOPLOUOUC, AARE X0l Ywpelc Teploplouolc Ue eColpeTixy| anddoon.

50 Kegpdiaro

Y10 Kegdhaio 5, mapoucidleta uta tpononoinon tng yvwotic uebddou twv Fletcher xoau Xu
Yio TEOBAAUATA EAXYLOTOTONONEG CUVIRTAHCE®Y TNC UOPPHS EAUYIOTWY TETPAYDOVWY, xa0dS
XAl TNV €QApUOYT TNG 68 TPOPBAAUATA EXTABEVOTE VELPWYLXGY BIXTUWY. LTNY UEAETN AUTY
TO TEOPANUA TOU ETUAVETOL SLATUTMVETAL (G

min Fa) = 3 f2(a),
i=1
uné tov Teploptond: a; < x; < b, Vie I ={1,2,--- ,n}

omou f; : R — R ouveyelc xol nopaywylowes ouvaptioeg Yy ¢ = 1,...,m xou z,a,b €
R". H uebodoroyia twv Fletcher xou Xu anotehel éva ouvduaoud duo mohld Yvwotdv
mpooeyyioewy Tou Ecowavol nivaxa. Tng BEGS yia tomued ehaytotoroinon xo tng uebédou
tou Gauss-Newton yia tnv elduxt| nepintwon Tou abpoloyatoc TeTpaydGVmY.

H uébodoc umopel va ypnotuornotioel oe xd0e enavdhindn tov éva ¥ Tov dAlo ahydplfuo
avdroyo ue éva xpLthplo Tou BactleTal 6T0 TOGOGTO UElWONS TNC AVTLXELUEVIXNC GUVAETNOTNC.
To xpitfiplo autd npoonabel va dtayvidoet av To TEOBANUL AVAXEL OTNY XATNYORlo TOU ULXEOU
unoloinou (small residual) 7 o€ aut Tou peydhou utoloinou (large residual). Xtnv npd T
xatnyopla 1 Moo elval xovtd oto undéyv, eved otnyv dedtepn xatnyopla OyL.

[ va xatavoricouue to Staywploud Ha ddoouue Tov TUTo Tou tivaxa SeuTépwy TapaYdYwY

(hessian matrix) oe mpoBAfjuata ehayloTwy TETPAYHGVOV.

m

H(xy) = V2F () = J (@) J (we) + > filze) V2 filay)

=1
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, , . 0fi(x)
émou J(x),n x m mivaxac Ue otouyela o
x
To npohiuata uxpol éyouy hon x* otny onola f;(z*) =~ 0 xoL xatd cuvénela xovtd
otn ANon o eoolavog mivaxag unopel va mpooeyylotel ue axpifela ue TNy mpooéyylom
H(zy) = J"(zy)J (1), mov ovotaotxd elvar 1) tpocéyyion Gauss-Newton. Ye avtifetn

neplntwon 1 npocéyyion Gauss-Newton dev elvat axpBric Uag xot 0 6pog Z filzp) V2 fi(zy)
i=1
elvol onuavtixdg. Xtny nepintwon auth xahd Oa ¥tav vo yenotuonoinfel uio xahvtepn

TpooéyyLon 6nwe Ty. 1 BEGS evnuépwon.

H ouvelopopd tne StatpBric éyxettal oe duo onuela. Ipdtov, n BFGS avtixataotdbnxe
and tny uéhodo Newton mou yenouonolel deltepeg mapaydyous xar Sevtepoy 1 uébodog
EQPAPUOOTNXE YO TPOTY Yol OTNY eXTAldELOT) VELPWVIX®Y dxTiwy. [ To oxomd auTd,
uroAoyloaue aVIAUTIXG TIC TPMTES X0l SEUTEPES TARAYMYOUS YLoL £VOL OTOLOSHTOTE VEURPWYIXO
dixTuo ue éva xpuuuévo eninedo. Xuvontixd o alydpLbuoc Tou TapouctdleTal e OLLOTOLEL,
oe x40 emavdhndr Tou, To xpLtiipLo Twv Fletcher & Xu yia va anogacicel av Ho yenouoroioel
v Gauss-Newton (@tnvA) tpocéyyion ¥ tov thipn ecotavé nivaxa, o otolog elvat unohoylotxd
TLo axp36¢.

6o Kegdlaro

Eneld?) o utoloyiouds tov mopaydywy nailel tépa okl onuaviixd héyo oe ahydpliuoug
ehaytotonolnong, o ua tapdhnhn wa BuBiiobrixn hoyiouwxot (NDL) tou napéyet T duvatdtnta
YL THEdAANAO UTOAOYLOUS TPGTOY XL SEUTEPWY TAPAYDY WY UE TN UEH0dO TwV TETEPACUEVKDY
Stapopdyv (finite differences). Auo onuavuxol Aoyotr pac odfynoav oty avdntuln e
BBhobrixne. O mpdrog elvar 1 avurapiio eAelbepou Tax€Tou AOYLOULXOU YO TOV TAPIAANAO
uTohoYLoUS TwV Tapay®dyYwy. O deitepoc Adyog €yel va xdvel Ue T porydata avdntudn xoL
XeNon TAEdAANAWY UTOAOYLOTIXGY CUCTNUATWY, Elte ot eninedo cLOTAdWY UTOAOYLOTOY
(clusters), elte oe apyttextovixéc TOAGY TupHvewy (multicore). O xdfe évoc TAéov unopel
Stabétel €éva mohumpnvo utohoyloTixd alotnua, ol 1y NDL 1o exuetalhevecol 6to Enaxpo.

H BiBAobrppn mapéyel ulor avohutind dtemagt| yia xd0e mapdywyo tou Béhovue vo utoloyLoTel,
v axpiBela mou embuuel o yprRotng xaL av urdpyouy dpla oTig uetaBAntéc. H BiBAobnxn
unopel va yenowonoinfel oe egapuoyéc BeATioTonolnone 6TLC 0TOlEC AVOAUTIXES TARAYWYOL
elval dUoxoho va uroloylotoly xal utootneilel Siemagéc yior Tig mAatpdpuec MPT ol
OpenMP.

Yuvortxd 1 BYBAofxn mou tapoucidletar el Ta eEhC yapaxTneloTixd tou thy Eeyweilouy

Ao TOV AVTAYWVLOUO:

o Autéuatoc utoloyloudc Tou Briuatog Yo entteudn embuuntrc axplfBelac Tpooéyylomng:
Eivar yvootd 6t otic yefodoug nemepaouévwy dtagopdy unoroyllovial ol TUég
TNC OUVAPTNOEL GE UXPEC UETATOTLOEL YUPw AT TO ONUElo TOU Lo EVOLUQEREL 1)
TUEAY®OYOS. AVEAOYA UE TNV UETATOTLOT XL TOV TUTO TOU YETOLUOTOLOVUE, UTOPOUUE
va eTLTUYOVUE oL oLYxexpllévn axpifBela npocéyylong. O yperotng elvar ehedfepog
vo. emtAéZel uovo tny embuunty axplfBeta xal 1 BiBAtofxn xdvel Toug utoloyLouoy
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Yo To Brijua.

o Yroothpln anthdy oplwv ot wetaPintéc @ H PBAobvxn ue xatdiinioug ehéyyoug
oéPetal To medlo oplouoy TS cuVAETNoNC Tou TapEyel o Yerotne. Etol odnyelton
07O VO YPNOWOTOLACEL TROG TA UTPOS, XEVTPLXES 1) Tpog Ta Tlow dtagopé, avihoya

ue to av mopafidlovtal To dpta.

o H unoothpen mhatgpdpuac MPI xar OpenMP: Ta olyypova mapdiinio untohoyloTixd
CUOTAUATA UTOPOVY VO Y WELOTOVY EITE GE XATAVEUNUEVA GUGTHUATA TOAGDY ENEEERYATTHOVY
Tou emxoLvevoUV e Ypryopa Tonuxd dixtua (cluster of nodes) ¥ oe ousThAuaTa x0LViC
UVAUNG UE ToAlove enelepyaoTéc mou emtxolvovoly ue dtabhoug (shared memory mul-
tiprocessors). Kat yio tic duo mepintdoeie, n BUBAoO %N tapéyel Tpénouc extéleong,

Tou unopel va elvat xoL uetxtol.

o Emhoyy TpOTOU XATAVOUNS TV XAACEMY YL TOV UTOAOYLOUS TwV Tapaydywv: H
BBhobxn NDL napéyer T Suvatdtnta vo ueta3dAel xavelc Tov TpéT0 Ue Tov onolo
XATAVEUOVTOL Ol CUVETNOLAXES XAToeLS oToug dlabéoiuoug enelepyaoTéC.

H BiBhiobrpen éxel doxiuaotel evdeleyde ot 6Aeg Ti¢ tepintdoelc yerone. Enlong, éyouv
viver petphoelc yia tov vnoloytoud tne emttdyuvone (speed-up) oe dudgopa mapdAinia
ouoTAuaTa oL galvetol 6Tt 1 Tapovoa BBA0OxN uropel va enupépel onuavTixd x€pdr oc
Ye6vo unohoytouoV. Autd emBefordvetar and TC xaUTUAES TNG EMLTAYUVONS, OL OTOLES
mpooeyyilouv ) Bewpntixn axdua xa yia TOAY ypriyopes oUVAPTAGCELC.

20 Turua: KabBoiuwer Ehayiotonoinon

210 20 TuUa TNS SlotptBric Oo TapouclaeTOVY ToL ATOTEAEGUATA TG EPELVAC YLa TO AVTIXELUEVO
e xaboluxiic ehaytotonolnone. Xe yevixéc ypauués n épeuva uag xateuivinxe oe ua
oUYXEXPLUEVT, av xal eupela, xatnyopla TEYVXGOY Tou avagépovial otny BiAloypagpia
0¢ oToYAOTIXES TEXVIXEC duo Qdoewy ue ouadomoinon (stochastic two-phase clustering
techniques). Ot teyvixéc autéc mepthauBdvouy duo gdoels, uo xafolxr xatd vy onola
elepeuvdTal o Ydpog avalAtnong xat Yo Tomxr 6tou cuvibwg egapudletal éva ahydpLiuog
Tomuxig ehayloTonolnong. LVupwva Ue Tov oploud, To xabolxd eAdytoto elval éva onueio
z* yw 1o onolo woylel f(xz) > f(z*), Vo # z%,a < 2 < b. Tty napovoa datpdr) dev
aoyoloduaoTe U6vo Ue TNV Unoplr evog xaboluxol ehayloTtou, ahhd avtiuetwrilouue €va
TLO YEVIXO TPOBANuUL:

Bpec 6ha ta ehdylota e f(x),

uné tov Teploptoud: a; < x; < b, Vie I ={1,2,--- n}

Ipogavie, edv Peodue dho Ta ehdylota Unopolue va emAEEOUUE TO UXPOTERO GOV Eva
xafolxd ehdyrtoto. To npdAnua Tou eviomiouol GV Twv ehayloTwy eugaviletol ToA)
ouyva otn Bhoypagla ty. [24, 33, 156, 86, 163, 77, 36]
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Yuyxexpwéva to yevixd meplypauua tng uebodoroyiag mou uekethooue eugaviletal
TARAXITW:

Fevixdc Ahydpfuog 1: Stochastic Two-Phase Clustering

Brpa 1. Aevypatodndia tou ydeou avalitnorne.

Brua 2. Ouadonolnonon 1wy onuelny mou avixouy otny oudda mou odnyel oto (dlo
eAdYLOTO.

Brjua 3. Ané aviinpoowneutixd onuelo Twv oUadoTol|oemy Ue Tomxr eEAayLoToTolno

XOL EVTOTLOUOC T EAGYLOTAL.

Brijua 4. 'Eleyyog xpitnplou tepuatiouon.

O yewxdg alydplfuog mou teplypddoue, oTny axpala TOU UOPYY| AVAYETOL GTOV XAAOLXO
aly6plfuo molanhfic exxivnone (Multistart). Xuyxexpwéva, av 6to BAua 1, oploouue
ouoLouopPT xatavour, xar 6to Brua 2 dev oploovue xoulo ouadonolnon ohhd Zexivdue
an6 6ha Tor onuela Tomxég ehaytotonowioels (Briua 3), tote éyouue teptypddel tny uébodo
Multistart. ITohd peydhn epeuvnuxn npoondbeia €yer xatafinbel Ta teheutaio 20 ypdvia
vl v Bedtiwbel o ahybplbuoc Multistart pe oandtepo oxond: Ty dievépyeia utac Tomuxic
elayiotonoinons avd eAdyioro.

Y1nv napovoa SlatelPy) tépa and TN GUULBOAY| LOC OE GUYXEXPUUEVA BRUATA TOU YEVIXOU
ahyoplBuou 1, o onolog €yel uehetnel e€aviinuxd and epeuyntéc Ta teheutala 20 ypdvia,
Tpotelvaue oL Pt AN toodvaun xat yevixr puebodoloyia. Avti va npoonafel xavelc va
0UaBOTOLACEL, EX TOVY VOTEPWY, Tuyala delyuata oTo YGpo avalAtnone Ue xolvr Wiotnta
6Tl 0d1yoLy 670 (8L ehdytoTo, unopel va tapdyet Tuyata onuela e T€Tolo TPoTO, BGOTE VA
arogeUyovton Ta 131 eupebévta ehdytota. Kat ue tic duo uehodohoyleg o andtepog oxomdg
NS BLEVERYELOG ULG TOTUXTC EAayloToTolnoNng avd ehdytoto elval (dlog.

O yevxdeg ahydplfuoc xabodnyoluevng and exmadeuvdueves xatavoués avalftnong
TEQLYPAPETAL TALUNATW:

Fevixdg Ahyodpbuog 2: Stochastic Two-Phase Distribution Driven

Brua 1. Aevypotohndioa tou ydeou avalAtnone and thy xotovouy.
Bripa 2. Tomuxn ehayiotonoinon xat evionioudg ehaylotwy.
Briua 3. Evnuépnon Twv nopauétewy TNg XoTtovouns.

Brijua 4. 'Eleyyog xpitnplou tepuatiouon.

X1 BBhoypaglo €xel napovotaotel TAnddpa uebddwy mou oxonelouy va BeATidoouv
To Yewxo ahyoplfuo 1 xou ¥ cuvels@opd Toug oTéYEVE XdToto and to 4 Pruata. XNV
Tapoloo SlatelPn, ota endueva xe@dhata, Bo TEpLYPa@OUY oL VEeS WOEEC OV EVIGYVOUY TOV
Yevix6 alyoptbuo xal vhomolovy ta BAuata 1 xol 3 Tou yewxol akyopibuou 2.
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Yuyxexpwéva, 660 agopd ta Buata 1 xar 3 Tou yevixol alybpifuou 2 teptypdpovtal
duo Sagpopetinée Teyvxég ota xepdhota 8 xar 9. Xto Kegdhato 10 mapovoidletal évog
ahybelbuo ouadonoinong yio to Brjua 2 tou yewixol akyopifuou 1. ¥to Kegdiao 11
TEPLYPAQETAL Uia TpoToTolnoT Utag xAaotxic uebddou Tomixhc ehayLtoTonolnong XatdAAnng
xaL yia to Suo tpoavagephévta alyoplbuxd thalota. Télog oto Kegpdhato 12 tagouotdletal
éva vEo xpLThplo TepuaTiouoy, odnyoluevo and tny Wavixh teplntwon 6t xdbe eAdytoto
€yel lon mbavotnra va avaxtniel and évay akydplfuo tomxrc ehaylotonolnong mou Lextvd
and tuyalo onueio.

7o Kegdlawo

Y10 Kegdhata 7 napatifetol uia etoaywyr) o6to mpéBAnua tng xaboluxnic ehaytotonolnong,

xaL uLo avohutixd tapouciaot g BiBAoypapiag 1oV oToyaoTiX®Y UeBEdwY xol cuYXEXpLUEVA
Ty uehddwy ouadonolnone (clustering global optimization). Ytnv xatnyopia Twy otoyaoxdy
uefddwv xatatdocovtal 6hot oL alybplfuol 6Toug omoloug avagépetal 1 Yeron Tuyalwy
UETABANTAOV %ol To amoTéhecua TNg exTéAEoC Toug, Ue oTalepéc mapauétpoue, dev elvar
xat’ avdyxn to do. H avalutue etoaywyr Ponbdel tov avayvdotn vo ndpel ua yelon,
TEPLOGOTERO ahYopLOULXY), OYETIXE UE TNV XATNYORLO TOV 6TOYACTIXGOY alyopiBuny xaboxic
ehaytotonolnong.

8o Kegpdiaro

Y10 8o Kegdhato neprypdpetal évac ahybdptbuoc (Adapt) ute uhonoinon tou Fevixo Akyopibuou
2. H Adapt meptypdget éuueca ulo xatavour;, and tny onola TeoxUntouy onuela yio TOmxY
ehayLotonoinon, opllovioag anayopeuuéves meployéc Ylpw and eAdytota.

H andgoon yio o av and éva apyixd onuelo Ha mpénel va Eextviioel Tomuxy| ehaytotonolnon,
matpvetat ue N Pordeta mhnpogoptac and ta Kdn culkeyBévta eNdytota, Tng HBéonc Toug xau
wac Thnpogoptag oyeTxic Ue To péyeboc tne Teployic Toug'.

Agol nepiypagel avadutixd 1 uébodog, ylvetol ulol av@AUoY NS CLUUTERLYORIS TNG
oe ueydho aplfuéd enavahfheny (apyxdv onuelwy) ol onueldvetal 6Tt av eXTENEGTOUY
dretpec enavarfpelc detyuatorndiag apyxdv onuelwy n mbavétnta va MHN Beelel xdmoto
ehdytoto undeviCetal. Enlong xatd tnv mepiypagrn tne uebdédou mapouvotdlovtol xal Ta
TEAOTA YAYUATO YL TRV avdyxn TNg Tomx g Hovodidotatng ehaylotoroinong tou Kegaiatlou
11.

Kelvovtag 1o xe@dhato oyohdlouue Ul tpogavi) Tapdihnin ukonoinor Tou akyopibuou.
Extetauéva metpduata detyvouv Ty anodotixdtnta Tou ahyoplbuou Adapt oe olyxplon ue
duo state-of-the art aiyopiOuouc.

Me tov 6po Teproyn, evvoolue Ty teptoyh ENEnc (region of attraction) evég ehayiotou mou ouoLacTLXE
elvon dha Tar onuela Tou ydpou and Ta omola wia Tomx eEAaytoTonolinoy odnyel oTo EAdyLOTO
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90 Kegdiaro

Y10 90 Kegdraro, napovoldletat enlong uta dueon uvhonoinon tou 'evixod Adlyopifuou 2
UE TOV 0pLoUS Lo ouvdptnorne Setypatolndlac, ue oxond va napéyel apyxd onueto uaxptd
and 1O umdpyovta eAdyLoTa.

H péfodoc Paoiletan otov ahybptbuo deryuatohndlac ue andppudn (rejection sampling).
Q¢ Baowt| xatavour fewpeitol 1 ouotduopen. H ouvdptnorn muxvétntag mbavétnrog and
TNV OTolol XAAOVUAOTE VOl SELYUATOANTTAGOVUE ElVaL EVol d0pOLOUA XAVOVIXDY XATAVOUDY

Nlocal

Flo)= 3 g0 N, =)

6mou Nlocal o aplBudc Twv Tomxdy ehayloTwy tou €youy Beebel, p; ndoec popég Exel Peebel

T0 %40e eENAYLOTO AL [, 2 OL TOEAUETPOL TNG xaTavourc mou avatibetal oe xdfe Tomxd
ehdyloto. Ou mapduetpol fi;, X; evnuepdvovtal on-line xdfe @opd mou To eAdyLoTO GTO

omolo avTLeTolyoUy avaxahuglel Yo p-0otn Qopd :
® L = i1+ a(x; — pi-1)
o X=Xt +ai(wi — pi)(wi — i),

émou ; € (0,1), 10 = (0,0,...,0)7, 3 = al, xa z; to apyxéd onueto mou odhynoe oto
i-00TH ENAYLOTO.

E0upwve Ue Ta TELpoUaTXd aroTeAéouata, 1 véa wopt Setyuatoindiac elvat moAy
ATOTEAECUATLXY) OTO Vo xoteufivel Tor apyLxd onuela oe urn eepeLVNUEVES TEPLOYES.

100 Kegpdharo

Y10 100 Kegdharo, npotelvetar évac véoc alybpluoc ouadonoinone (Brua 2 tou I'evixol
Alyoplfuou 1) o onolog Baotletar oty cuvepyaoia duo TOM) LoYLEDY TEXYVIXGV: OTOV
xaBohxd ahybplbuo k-uéowv (global k-means) xat otny Gewpla pacuatixric ouadonoinong
(spectral clustering).

O ahyépifuog nalpver oav eloodo apyixd opotduoppa onueta oto ybpo avalitnong ta
omolo. €youv ouyxevtpwlel ue vy egapuoyy akyoplbuou Tomxfc ehaytotonolnone (tng
wopphic tou Kegadatouv 11). H mpotewvduevn pébodoc ypnotdonotel ta ouyxevipwUéva
onuela (Béoelc xat Tapaydyoug) Yo va extiurioet To TARHoC k Twv ouddny xaL 0T GUVEYELY
e@apudlel Tov alydpetbuo global k-means 7 uta topaAdoyf Tou Tou Aettovpyel 0TO YACUATING
Y@po Yo vo utohoyloet Ta x€vtpa. Amd To xdbe x€vTpo ulo 0hoxANEwUEVY TOTLXT EAAYLETOTONGT)
Oo 0dnyrioel oe éva ehdytoTo.

Boowé unohoyliotind x66Toc Tou akyopiuou, mépa and TIC XAAGELS TNG GUVARTNOTS
XL TNG TAEA YWY OV, elval xal 0 UTOAOYLOUOS TV WBLOTLWAOY evog N X N nivaxa cucyETtiong
TV N apyxdy onueloy.

H ouvetogopd e uebddou éyxettan (o) otny egapuoyn T1600 Twv Qaouatixdy Ledddwy
660 xat tou alyoplfuou global k-means oto cuyxexpwévo mEdPinua (B) otnv yefion
NG TOPAYGYOU 0T CUYXEVTpOUEV onueia (otov mivaxa ouoyétiong) yio va Ponnfel 7
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opadonoinon (y) oty andrepa extiunons tou apliuold Ty ouddwv ue Bdon ) acuatixy
nAnpogopia (d)otny napahhaynh tou adyoptBuou global k-means dote vo houPdvel unddn
TN QAoUATIXT TANEOQOpEia.

O ahyopLBuoc cuuTepLOEEETAL TOA) XUAG TELPAUUATLXE Xal O APLOUOS TWY TOTULXOY ENLYLOTOTOLNOEWY
Ti¢ onoleg Zexwvdel elvat oAl wixpoc. Enlong, o adydpibuog ouadonolnong €yel uévo uia
TopduETEO Tou TEénel va pubuloTel and Tov yperoTn N onola elvarl o exTiLOUEVOS apLiudg
TOVY YELTOVWY 0vd OUdda.

11o Kegdhato

Y10 11lo Kegdhato tne StatpPric mapovoidletar €voag alyoptduoc uovodidoTtatne Tomxic
ehaytotonolnong (yYeauuwxhc avalhtmong), o onotog elvat xatdhhnhog yLo tn uéhodo tomxrc
ehaylotonolnong xal ota duo yevixd alyopluxd mhatow. O adydplfuoc avixer otnv
xatnyopla Twv uehddwy e ypauuwxy avalhtnon. Mnrogel vo yenowuonolfoel onoladrrote
npocéyylon tou eootavol Tivaxa (BFGS, DFP, npayuatixd eootavd) xor eaopahilet
enapxy) TTGoN ot xdbe enavdindn ue Ui Tpotonoinoy Tou Yvnotol alyoplfuou yeauuixnic
avalhtnone ue omtoboydenon (backtracking line search).

H Swgopd tou mpotewvduevou adyoplfuou yeauuxic avalitnong éyxeital oto OTL,
npoonafel va evtonioel To xovrivdtepo duvatd ehdyloTo oTo apyixd onuelo xal Oyl Eva
TUyalo ehdyLoTo. LuyxexplUéva, o alyopLbuoc yeouuxric avalitnong entyetpel vo xatahiZel
070 8o eAdytoto nou Oa xatéhnye xal yovodidotaty avalAtnorn ue anelpoerdyloto Briua
xatd v avtifetn diedbuvorn tne nopaydyou. Zntdue Aomdy évayv alydeliuo yeauuixic
avalAtnong nou va eaocpalilel andélutn ttdon (strictly descent) ¥ énwe tyv teptypdpouv
ot Rinnoy-Kan xat Timmer:

Th+1 = Tk + QpDg, UE ay TETOLO
flar+B8pr) < flar+ape), ¥V 0<y< B <o

H anaitnon auth eunnpetoloe Tic Dewpntixéc anodellelc 0TIC TPWTOTOPES ERYUTIEC OYETIXS
ue Toug ahyoplbuoug ouadornoinong. Ildpdha autd Aev éyel napovolaotel otn BiSAoypapia,
xauto uéhodog mou va vhormoiel authy Ty araitnon. To moupaxdte oyfua, Tapouoidlel
ToL aEyYWd xan TeEAxd onuela TOTIXOV EAAYLOTOTOLRCEWY Ao oUOoLOUopQo Tuyata aEyLxd
ornueta, yenowonowdvtac Ut BFGS oto apiotepd oyfjua xor tov ahydpliuo yeauulxhc
aval¥tnone mou napovotdletal oto Kegpdhato 11 oto 3e&l oyrua:
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Ané ta tapandvew oyfuote elvat Tpogavég 6t évac alydpliuoc xafohuxrc ehaytotonoinong
nou otnplletat atov oploud tne neptoyfic éAEnc (region off attraction) xat otnv anbéotaon
TV apyx®dV onuelwy ue to eAdylota mou xataAfyouv o Baciotel oe mopamolnuéveg
TAnpogopleg edv ypnolwwonotioel Tomxr avalrtnorn mou dev elval strictly descent. Me Bdom
AOLTOV TNV TARATEVG TORATAENOY XL TNV TApdAANAY avdnTtuln Tapailaydy tou [evixol
AhyépiBuou Kabohuic Exaytotonoinong (Bh. Adapt), xpifnxe emtaxtixd| n avdyxn avdntuing
evog ayopibuou mou and tn uia Ha eaopaiilel oUYXALON 6TO XOVTLVOTEPO ENEYLOTO XAl
am6 v dAkn O elvol anodotindg 6mws oL xhaoowxol akydplbuol yeauuxhc avalhtnong.

O ahyopLbuoc yeouuxic avalhtnong Tov TapouctdleETAl GTO TAPMOY XEPIAALO, oE avTibeo
ue Tov xhaowd alyoplfuo onchoydenong, entyetpel otadiaxd BAuata tpog to eunpdc. Ta
Briwota Eexivdve amd To UxpdTERO duVaTS XoL UeYAAGVOUY oTadlaxd uéypl eite va @Tdoouue
oto uéyloto Briua (=1), elte va apyloet va auZdvetal 1 T Tne ouvdpTnong.

O ahybpifuog ouyxplvetat Tetpapatind xat’ apyhy yia vo eheyy el 1 anodotixdtnTd Tou,
dnhadr) t6oo xooTilel uToAoYLOTIXG Ulol TETOLA AmalTnoT oL xatd deitepoy yia vo TpoBAniel
n Yenowodtnta oto mhaloto evog alyoplBuou xafohuxfic ehaytotonoinone. Tautdypova,
TpotelveTal 1 Taparinioroinon Tou ahyoptfuou Tou Ha uelwve To xb6oTOC TOUL.

120 Kegdhato

Y10 tehevtaio Kegdhato tne SwatpSfic mopovoidletar wa Uehétn evog véou xpLtnpiou
TEQUATIOUOU UE eqapuoYr) o8 OAeC T otoyaotxéc Uebddouc ue duo gdoec xat yeron
ouadonoinong. To xpitfplo tepuatiouol Paoiletal otny undbeor 6t xdfe Tomxd edyloTo
€yel TV B mbavotrTa vo avaxtniel and ua tuyaio opolduoper Setypatodndia, 1 ahhidg
oL meptoyéc €NEne ylUpw and 6ho ta eNdytota €youv (mepinov) to Bto uéyeboc. Liyoupa
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To xpitiplo Tepuatiopol tporhbe and To mapuxdte Telpaua:

Ac vroféoovue o1 éyovue éva xoutl ue w dragopeTinés opalpec, aptOunuévec auveyoueva
1,2,...w. EniAéyovue uia opalpa tuyaia, onuetdvouue tov aptud tne xar tny tonofetodue
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oto xoutl. Autd Oewpeitar uta exavaingn. Av o apifuds tne opalpas eupaviletar yia
TeaTY Yopd auldvouue Tov aptiué m twy StapopeTixdy nou €yovue PBpet
Ac unobBécouue 6T oty k enavddndn, n mbavétnta m ogaipes (ehdytota) vo €youv

k / /7 /7 7. /. /7
Beebetl elvon P, Tére, 1 AVOUEVOUEVT, TUULY) TWV SLUPOopeTIX®dY oalp®dy Oa dlvetol and:

< N > Zz p —p1 +2p§) ---—|—l~cp,(€k)

6mou 1 moA onuavTixd| ThavétnTa P%) B urohoyiZeton amb Tov avadpoulxd TUno:

k+1 k k
P = pap® + papt®)

H napandvew avadpouxn oyéorn avdyetal oto e€hic: H mbavotnto otny k + 1 enavdindn va
€youv avaxalugbel @ ogaipeg ocuoyetiletal ue

o nv mbavotnta oty k enavdhndn va éyouv 131 Beebel i SlapopeTinéc opaipeg xau
oty enbuevn vo un Ppebel xaula xawvolpyta (xat autd pe ThavotnTa pa)

o v mbavétnTa otny k enavéindn va €youv 101 Beebel ¢ — 1 Stagpopetinéc opalpec %ol
oty enbuevn vo Bpebel ula axdua xawvolpyia ogaipo (xoL autd e mbavétnta pg)

To mpdBinua thpa avdyetal 6Tov xaboploud twv ThavotAtwy p, xoL pg. Me v undbeon
6L x40 ogalpa uropel va avaxtnlel ue lon mhavétnta e dheg Tic dhheg €youue

H mibavotnra va emAélovue wa and tig 1@ avaxtnbeloes w ogaipes va elval p, = +

w—(i—1) -

w

H mifavornra unv emiAélovue uita xawvolpyta opaipa pg =

Av otny nopandve avdluor Bewpioouvue avti yio ogaipeg Tomxd s)\dXLow X0l ULV TLOTOLY HOOVUE
TV emhoyY Ue Tomixd ehaytoTtonolnon, tpoxtntel 61 < N >®) fa eivor o avauevéuevoc
aplfude Tomxdy ehaytotonofjoewy. To xpithiplo tepuatiouol Oa opiletal ue Bdorn
Stoeduaven e tocbtntac < N > yau tov mpayuatind aplbud ehayiotonothoewy. Anhade,
xdmota oTyur mou Sev Oo avaxohinTovtal TAEoV eAAYLOTA 1) TELQUUATIXY EXTIUNGCT, TOU
apthuol Twy TomxXGY ehaylotonothoewy Ha tautiletar ue T Bewpntinh < N >K)

XX



TABLE OF CONTENTS

I

1

II

Introduction

Introduction to Optimization
1.1 Mathematical formulation . . . . .. .. ... ... ... .. ........
1.2 Continuous Versus Discrete Optimization . . . . . . . . . . ... ... ...
1.3 Constrained And Unconstrained Optimization . . . . .. . ... ... ...
1.4 Global And Local Optimization . . . . . ... ... ... ... .......
1.5 Stochastic and Deterministic Optimization . . . . . . . . . ... ... ...
1.6 Optimality Conditions . . . . . . . . . ... ...
1.6.1 Unconstrained Problems . . . . . . . ... ... ... ........
1.6.2 Constrained Problems . . . . . .. ... ... ... .........
1.7 Optimization Algorithms . . . . . . . . . .. ... ... ... ...
1.8 Parallel Computation . . . . . . . . . . ...
1.8.1 Parallelizing local search . . . . .. . ... ... ... ... ... ..

Local Optimization

Survey on Local Optimization

2.1 Classification of Methods . . . . . . . .. .. ... ... ... . ...

2.2 Direct Search Methods . . . . . . . . .. ... ... ...
2.2.1 One dimensional minimization . . . . . . . .. .. .. ... .....
2.2.2  Multidimensional Optimization . . . . . . ... ... .. ... ...

2.3 Methods that use the Gradient . . . . . .. ... ... ... ........
2.3.1 Steepest descent . . . . . . . . . ...
2.3.2 Conjugate gradient methods . . . . . . . ... ... ... ...
2.3.3 Quasi-Newton methods . . . . . ... ... ... ... ........
2.3.4 Line search for descent methods . . . . . . ... ... ... .....
2.3.5 Trust Region . . . . . . . . . .
2.3.6 Sum of squares problems . . . . ... ... .. L L.

2.4 Methods that use second derivatives . . . . . . . . ... ... ... .....
2.4.1 Newton’s Method . . . . . . . .. ... .. ... ... ... ... .

2.5 Termination Criteria . . . . . . . . . . . . . . e

Xx1



3 An algorithm for convex quadratic programming subject to bound con-

straints 30
3.1 Summary ... 30
3.2 Introduction . . . . . . . . ... 30
3.3 Solving the quadratic problem . . . . . . . .. ... 32
3.4 Other convex quadraticcodes . . . . ... ... ... .. .......... 34
3.4.1 QPBOX . . . . 35
3.4.2 QLD . . . . e 35
3.4.3 QUACAN . . . e 35
3.5 Results of Numerical Experiments . . . . . . .. ... ... ... ... ... 35
3.5.1 Random problems. . . . . . .. ... ... .. ... .. .. 35
3.5.2  Circus Tent problem . . . . . ... ... ... ... ... ..., 37
3.5.3 Biharmonic Equation problem . . . . . . . ... ... .. 0L 38
3.5.4 Intensity Modulated Radiation Therapy . . .. .. ... ... ... 39
3.5.5 Support Vector Classification . . . . ... ... ... ... ..... 39
3.6 Conclusions . . . . . . . . . . . e 40

4 A Rectangular Trust Region Approach for Unconstrained and Bound

Constrained Nonlinear Optimization 50
4.1 SUMMATY . . . o oo e e e e 50
4.2 Introduction . . . . . . . . ... 50
4.3 Trust Region Methods . . . . . . . .. ... ..o ol
4.4 Dogleg approximate solution . . . . . . . .. .. .. Lo L L 52
4.4.1 Experimental results . . . . . .. .. ... ... L. 54

4.5 Boxcqp exact solution . . . . .. ... L o8
4.5.1 Experimental results . . . . . . ... L oo 60

5 A Hybrid Local Search Method for Neural-Network Training 64
5.1 Introduction . . . . . . . ... 64
5.1.1 Problem Description . . . . . . ... ... .. ... . .. 64
5.1.2  Description of the algorithm . . . . .. ... ... .. ... .. ... 66
5.1.3 Hessian Calculation . . . . . . . ... ... ... ... ... ..., 68

5.2 Experimental results . . . . . .. ... L 68
5.3 Conclusion . . . . . . . .. e 70
6 Parallelizing derivatives 72
6.1 Summary . . . ... 72
6.2 Introduction . . . . . . . . 72
6.3 Derivative formulae . . . . . . ... oo 74
6.3.1 First order derivatives . . . . . . . . . .. ... ... 74
6.3.2 Second order derivatives . . . . . .. ..o 75

6.4 Parallelization strategy . . . . . . . . . ..o 7

XXii



6.5 Userinterface . . . . . . . . . . ... . 79
6.5.1 Naming conventions . . . . . . . ... ... ... ... 79
6.5.2 Common arguments . . . . . . . . ... ..o 80
6.5.3 Gradient calculation . . . . . .. ... 81
6.5.4 Jacobian calculation . . . .. ... o000 82
6.5.5 Hessian calculation . . . . ... ... ... ... .. ... ... 82

6.6 Installation instructions and sample program . . . . . . . . . ... ... .. 83
6.6.1 Installation instructions . . . . . .. ... .. ... ... ...... 83
6.6.2 Sample program . . . . . . ... e 85

6.7 Performance results . . . . . . .. ... 86
6.7.1 MPI-parallel . .. .. ... ... ... 87
6.7.2 OpenMP-parallel . . . . . ... ... ... 87

6.8 Test run description . . . . . . ... 88

ITT Global Optimization 90
7 Survey on Stochastic Global Optimization 91

7.1 Introduction . . . . . . . . . 92

7.2 Random Search Methods . . . . . . ... ... . ... ... ......... 92
7.2.1 Pure Random Search . . . . .. ... ... ... ... ........ 92
7.2.2 Random Search . . . . ... .. ... .. ... ... ... . ... 93
7.2.3 Pure Adaptive Search . . . . ... ... ... L. 94
7.2.4 Adaptive Search . . . . . . ... 94
7.2.5  Controlled Random Search (CRS) . . . . . ... ... ... ..... 95

7.3 Two-phase Methods . . . . . .. ... ... ... ... . ... .. ... .. 96
7.3.1 Multistart . . . . . ... 97
7.3.2 Clustering Methods . . . . . . . .. ... ... .. 97
7.3.3 Multi Level Single Linkage . . . . . . .. ... ... ... .. ..., 102
7.3.4 Healed Topographical Multilevel Single Linkage . . . . ... .. .. 103
7.3.5 Random Linkage . . .. .. .. ... ... ... ... .. ... 103

7.4 Simulated Annealing . . . . . .. ... Lo 104
7.4.1 The Algorithm . . . . . . . ... 105
7.4.2 Practical Implementations . . . . .. ... ... ... .. ... ... 106

7.5 Genetic Algorithms . . . . . . ... Lo 106

7.6 Particle Swarm Optimization . . . . . . ... ... . ... ... ...... 109
7.6.1 Description and rationale . . . . . . .. .. ... ... ... 109

8 Towards “Ideal Multistart” A stochastic approach for locating the min-

ima of a continuous function inside a bounded domain 111
8.1 Summary . . . ... 111
8.2 Introduction . . . . . . . .., 111

XX1il



8.3 Description of the Method . . . . . . .. ... ... ... .. ........ 114

8.3.1 Ideal Multistart . . . . . . . . .. .. ... ... 114
8.3.2 Estimating the local search probability . . . . ... ... ... ... 116
8.3.3 Local search properties . . . . . . . . . ... L 117
8.3.4 Asymptotic guaranty . . . . . . .. ..o 118
8.3.5 Amodel for ¢p(z,01) . . . . . .. 120
8.3.6 The ADAPT Algorithm . . . ... ... ... ... .. ....... 120
8.4 Experiments and Comparison . . . . . . . ... ... ... ... ..., 123
8.5 A parallel scheme . . . . . . .. ... 123
8.6 Conclusions and further Work . . . . . .. ... ... ... ......... 125

9 Sampling from a Sum of Normal Distributions. An application to Global

Optimization 126
9.1 Imtroduction . . . . . . . . .. 126
9.2 Global Optimization using Normal Distributions . . . . .. ... ... .. 126
9.3 Sampling . . . . . . .. 127
9.4 Online Estimation of Normal Distribution parameters . . . . . .. ... .. 131
9.5 Sampling as termination criterion . . . . . . .. ... 134
9.6 Experimental results . . . . . ... ... ... 137
9.7 Conclusive remarks . . . . . . .. .o 143
10 A Spectral Clustering Approach for Recovering Multiple Minima 144
10.1 Introduction . . . . . . . . ... 144
10.2 Clustering techniques . . . . . . . . ... . Lo 145
10.2.1 Hierarchical Clustering . . . . . . . . . .. .. .. ... .. ..... 146
10.2.2 Partitional Clustering . . . . . . . . . . . .. ... ... .. 147

10.3 Clustering in Global Optimization . . . . . . . .. .. ... ... ... ... 148
10.3.1 Existing Algorithms . . . . . . .. .. ... ... ... ... 148

10.4 A new Clustering Approach for Global Optimization . . . ... ... ... 153
10.4.1 Step 1: Sampling methodology . . . . .. .. ... .. ... .... 155
10.4.2 Step 2: Concentrate samples around minima, . . . . . . . ... ... 156
10.4.3 Step 3: Clustering . . . . . . . . . .. 156

10.5 The proposed algorithm . . . . . . . .. ... ... ... .. ... .... 167
10.6 Implementation and numerical experiments . . . . . . . . . ... ... ... 170

11 A Local Search with “Strictly” Monotonic Descent and its Application

in Global Optimization 173
11.1 Introduction . . . . . . . . .. L 173
11.2 Motivation towards a new local search . . . . . ... ... ... ... ... 174
11.3 Description of the new local search . . . . . ... ... ... ... ..... 176
11.3.1 Original idea . . . . . . . .. . . oo 177
11.3.2 Including gradient information . . . . . . .. . . ... .. ... ... 180

XX1V



11.3.3 Accelerating: A way of choosing v . . . . . . ... ... ... ..., 182

11.4 Experiments and comparison . . . . . . . . . . ... oo 182
11.4.1 Efficiency vs. Cost . . . . . . . . . ... 183
11.4.2 The proposed search in a global framework . . . . . .. . ... ... 183

12 Stopping rules 188

12.1 Stopping rule for multistart-like algorithms . . . . . . . . . .. ... .. .. 189

12.2 Widely used Stopping Rules . . . . . . .. . ... oL 190
12.2.1 Recent Stopping rules [85] . . . . . . . ... ... .. 190

12.3 Proposed stopping rule idea . . . . . . . .. .. oL 194
12.3.1 Setting up the problem . . . . . . . .. ... ... ... ... ... . 195
12.3.2 Calculation of probabilities pgk) .................... 195
12.3.3 An illustration of the criterion . . . . . . .. .. ... .. 196

12.4 Experimental evaluation . . . . . .. .. ... ... ... ... ... ... 196

13 Appendix - Test Functions 200

13.1 Ackley’s test function ([1]) . . . . . . . . . . oo 200

13.2 Bird’s test function ([104]) . . . . . . .. ..o 200

13.3 Bohachevsky ’s test function ([15]) . . . .. ... ... ... 200

13.4 Carrom table test function ([104]) . . . . . . . .. ... ... L. 202

13.5 Giunta’s test function ([54]) . . . . . .. . ..o 202

13.6 Griewank’s test function ([63]) . . . . . . . .. .. ... 202

13.7 Guillin Hills’s test function ([151]) . . . . . . . .. .. ... ... 204

13.8 Holder test function ([104]) . . . . . . . . . .. ... Lo 204

13.9 Langermanns’s test function ([122]) . . . . . ... ... ... ... ... 204

13.10Levy’s 3rd test function ([88]) . . . . . . . . . ... 206

13.11Levy’s 5th test function ([88]) . . . . . . . . . ... ..o 206

13.12Liang’s test function [90] . . . . . . . ..o 206

13.13Piccioni’s test function ([94]) . . . . . . . . . ..o 208

13.14Rastrigin’s test function ([130]) . . . . . . . . ... ... L. 208

13.15Voglis’s Test Function . . . . . . . . . . .. . L o 208

13.16Schaffer’s Test Function ([104]) . . . . . . . . ... ... ... ... ... . 210

13.17Shubert’s Test Function ([142]) . . . . . . . . ... .. ... ... ... 210

13.18MO Test Function ([142]) . . . . . . . .. .. ... Lo 210

13.19M3 Test Function ([142]) . . . . . . . . . . . . o 212

13.20Siam Problem 4 Function ([143]) . . . . .. ... .. ... ... ... ... 212

XXV



LIST OF FIGURES

1.1

3.1
3.2

3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

6.1
6.2
6.3
6.4

7.1

8.1

8.2
8.3
8.4
8.5

9.1

9.2
9.3

Geometrical representation of a general optimization problem . . . . . .. 5)
Circus tent problem. . . . . . . . . .. 38
On the left we show the acting force, on the right is the final shape of the

membrane. . . ... .. L e e 38
Optimal separating classifier.. . . . . . . .. ... ... ... .. ... ... 39
Examples of SVM classification. . . . . . .. ... ... ... ........ 41
Plot for act_prob = 0.5 and ncond =0.1. . . . .. . ... ... ... .... 42
Plot for act_prob=05and ncond=1. .. .. ... ... ... ....... 42
Plot for act_prob =0.5and ncond=5. . . . . . . . ... ... . ... ... 43
Dogleg path . . . . . . . . . 53
Our approach in Case 3 . . . . . . . . . .. ... . . ... .. 54
Bound handling . . . . .. ... 56
Library’s Programming Model . . . . . . . . .. ... ... ... ... ... 79
Speedup for experiment E1 (N =500) . ... ... ... ... ....... 88
Speedup for experiment E2 (N =20) . .. .. ... ... ... .. ..... 88
OpenMP implementation speedup . . . . . . . .. ... ... ... ..... 89
An illustration of Hessian information . . . . . . . .. .. ... ... .... 101

A point x that would lead to a new minimum y, is inside the overlap region

of the spheres around two recovered minima y; and yo . . . . . . . . . . .. 117
[ustration of the modified line search . . . . . . ... ... ... ... .. 119
A suitable local search, with contiguous regions of attraction . . . . . . .. 120
An improper local search, with disjoint regions of attraction . . . .. . .. 121
Model plots for several [ values . . . . ... ... .. .. ... ....... 121

Sampled points in two dimensional search space quasi-random and uniform
SEQUENCES . . v v v v v e e e e e e e e e e e e 129
Selecting a sampled point . . . . . ... Lo 130
Sampling around a minimum in Six-Hump-Camel function using the pro-
posed and uniform distribution . . . . ... ... 0 0oL L. 131

XXVvi



9.4 Sampling around a minimum in Rastrigin function using the proposed and
uniform distribution . . . . ... ..

9.5 On-line computation of y and ¥ for a minimum at * = [4,0]7 . . . . . ..

9.6 Distribution of standard test functions . . . . . . .. ... ...

10.1 Sampling 500 points . . . . . . . ...
10.2 Sampling 200 points, concentrating using a step on negative gradient

. 157

10.3 Number of cluster estimation using spectral information, on a simple example159

10.4 A sample dataset . . . . . .. ..o
10.5 Ackley’s function 200 starting points well concentrated around minima
10.6 Using 2 neighbors for affinity matrix (k=44) . .. ... .. ... ... ..
10.7 Using 3 neighbors for affinity matrix (k=30) . ... ... ... ... ...
10.8 Using 4 neighbors for affinity matrix (k=25) . ... ... ... ... ...
10.9 Using 5 neighbors for affinity matrix (k=25) . ... ... ... ... ...
10.10Ackley’s function 200 starting points. Slightly transformed sample
10.11Using 2 neighbors for affinity matrix (k=25) . ... ... ... ... ...
10.12Using 3 neighbors for affinity matrix (k=25) . . ... ... .. ... ...
10.13Using 4 neighbors for affinity matrix (k=1) . . . .. ... ... ... ...
10.14Using 5 neighbors for affinity matrix (k=1) . . . . ... .. .. ... ...
10.15Example of gradient association criterion . . . . . . . ... .. ... L.
10.16A plot of pairwise affinities between samples using Rastrigin’s function
10.17A plot of pairwise affinities between samples using Ackley’s function . . . .
10.18Sorted eigenvalues of the affinity matrix and the corresponding eigengap,
without gradient information . . . . . . . .. ... ... ... ...
10.19Sorted eigenvalues of the affinity matrix and the corresponding eigengap
using the gradient information . . . . . . .. ... ... .. oL,
10.20Gradient vector plot of the concentrated sampled points . . . . ... ...
10.21Positional plot of the concentrated sampled points . . . . . . . . .. . ...
10.22An illustration of our approach for Ackley’s test function . . . . . .. . ..
10.23An illustration of our approach for random quadratics test function

11.1 Regions of attraction . . . . . .. . . . ...
11.2 Contour plot of the gaussians around minima . . . . . . . .. ... .. ..
11.3 The significance of scaling factor min(1, %) ..............
11.4 Tllustrative behavior of Version 1 . . . . . . . .. .. ... ... ... ...

11.5 Tllustration of the gradient information . . . . . . .. ... ... ... ...

12.1 Tllustration of the approximation of the expected number to the real number
of minima . . . . . ...

13.1 Ackley’s test function . . . . . . . . ...
13.2 Birds’s test function . . . . . .. ... L
13.3 Bohachevsky’s test function . . . . . .. .. ... ... ... . L.

160

. 161



13.4 Carrom table test function . . . . . . . . . . . ... 203

13.5 Giunta’s test function . . . . . . . . ... L L 203
13.6 Griewanks’s test function . . . . . . . . . . ... 203
13.7 Guillin Hills test function . . . . . . .. . .. .. ... ... .. ... ... 205
13.8 Holder-like test function . . . . . . . .. ... ... ... ... . ... ... 205
13.9 Lagermanns’s test function . . . . . . . .. .. oL 207
13.10Levy’s No 3 test function . . . . . . . . . .. . ... ... ... ... ... 207
13.11Levy’s No 5 test function . . . . . . . . .. . ... Lo 207
13.12Liangs’s test function . . . . . .. ... oo 209
13.13Piccioni’s test function . . . . . . .. ..o 209
13.14Rastrigin’s test function . . . . . . . ... oL 209
13.15Voglis ’s test function . . . . . . . ..o 211
13.16Schaffer’s test function . . . . . . . ... ..o 211
13.17Shubert’s test function . . . . . . .. .. ... L 211
13.18MO test function . . . . . . . .. L 213
13.19M3 test function . . . . . . . ... L 213
13.20Siam Problem 4 test function . . . . . . . . ... ... ... 213

XXViil



LLIST OF TABLES

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
9.9
5.6

6.1

7.1

8.1

9.1
9.2
9.3
9.4
9.5

11.1
11.2
11.3
11.4
11.5

Random table results, act_prob = 0.5, up_low prob=0.5. . . ... .. ... 43
Random table results, act_prob = 0.9, up_low prob=0.5. . . ... .. ... 45
Random table results, act_prob = 0.1, up_low prob=0.5 . . . . .. .. ... 47
CPU times (secs). (N.C: No convergence) . . . . . . . ... ... ..... 49
Unconstrained case . . . . . . . . . . ... e o7
Constrained case (1) . . . . . . . . . . 58
Constrained case (2) . . . . . .. ... 59
Unconstrained case . . . . . . . . . . . ... e 61
Constrained case (1) . . . . . . .. .. ... Lo 62
Constrained case (2) . . . . . . . 63
Analytic Hessian calculation . . . . . .. ... ... ... .. ........ 68
LRP: Minimum No 1 . . . . . . . . . . ... . 69
LRP: Minimum No 2 . . . . . . . . . .. .. 69
ZRP: Minimum No 1 . . . . . . . . . .. .. ... . 69
ZRP: Minimum No 2 . . . . . . . . . .. ... 70
Comparative results for the More’s test set . . . . . . . . .. ... .. ... 71
Relative errors in several example functions. . . . . . .. .. .. ... ... 87
Simulated Annealing algorithms . . . . . . . ... ... ... ... 106
Adapt results using uniform random distribution. . . . . .. ... ... .. 124
Results using ¥; = 10747 and constant learning rate . . . . . . . . .. ... 138
Results using ¥; = 107*I and variable learning rate . . . . . .. ... ... 139
Results using > equal to the Hessian and constant learning rate . . . . . . 140
Results using 3 equal to the Hessian and variable learning rate . . . . . . . 141
Comparison of Normal(50) for all possible configurations . . . . . ... .. 142
Results for the armijo type backtracking line search . . . . . . . .. .. .. 184
Results the proposed line search, v =10, p =11 . . .. ... .. .. ... 184
Results the proposed line search, v =20, p =11 . ... ... ... .... 185
Results the proposed line search, v =30, p =11 . ... ... ... . ... 185
Results the proposed line search, v =10, p =13 . ... ... .. .. ... 186

XXI1X



11.6 Results from density clustering global optimization algorithm . . . . . . . . 186
11.7 Results from typical distance clustering global optimization algorithm . . . 187

12.1 The MSE of the expected number of minima vs. the real minima found
and its variance . . . . .. ... Lo 197
12.2 Stopping rule results . . . . . . . . ... 199

XXX



LIST OF ALGORITHMS

0.1 The proposed clustering method . . . . . ... ... .. .. ........ viii
1.2 Newton / quasi-Newton framework . . . .. .. ... ... ... .. .... 12
2.3 The Golden Section method . . . . . . . . .. .. ... L. 16
24 Brent’'smethod . . . . .. ..o 17
2.5 Hooke and Jeeves method . . . . . . .. .. ... ... oL 18
2.6 Roll algorithm . . . . . . . .. ... 19
4.7 Basic trust region . . . . . ... Lo Lo 02
4.8 DOGBOX . . . . . e 55
5.9 Newton-like + Line Search Framework . . . . . ... ... ... .. ..., 67
7.10 Pure Random Search (PRS) . . . . ... ... .. ... ........... 93
7.11 Random Search . . . . . . . . . ... 93
7.12 Pure Adaptive Search (PAS) . . . . . . . . ... ..o 94
7.13 Adaptive Search (AS). . . . . . ... 95
7.14 Controlled Random Search . . . . . . ... ... ... ... ... 96
7.15 Multistart . . . . . Lo 97
7.16 Density Clustering . . . . . . . . . . . e 98
7.17 Single Linkage . . . . . . . . .o 99
7.18 Typical Distance Clustering . . . . . . . . . . . .. ... ... ... .... 101
7.19 Hessian-based ISO-OCT Clustering . . . . . . . .. ... ... ... ... 102
7.20 Multi Level Single Linkage . . . . . . . . .. ... ... 0. 103
7.21 Healed Topographical Multi Level Single Linkage . . . . .. ... ... .. 104
7.22 Random Linkage . . . . . . . . . .. 104
7.23 Simulated Annealing . . . . . .. ... 106
9.24 Global optimization using sum of Normal Distributions . . . . . . . . . .. 127
9.25 Rejection Sampling . . . . . . . ... 128
9.26 Inverse Rejection Sampling . . . . . . . . . ... Lo 130
10.27General Clustering Algorithm . . . . . . . . ... . ... ... ... .... 145
10.28Clustering 1: Becker and Lago Algorithm . . . . . ... .. ... ... ... 148
10.29Clustering 2: Torn’s Algorithm . . . . . . . .. ... ... Lo 149
10.30Clustering 3: Spircu’s Algorithm . . . . . . . ... ... .. ... ... ... 150
10.31Clustering 4: Boender et al Algorithm . . . . . . .. ... .. ... .... 151
10.32Clustering 5: Betro and Rotondi Algorithm . . . .. ... ... ... ... 152
10.33Clustering 6: Timmer’s Algorithm . . . . . . . .. .. ... ... ... ... 153

xxxi



10.34Clustering 7: Rotondi’s Algorithm . . . . . . . .. ... ... ... ... .. 154

10.35The proposed method — Outline . . . . . ... ... ... ... ....... 155
10.36Spectral Clustering . . . . . . . . . . . . 158
10.37The calculation of ¢ . . . . . . . ..o 160
10.38Proposed clustering algorithm . . . . . . .. ... ..o 168
10.39Algorithm Affinity . . . . . . . . 169
11.40Infinitesimal gradient descent . . . . . . . . ... ... 175
11.41New local search: Version 1 . . . . . . . .. ... . ... .. ... ... 179
11.42New local search: Version 2 with gradient information (Main Step) . . . . 181
11.43New local search: Version 3 choosing v (Initialize) . . . . . . . .. ... .. 183



Part 1

Introduction



CHAPTER 1

INTRODUCTION TO OPTIMIZATION

In recent years, the field of Optimization, has undergone a rapid development. This is
mainly due to the fact that optimization has found applications in many interesting areas
of science and technology, including molecular biology, imaging, digital signal processing,
portfolio management, networks and more. Another important factor that favored this
development is the tremendous growth in computing power that we have witnessed in our
times. Methods that were once considered inapplicable, due to the long CPU times they
required, nowadays may be common practice, since the CPU times may have dropped
a few orders of magnitude. Many different methods have been designed to treat a host
of diverse classes of problems. For example we have continuous and discrete problems,
constrained and unconstrained, and so on so forth. There are a great many applications
that can be formulated as continuous optimization problems; for instance,

e finding the optimal trajectory for an aircraft or a robot arm;

e identifying the seismic properties of a piece of the earths crust by fitting a model of
the region under study to a set of readings from a network of recording stations;

e designing a portfolio of investments to maximize expected return while maintaining
an acceptable level of risk;

e controlling a chemical process or a mechanical device to optimize performance or

meet standards of robustness;
e computing the optimal shape of an automobile or aircraft component;

e identifying parameters in machine learning problems

1.1 Mathematical formulation

Mathematically speaking, optimization is the minimization or maximization of a function

subject to constraints on its variables. We use the following notation:



x is the vector of variables, also called unknowns or parameters;
f is the objective function, a function of x that we want to maximize or minimize;

c is the vector of constraints that the unknowns must satisfy. This is a vector func-
tion of the variables x. The number of components in ¢ is the number of individual
restrictions that we place on the variables.

The optimization problem may be stated as

ng}zgl f(z) subject toz €S (1.1)

where S is a compact subset or R". However in the optimization literature the set S is
preferably represented by two set of nonlinear (in general) functions. The first set imposes
equality and the second inequality constraints. Hence, the general optimization problem

is now transformed into:

ci(r) =0, i €€,

ci(r) >0, i €. (1.2)

TER"™

min f(x) subject to {

Here f and each ¢; are scalar-valued functions of the variables x, and Z,& are sets of
indices. The set S ={ z | ¢;(z) =0, i € £ and ¢;(x) > 0, i € I} is known as feasible set.
As a simple example consider the problem

22— 15 <0
min (z; — 2)% + (21 — 1)? subject to ! -7 1.3
:UGR"( ! ) <1 ) . {$1+(B2§2. ( )

We can write the problem 1.3 in the form of 1.2 by defining

fle) = (11 -2°+ (21— 1)% 2 = (21,22)"

o(x) = [ —22 4+ 1y

z 1,2 =
w12 | e{L,2}, £€={}

Figure 1.1 illustrates the contours of the function f(z) and also shows the feasible
region which is the set of points satisfying all the constraints (The “infeasible side” of the
inequality constraints is shaded).

1.2 Continuous Versus Discrete Optimization

The generic term discrete optimization usually refers to problems in which the solution
we seek is one of a number of objects in a finite set. By contrast, continuous optimization
problems find a solution from an uncountably infinite set off typically a set of vectors
with real components. Continuous optimization problems are normally easier to solve,
because the smoothness of the functions makes it possible to use objective and constraint
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Figure 1.1: Geometrical representation of a general optimization problem

information at a particular point x to deduce information about the functions behavior
at all points close to x. The same statement cannot be made about discrete problems,
where points that are “close” in some sense may have markedly different function values.
Moreover, the set of possible solutions is too large to make an exhaustive search for the
best value in this finite set. Some models contain variables that are allowed to vary
continuously and others that can attain only integer values; we refer to these as mixed
integer programming problems.

1.3 Constrained And Unconstrained Optimization

the objective function and constraints (linear, nonlinear, convex), the number of variables
(large or small), the smoothness of the functions (differentiable or non differentiable), and
so on. Possibly the most important distinction is between problems that have constraints
on the variables and those that do not. This book is divided into two parts according to
this classification. Unconstrained optimization problems arise directly in many practical
applications. If there are natural constraints on the variables, it is sometimes safe to disre-
gard them and to assume that they have no effect on the optimal solution. Unconstrained
problems arise also as reformulations of constrained optimization problems, in which the
constraints are replaced by penalization terms in the objective function that have the ef-
fect of discouraging constraint violations. Constrained optimization problems arise from
models that include explicit constraints on the variables. These constraints may be sim-
ple bounds such as 0 < x1 < 100, more general linear constraints such as ZZ r; <1, or
nonlinear inequalities that represent complex relationships among the variables.



1.4 Global And Local Optimization

The fastest optimization algorithms seek only a local solution, a point at which the ob-
jective function is smaller than at all other feasible points in its vicinity. They do not
always find the best of all such minima, that is, the global solution. Global solutions are
necessary (or at least highly desirable) in some applications, but they are usually difficult
to identify and even more difficult to locate. An important special case is convexr program-
ming, in which all local solutions are also global solutions. Linear programming problems
fall in the category of convex programming. However, general nonlinear problems, both
constrained and unconstrained, may possess local solutions that are not global solutions.

1.5 Stochastic and Deterministic Optimization

Global optimization algorithms are usually broadly divided into deterministic and stochas-
tic. Deterministic methods provide a theoretical guarantee of locating the global mini-
mum, or at least a local minimum whose objective function value differs by at worst € from
the global one for a given € > 0. Stochastic methods only offer a guarantee in probability.
On the other hand, stochastic methods are usually faster in locating a global optimum
than deterministic ones. Moreover, stochastic methods adapt better to black-box formu-
lations and extremely ill-behaved functions, whereas deterministic methods usually rest
on at least some theoretical assumptions about the problem formulation and its analyt-
ical properties. Comparisons between deterministic and stochastic global optimization
methods are scarce in the literature.

1.6 Optimality Conditions

In this section we provide the mathematical formulations for optimality conditions for
both constrained and unconstrained optimization problems. These conditions will be
continuously reference throughout this thesis.

1.6.1 Unconstrained Problems
The unconstrained optimization problem can be stated as:

rr{,cin f(x) z€R" (1.4)
We provide the necessary definitions of what is a minimum for problem in Eq 1.4.
Definition 1.1. A point z* is a global minimizer if f(z*) < f(x) for all z € RY.

Definition 1.2. A point z* is a local minimizer if there is a neighborhood N of z* such
that f(z*) < f(x) for all x € N.



Definition 1.3. A point z* is a strict local minimizer (also called a strong local minimizer)
if there is a neighborhood N of z* such that f(z*) < f(z) for all z € N with x # x*.

Definition 1.4. A point z* is an isolated local minimizer if there is a neighborhood N
of z* such that z* is the only local minimizer in N.

Definition 1.5. We call z* a stationary point if Vf(z*) = 0.

In the following theorems we state the necessary and the sufficient conditions for
the existence of a local minimizer. Necessary conditions for optimality are derived by
assuming that z* is a local minimizer and then proving facts about V f(z*) and V2f(x*).

Theorem 1.1 (First order necessary conditions). If z* is a local minimizer and f is
continuously differentiable in an open neighborhood of x*, then V f(x*) = 0.

Theorem 1.2 (Second order necessary conditions). If * is a local minimizer of f and
V2f is continuous in an open neighborhood of x*, then V f(x*) = 0 and V? f(x*) is positive
semidefinite.

We now describe sufficient conditions, which are conditions on the derivatives of f at

a point x* that guarantee that x* is a local minimizer.

Theorem 1.3 (Second order sufficient conditions). Suppose that V[ is continuous in
an open neighborhood of * and that V f(z*) = 0 and V?f(a*) is positive definite. Then

*

x* 1s a strict local minimizer of f.

Theorem 1.4. When [ is convex, any local minimizer x* is a global minimizer of f. In
addition if [ is differentiable, then any stationary point x* is a global minimizer of f.

1.6.2 Constrained Problems

Consider now the general problem of Eq 1.1 using the formulation of Eq 1.2. In this
Section we provide the mathematical characterizations of the solutions of Eq 1.2. Recall
that for the unconstrained optimization problem of previous Section, we characterized
solution points x* in the following way:

e Necessary conditions: Local minima of unconstrained problems have V f(z*) = 0
and V f%(z*) positive semidefinite.

e Sufficient conditions: Any point z* at which Vf(2*) = 0 and V2f(z*) is positive
definite is a strong local minimizer of f.

Our aim in this chapter is to derive similar conditions to characterize the solutions of

constrained optimization problems.

Definition 1.6. A vector z* is a local solution of the problem Eq 1.1 if z* € § and there
is a neighborhood N of z* such that f(z*) < f(x) forz € NNS.



Definition 1.7. A vector x* is a strict local solution (also called a strong local solution)
if x* € S and there is a neighborhood N of x* such that f(z*) < f(z) forallz € NN S
with x # z*.

Definition 1.8. A point z* is an isolated local solution if x € S and there is a neighbor-
hood N of z* such that x* is the only local minimizer in N N S.

Using the formulation of Eq 1.2 we can now provide formal definitions for necessary
and sufficient optimality conditions.

Definition 1.9. The Lagangian function for the constrained optimization problem of

Eq 1.2 is defined as:
‘£($ A j{: Ai Q

1€EUT

Definition 1.10. The active set A(x) at any feasible point z is the union of the set £
with the indices of the active inequality constraints; A(z) =& U{i € I | ¢;(z) = 0}.

Definition 1.11. Given the point z* and the active set A(z*), we say that the linear
independence constraint qualification (LICQ)) holds if the set of active constraint gradients
{Vei(z*), i € A(z*)} is linearly independent.

The above conditions allows us to state the following optimality conditions for a general
nonlinear programming problem of Eq 1.2. These conditions provide the foundation for
many of the algorithms presented in the bibliography. They are called first-orderconditions
because they concern themselves with properties of the gradients (first-derivative vectors)
of the objective and constraint functions.

Theorem 1.5. First-Order Necessary Conditions Suppose that x* is a local solution of
Eq 1.2 and that the LIC(Q) holds at x* . Then there is a Lagrange multiplier vector \*,
with components \f,i € E UL, such that the following conditions are satisfied at (z*, \*)

VL(z*,\) = 0, (1.5)
ci(z*) = 0, foralli€g, (1.6)
ci(z*) > 0, forallieX, (1.7)

Al >0, forallieZ, (1.8)
Aci(z*) = 0, foralli € &Umathcall. (1.9)

The conditions described in Eq 1.5-1.9 are also known as Karush-Kuhn-Tucker condi-
tions, or KKT conditions for short.

In order to derive the Second Order Optimality Conditions for the general constrained
case we need some more definitions.



Definition 1.12. Given a point z* and the active constraints set A(z*), we define the
set I as
dT'Vei(z*) =0, for alli € &,

Fi=S{ad|a>0
1 {04 le>0, d'Vey(z*) > 0, forall i € A(z*) NI

Note that Fj is the tangent cone to the feasible set at z*.
Given Fj from Definition 1.12 and some Lagrange multiplier vector \* satisfying the
KKT conditions we define a subset Fy(\*) of F} by

Definition 1.13.
Fy(\) ={w € Fy | Vei(z*)'w =0, for all i € A(z*) N T with A} > 0}
or alternativly

Vei(z*)'w =0 for all 1 € &,
Vei(x*)Tw =0 forall i € A(z*) NZ with A} > 0,
Vei(z*)Tw >0 forall i € A(x*) NZ with Af = 0.

w € FQ()\*)

The subset F2(A\*) contains the directions w that tend to the active inequality con-
straints for which the Lagrange multiplier component \* is positive, as well as to the
equality constraints.

Theorem 1.6 (Second-Order Necessary Conditions). Suppose that x* is a local solution of
problem of Eq 1.2 and that the LICQ condition is satisfied. Let \ be a Lagrange multiplier
vector such that the KKT conditions (Eqs 1.5-1.9) are satisfied, and let F2(\*) be defined
as above. Then

WV L(x*, X w >0, for all w € F2(\*). (1.10)

Theorem 1.7 (Second-Order Sufficient Conditions). Suppose that x* is a local solution of
problem of Eq 1.2 and that the LICQ condition is satisfied. Let \ be a Lagrange multiplier
vector such that the KKT conditions (Eqs 1.5-1.9) are satisfied, and let F2(\*) be defined
as above. Then

W'V L(x*, X)w > 0, for all w € F2(\*),w # 0. (1.11)

1.7 Optimization Algorithms

Optimization algorithms are iterative. They begin with an initial guess of the optimal
values of the variables and generate a sequence of improved estimates until they reach
a solution. The strategy used to move from one iterate to the next distinguishes one
algorithm from another. Most strategies make use of the values of the objective function
f, the constraints ¢, and possibly the first and second derivatives of these functions.
Some algorithms accumulate information gathered at previous iterations, while others
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use only local information from the current point. Regardless of these specifics (which
will receive plenty of attention in the rest of the book), all good algorithms should possess
the following properties:

e Robustness. They should perform well on a wide variety of problems in their class,
for all reasonable choices of the initial variables.

e Efficiency. They should not require too much computer time or storage.

e Accuracy. They should be able to identify a solution with precision, without being
overly sensitive to errors in the data or to the arithmetic rounding errors that occur
when the algorithm is implemented on a computer.

1.8 Parallel Computation

Parallel and distributed computation is having a significant impact upon how large scale
scientific computation is performed. To solve the large numerical problems of interest to
scientists and engineers today, very powerful computers are necessary, and it appears that
many if not all of the most powerful scientific computers of the future (as well as at present)
will be parallel and distributed computers. To numerical computation researchers, one
of the most interesting aspects of the transition from sequential or vector computers to
parallel and distributed computers is that new algorithm development may be required
to use the new machines efficiently.

Parallelism is of interest in optimization because many optimization problems are ex-
pensive to solve. To understand why this is so, one needs at least the following rudimen-
tary understanding of optimization algorithms. All algorithms for solving optimization
problems are iterative. Each iteration involves at least one evaluation of the nonlinear
functions (f(z) or ¢;(x)), and in many cases, of their first (and occasionally second) deriva-
tives. In addition, each iteration involves linear algebraic computations, which generally
require 0(n?) or O(n?) arithmetic operations in the case of problems with a small to mod-
erate (say less than 100) number of variables, and O(n) or O(n?) arithmetic operations
in the case of problems with a larger number of variables.

The main expenses in optimization algorithms, then, can come from at least four

possible sources:

1. The nonlinear functions, constraints, and/or derivatives may be expensive to eval-
uate.

2. The number of variables or constraints, and hence the cost of each iteration aside

from function and derivative evaluation, may be large.

3. Many evaluations of the objective function, constraints, or derivatives may be re-
quired.

10



4. Many iterations may be required.

These sources of computational expense in turn lead to three levels at which one
may consider introducing parallelism into an optimization algorithm, and which together
encompass the general possibilities for utilizing parallelism in optimization:

1. Parallelize the individual evaluations of the objective function, constraints, and/or
their derivatives.

2. Parallelize the linear algebra involved in each iteration.

3. Parallelize the optimization process at a high level, either to perform multiple func-
tion, constraint, and/or derivative evaluations on multiple processors concurrently,

and/or to reduce the total number of iterations required.

The first possibility of parallelization is the most common one, although each researcher
creates its own custom code and there is a lack of general purpose high performance code
in the literature. In this thesis we present such an implementation which takes fully ad-
vantage of modern parallel architectures. The second possibility, parallelizing the linear
algebraic calculations, may be the concern of optimization researchers if the linear algebra
is particular to optimization algorithms. Parallelizing the optimization process in a non-
linear optimization algorithm is likely to lead to a ocoarse-graino parallel algorithm. By
this we mean an algorithm where each processor performs a significant amount of com-
putation in between each point where it communicates or synchronizes with other pro-
cessors. For example, if each processor performs at least one function evaluation between
communication points, and these function evaluations are even moderately expensive, a
coarse-grain parallel algorithm results. Such parallel algorithms are generally well suited
to MIMD computers, including shared memory multiprocessors, virtual shared memory
multiprocessors, distributed memory multiprocessors, and networks of computers used as
multiprocessors. A basic part of this thesis is the implementation of parallel algorithms
both for local and global optimization

1.8.1 Parallelizing local search

When the number of variables is not too large, say less than 500, unconstrained optimiza-
tion problems are generally solved either by approaches built around Newtonés method,
or by “quasi-Newton” methods. Approaches built around Newtonés method require the
nan Hessian matriz V? f(z) of second partial derivatives of f(x) to be calculated at each
iteration, and the solution of an nxn system of linear equations involving this matrix at
each iteration. Since both of these requirements can be quite expensive, especially when
function and derivative evaluation is expensive or 7 is not very small, it is more common to
use quasi-Newton methods, which avoid these costs, to solve unconstrained optimization
problems with small to moderate numbers of variables. Quasi-Newton methods maintain
a rough approximation to the Hessian matrix, which is updated after each iteration using
information about the step and gradient values at that iteration.

11



The basic sketch of a Newton/quasi-Newton algorithm is presented bellow:

Algorithm 1.2 Newton / quasi-Newton framework

(1) Check the termination criteria in order to stop or not.
(2) Solve BHd®) = —g®) for d¥) (B®) = V2 f(x®) for Newton’s method)

(3) Apply a selection method to obtain a better point z**1 (and calculate f(x*+1))
using d®

(4) Calculate the gradient vector g¢+b.

(5) Update B® to B*™) using a quasi-Newton formula.

The main opportunities for using parallelism in existing or new quasi-Newton methods
correspond to the three general uses of parallelism in optimization algorithms that were
mentioned in the previous Section.

e One can parallelize the individual evaluations of f(z) or V f(x) in steps (3) and (4)
above.

e One can parallelize the linear algebraic calculations in steps (2) and (4) above.

e One can perform multiple evaluations of f(x) or V f(z) concurrently, either within
the algorithmic framework above, or by devising new algorithms for step (3).

12



Part 11

Local Optimization
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CHAPTER 2

SURVEY ON LOCAL OPTIMIZATION

There is a vast literature on local optimization methods. Excellent detailed descriptions
can be found in the books by Fletcher [40], Dennis & Schnabel [35], Gill, Murray & Wright
[53], Nash & Sofer [108] to name a few. Here we shall give a very brief introduction to
the subject of ”Unconstrained Local Optimization” for reasons of self-containment. The
local optimization problem can be stated as:

Find x* € R", such that: f(x*) < f(x), Vx € D" (2.1)

where D" C R" is a small neighborhood around x*. The necessary conditions at the
minimum are given by:

Vf(x*) =0, and V2f(x*) > Olabelneces (2.2)
while the sufficient conditions by:
Vf(z*) =0, and VZf(z*) >0 (2.3)

We refer to f(x) by the term objective function, and to he minimizing point z* by the

term minimizer. Often we may use the notation:

fro=fa@), fW =)
g(z) = Vf(), g® =ga®)
G(z) = Vif(z), G*=G*), GP =aG=®)

There is not a single optimization method appropriate for all problems. The choice of
the proper method is highly dependent on the problem itself. Hence in practice, given a
problem, it is important to have the ability to predict which method will perform well. To
develop such a predictive sense, the understanding of the underlying theory in addition
to experience acquired through usage, is required. Therefore, a classification of methods
based on the theoretical specifics can be very useful.

14



2.1 Classification of Methods

An obvious and meaningful way to classify optimization methods, is according to the
functional information they use, i.e. if they use function values, first derivatives, second
derivatives etc.

e There are methods that only use function values (Direct search methods). These
methods are usually appropriate for problems where the objective function is not

smooth or contains noise.

e Methods that in addition to function values, make use of the gradient vector are
proper for smooth objectives that are continuously differentiable. However the per-
formance of these methods may deteriorate, if the gradient is not analytically avail-
able and finite differences are employed to estimate it numerically. In an effort to
overcome this difficulty, automatic differentiation methods, based on a generalized
chain-rule technique, have been developed [61]. These methods, accept as input the
code for the objective function and produce as output the code for its gradient. (No
finite differencing is involved).

e Another type of methods are those that make use of higher derivatives. The most
popular are the ones based on Newton’s method that employ the Hessian matrix, i.e.
the matrix of the second derivatives. Again these methods are proper for smooth and
twice continuously differentiable objective functions. Numerical estimation of the
Hessian may have disastrous effects on their performance. Automatic differentiation
methods are again applicable.

A different classification scheme may be based on the dimensionality of the problem.
Most methods are designed for small to medium sized problems. Large scale problems
need special treatment. While the theoretical background remains the same, practical
considerations, such as the ratio of the CPU times spent for the bookkeeping operations
and for evaluating the function, play an important role. Since large problems often lead
to large and sparse linear systems, iterative methods enter the picture to take advantage
of the sparsity structure. For large problems, it is not clear if solving the intermediate
subproblems exactly is worthwhile. In fact it has been observed, that if avoided at the
early stages of the procedure, significant time savings may be obtained.

A common ingredient of many optimization algorithms is the “/ine-search” procedure,
i.e. a search along a direction in the n-dimensional space. This actually is a univariate
optimization procedure and plays an important role both in theory and in practice. One
then can divide the various multidimensional optimization methods in those that do per-
form line-searches and to those that do not. In reviewing the local optimization methods,
we will follow the classification we mentioned first.
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2.2 Direct Search Methods

There are various methods that belong to this class. We refer to [146] for an extended
survey. For a more recent exposition see the book by Bazaraa et al [5]. Here we briefly
describe the “Hooke and Jeeves” method, the “Roll” method and the “Simplez” or “
Polytope” method. We proceed with a discussion of line-search methods without deriva-
tives, that are appropriate for use in conjunction with direct search methods.

2.2.1 One dimensional minimization

There are many methods serving this one-dimensional task. To name a few we mention
the Fibonacci search, the golden section search, and the quadratic interpolation. Given an
interval [ay, b1] that brackets a minimum, we will describe the Golden Section method and
a method due to Brent [19]. Both methods assume that the function inside the bracket

is unimodal.

The Golden Section method

Let 7 = @ ~ 0.618 be the golden section ratio, and € > 0 be a tolerance for the bracket
width. The Golden section algorithm follows the steps:

Algorithm 2.3 The Golden Section method

1. Set: e; =a1 + (1 —7)(b1 — a1) and f.= f(c1)
d1 = bl — (1 — T)(bl — CL1) and fd = f(dl)

2. Loop for k =1,2,--- until bgi1 —ags1 <€
if f. < fq then
Set: ag41 = g, bpp1 = di, dpy1 = ¢
Chp1 = g1 + (1 = 7) (kg1 — aps1)
fa = fes fo= f(cks1)
else
Set: agt1 = Cg, bpy1 = by, 1 = di
di+1 = bgr1 — (1 = 7) (bp1 — ag11)
fe=fa, fa= [(drs1)
end if
end Loop

The method of Brent

Brent’s method locates the minimum A, within a prescribed tolerance €. At every iteration
J the method keeps track of six points a;, bj, u;, vj, w; and A;, not necessarily distinct.

A minimum always lies in the interval [a;, b;].

16



e )\; is the point with the least value of f.
e w; is the point with the next lowest value of f.
e v; is the previous value of w;, and u; is the last point at which f has been evaluated.

Initially v1 = w; = A\ = a1 + %g(bl — a1). The j* iteration is described below.
Brent’s book [19] presents many algorithms for minimization without using derivatives.

Algorithm 2.4 Brent’s method

(1) Test for termination. If max(\; — a;,b; — A;) < 2 then return with A; as the

approximate position of the minimum.

(2) Calculate p, g, so that A\j +p/q is the turning point of the parabola passing through
the pOiIltS (Uja f(vj))a (wj7 f(wj>> and ()‘ja f()\]))

(3) Calculate the new point u;1: Let e be the value of p/q at the second-last cycle. If
le| <e,q=0, )\ +p/q & (a,b) or |p/q| > |e|/2, then take a golden section step,
otherwise w1 is taken to be A; + Zi, except that the distances |uj41 — Aj|, uj41 —q;
and b; — v must be at least .

(4) Evaluate f at the new point w; .

(5) Update the points a;, b;, vj, w; and A; as necessary.

Hence, it would be extremely useful to anyone who deals frequently with problems that
are connected with non-smooth objective functions.

2.2.2 Multidimensional Optimization
The Hooke and Jeeves method

This method [72], performs two types of moves. One is of exploratory nature, while the
other is a pattern search. Initially, a base point by is chosen, along with steps s; for the
corresponding parameters x;, and the function f(by) is evaluated. Then a sequence of
exploration and pattern moves follow.

The Roll method

This method [114] also belongs to the class of pattern search methods. It proceeds by
exploring the local topology of the objective function and taking proper steps along each
direction separately. In that it resembles the obvious (and ad-hoc) alternating variables
method [40]. When however the correlation among the variables becomes important, this
procedure cannot proceed further. In order to cure this problem the method performs a
line search along a properly formed direction at the end of each cycle.
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Algorithm 2.5 Hooke and Jeeves method

Exploration: The purpose of the exploratory phase is to acquire information about f(x)
around the current base point. This is described next.

1. Evaluate f(by + s18;), where ¢é; is the unit vector along the i*" direction.
If this leads to a lower value, then
accept by + s1€; as the new base point and replace by.
go to step 2
end if
Evaluate f(by — s18;)
If this leads to a lower value, then
accept by — s18; as the new base point and replace by.
go to step 2
end if

2. Repeat step 1 for the variable xs, 23, ,x,, with steps si,s2,---,s,, and
arrive at a new base point bg after at most 2n + 1 function evaluations.

3. If b, = by, then

set h; = %hi Vi=1,2,---.,n

If the steps are smaller than a preset limit, then
return by as the minimizer.
Terminate.

end if
go to step 1

else

Start a pattern search from b,
end if

Pattern Search: Pattern search attempts to take advantage of the information gathered
during the exploratory phase by constructing promising search directions. We detail
how a pattern move is made from base point bs.

1. Move to point p; = by + (ba — by) = 2bs — by, and apply the exploratory
procedure around p;.

2. If the lowest function value is lower than f(bs), then
The corresponding point is the new base point bg.
Repeat the previous step with all indices increased by one.
else
Abandon the pattern move from by and apply a new sequence of
exploratory moves again from bs.

end if
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Let ¢ = (25, 25,...,2¢)7 be the current point and f. = f(x¢). Let also s; be a step
associated with each variable x;, and a > 1 an acceleration factor. The algorithm executes
the following steps Vi = 1,2,--- . n

Algorithm 2.6 Roll algorithm

(1) Pick a trial point: z% = xf for all j # 7 and z} = 2§ + s;
(2) Calculate fy = f(x").
(3) if f1 < foset x¢ =zt f. = f, and s; = as;. Then, go to step 8.

(4) if f+ > f. pick another trial point as :
af = xf for all j # 4 and a2} = 2§ — s;

(5) Calculate f_ = f(x').

(6) if f- < f.set ¢ =x!, f. = f_ and s; = —as;. Then, go to step 8.

(f+=F-)

(7) if f- > f. calculate an appropriate step by: s; = —%msi.

(8) Proceed from step 1 for the next value of i.

After looping over all variables, a line search is performed in the direction s =
(s1,82,...,82)%.
This is the pattern move of the Roll method. The above procedure is repeated until a

termination criterion applies.

The Simplex method

This method should not be confused with the well known Simplex method of linear pro-
gramming. In contrast with the previously described direct search methods, this one
maintains not just one, but a population of points, a feature that turns out to be impor-
tant in cases where the objective function contains noise. Originally this algorithm was
designed by Spendley et al. [144] and was refined later by Nelder and Mead [109, 110].
A simplex (or Polytope) in R™ is a construct with (n + 1) vertexes defining a volume
element. For instance in two dimensions the simplex is a triangle, in three dimensions
it is a tetrahedron, and so on so forth. The input to the algorithm apart from a few
parameters of minor importance, is an initial simplex. The algorithm brings the simplex
in the area of a minimum, adapts it to the local geometry, and finally shrinks it around
the minimizer. It is a derivative-free, iterative method that proceeds toward the minimum
using a population of n + 1 points (the simplex vertexes) and hence it is expected to be
tolerant to noise, in spite its deterministic nature. The method executes the following
steps (simplex vertexes are denoted by w;).

(1) Examine the termination criteria to decide whether to stop or not.
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(2) Number the simplex vertexes w;, so that the sequence f; = f(w;) is sorted in as-
cending order.

(3) Calculate the centroid of the first n vertexes: ¢ = 237~ fw;
nvert the “worst” vertex w,, as: r = ¢ + a(c — w,) (usually o =
4) 1 t the t” t + 11 1

(5) If fo < f(r) < fn_1 then
set w,, =7, f, = f(r), and go to step 1
end if

(6) If f(r) < fo then
Expand as: e = ¢+ (r —¢) (7 > 1, usually v = 2)
If f(e) < f(r) then
set w, = e, f, = f(e)
else
set w, =7, f = f(r)
end if
go to step 1
end if

(7) If f(r) > fu.—1 then
If f(r) > f, then
contract as: k =c+ f(w, —¢), (8 < 1, usually g = %)
else
contract as: k =c+ S(r — ¢)
end if
If f(k) <min{f(r), f,}, then
set w, =k, f, = f(k)
else
Shrink the whole Polytope as:
Set w; = 3(wo +w;), fi = f(w;) for i =1,2,...,n
end if
go to step 1
end if

The initial simplex may be constructed in various ways. One approach is to pick for the
first vertex the current point and the rest of the vertexes by line searches originating from
the current point and heading along each of the n directions. The second approach picks
again for the first vertex the current point and generates the rest by taking a single step
along each of the n directions.
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2.3 Methods that use the Gradient

These are the most widely used methods. In this class belong the method of Steepest
descent introduced by Cauchy, the method of Conjugate gradients (there are quite a few
variants) and most importantly the Quasi Newton or alias the Variable metric methods.

2.3.1 Steepest descent

This is the simplest of the methods that use gradient information. It is based on the
Taylor expansion: f(x + h) = f(z) + h - Vf(x) + O(h*). For a step of given length
|h| the drop in the function’s value f(x) — f(x + h) becomes maximum when the angle
between vectors h and Vf(z) equals 7. Hence given an initial point (! and a small
positive tolerance € for the gradient, the suggested algorithm is given by:

Loop for k =1,2,--- until [Vf(x®)| < ¢
Perform a line search along the direction: s = —V f(z®))

and obtain so x*+b

End Loop

2.3.2 Conjugate gradient methods

These, as well as the Quasi Newton methods, are based on a quadratic model for the
objective function. In the neighborhood of point & we may expand:

f@+hpuxm:f@wam@+%mcwm, (2.4)

The conjugate gradient methods are creating conjugate directions that are linearly inde-
pendent and solve the quadratic problem (i.e. minimize QQ(h) with respect to h). A set
of vectors s;, ¢ =1,2,---,n is said to be mutually conjugate with respect to a positive
definite matrix G, if and only if:

spGs; =0, V k#£j (2.5)

Since G is assumed positive definite, then for £ = j the above quantity is positive, for all
s; # 0. The conjugate gradient methods rely on the fact that given a quadratic function
() with positive definite Hessian matrix G, then the exact minimum may be found by
performing exact line searches along the directions s;, 2 =1,2,---  n that are mutually
conjugate with respect to G. The way these vectors are constructed is important. For
example the set of the Hessian eigenvectors form such a set. However diagonalizing the
Hessian matrix is not practical, since both the memory requirement and the computational
effort are excessive. The advantage of conjugate gradient methods is that they construct
these directions with minimal computational effort and without using the Hessian matrix
explicitly and so the memory requirement for storing an n X n matrix is relaxed. The
conjugate gradient methods are economical in computer memory since they require only
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a few arrays of n—elements each. The backbone algorithm for the Fletcher—Reeves [42],
Polak-Ribiere [123] and Hestenes—Stiefel [69] methods is described below:

Initially given a point M we set M = —gM. The k' iteration consists of the
following steps:

(1) Perform a line search along ~ *) and obtain x*+Y.

(2) Check the termination criteria in order to stop or not.

(3) Calculate the gradient vector gF+1).

(4) Calculate a scalar 3%*) using one of the following prescriptions:

T
gkt k1)
g®T g(k)

(a) Fletcher-Reeves: ) =

(k1) _ (0T g(h+1)
(g 9'*) g

(b) Polak-Ribiere: ﬁ(k) =

g T g(k)
. (k+1) _ (k)T (k+1)
(c) Hestenes-Stiefel: 3*) = (E]g(k+1)7g£zk)))T T
(5) Calculate a new search direction as: (kt1) — _gk+1) 4 gk) (k)

A note must be made here in order to stress that the incorporated line search must be an
accurate one, otherwise the algorithm may converge in a slow rate. Among the variants
the one most widely used is that of Fletcher-Reeves. However there is evidence that the
Polak-Ribiere algorithm has an advantage. It has been argued that when s*) becomes
almost orthogonal to g+, then very little progress is made and the Polak-Ribiere f3
becomes zero, hence reseting to the steepest descent direction, a fact that enhances its
performance. Conjugate gradient methods were used for large problems due to the fact
that require only a few vectors of n elements each. However nowadays the Limited Memory
Quasi Newton methods are preferred since they maintain low memory requirements and

have shown superior performance.

2.3.3 Quasi-Newton methods

These methods are also based on the quadratic model, equ. (2.4), but unlike the conjugate
gradient methods, make explicit use of an n xn matrix B. Minimizing the quadratic model

is equivalent to solving:

Gh=—g (2.6)

Quasi Newton (QN) methods, maintain a positive definite matrix B ~ G that approxi-
mates the Hessian. This matrix is updated iteratively, in an attempt to offer an improved
approximation at every iteration. So a slightly different linear system is solved, namely:

B =-g (2.7)

The backbone algorithm for the quasi-Newton methods [40, 35, 53] is presented below. At
the start of the k' iteration a point *) the gradient g*) and an approximation B™ o
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the Hessian matrix G® are available. A common initial choice is B”) = I (the identity
matrix). The following steps are then executed:

(1) Check the termination criteria in order to stop or not.

(2) Solve B®) (k) — _g(k) for (k)

(3) Apply a selection method to obtain a “better” point x*+1.

(4) Calculate the gradient vector g1,

(5) Update B® to B**Y using a quasi-Newton formula.

Steps 3 and 5 above need further elaboration.

In step 3, to obtain a “better” point either a line search is performed along the quasi-
Newton direction, or a trust region strategy is followed.

The line search determines a value A = \* so as to reduce the value of the function
f(x® 4+ X ®) according to the so called Wolfe-Powell [59, 161, 126] criteria. The new
point is then taken to be &) = ®) 4 \x k),

The trust region strategy minimizes with respect to h") the quadratic form:
g(h®)) = F(z®) 1 gWTH®) 4 % BT Bk py (k)

subject to: || < R*®), where R™ is a properly chosen radius (the trust region radius)
so that the quadratic approximation is reliable. In this case the candidate point x*) +h®)
is either accepted, if it corresponds to a lower value, or rejected otherwise. The trust
region radius is then updated to R**Y in order to make the quadratic approximation
more trustworthy at the next iteration.

The updates in step 5 most widely used are the BFGS [39, 56, 20, 140] update and the
DFP [31, 41] update. Using the definitions: 6% = x*+1) — £#) and 4*) = gtk+1) _ (k)
we can write down the update formulas (the iteration superscript (k) is dropped on the
right hand side).

The BFGS update is:

T T
il ¥y Béd"' B
B*) = B+ 55 o"Bs (2.8)
The DFP update is:
0" Bé T "B + Bé~T
B<k+1>=B+<1+ - >7Z BNLE SRl (2.9)
0y ) oy 0"y

If the initial approximation B g positive definite, the above updates maintain this
property. However due to roundoff error involved in the numerical procedure after a
number of cycles B may become indefinite. To forbid this from happening, the B matrix
is factorized in a way that guarantees its positive definiteness even in the presence of
roundoff error, and then update equivalently the factors at every iteration. Among others,
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the Cholesky B = LL" [35] and the Goldfarb-Idnani [57] ZT BZ = I factorizations are
the ones most frequently employed in the literature.
The update formulas 2.8 and 2.9 share the interesting property of duality. If one sets
H = B! then the equivalent updates to H can be obtained from the update formulas
for B, using the Sherman—Morrison—-Woodbury rule.

B luv"B™!
(B + 'U/'UT)_l = _Bi1 — m (210)
where B is a non-singular n x n matrix, w,v € R", and 1+ v B u # 0.
The DFP update is:
067 H~~Y'H
H*Y = H - 2.11
T AT6 T ATHA (211)
The BFGS update is:
TH~\ 66" 6v"H + H~d6"
HEY =gy (147 - 2.12
U ) A ¥'o (2.12)

Note that the BFGS update for H can be obtained from the DFP update for B by
interchanging ~ with 6 and similarly the DFP update for H can be obtained from the
BFGS update for B, via the same interchange. In that sense the BFGS and the DFP
updates are called dual. In practice both the B and the H updates have been used
successfully. There is an advantage to use the B update when one wishes to treat some
of the problem parameters as constants, since then the obvious dimensional reduction
is easily implemented. If factorization techniques are not used, (a bad choice, since the
code will not be robust) the H update has a edge, since it only requires a matrix-vector
multiplication and not the solution of a linear system of equations.

2.3.4 Line search for descent methods

Line searches are used in quasi-Newton and conjugate gradient methods. The idea of
a line search algorithm is simple: given a descent direction s, we take a step A
in that direction, that yields an acceptable next iterate. For convenience we denote
FO) = F@® + ABs®Y) and f/(\) = s®Tg® (z® 1+ \Kg®)), Descent methods are

known to converge [59, 161, 126] when A is chosen to satisfy the weak Wolfe-Powell

conditions:
FA) < £(0) + Apf'(0) (2.13)
and
f'(A) zaf'(0) (2.14)
where p € (0, %) and o € (p,1). In practice, we prefer to use the more stringent test
[f'(N] < —af(0) (2.15)

in place of eqn. (2.14), which along with Eq. (2.13) are called the strong Wolfe-Powell

conditions.
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We describe a line search algorithm which uses a sectioning scheme and that mainly
follows Al-Baali and Fletcher [2]. In the sectioning scheme, sequences a;, b;, A; are
generated. a; is always the current best point (least f) that satisfies Eq. (2.13) but
neither Eq. (2.14) nor (Eq. 2.15). \; is the current trial point. b; either fails to satisfy Eq.
2.13, or f(b;) > f(a;), or both. However the interval (a;, b;) will always bracket either an
interval of acceptable points, or points for which f()\) < f, with f being a lower bound

on f.
The line search is initialized with a; = 0, b, = oo, f < f(0) and an estimation for
A1 > 0. The j* iteration is given below:

(1) Evaluate f(\;)
(2) If f();) < f then terminate

(3) If f(A;) > f(0) 4+ Ajpf'(0) or f(A;) = f(a;) then
Choose Aj11 € T'(aj, A;) using either a quadratic interpolating f(a;), f'(a;)
and f();), or a cubic interpolating f(a;), f'(ay, f(\;) and f(b;).

Set Qj+1 = Gy, bj+1 = )‘j-
else

Evaluate f'()\;)

Test for termination. For the weak Wolfe-Powell conditions use Eq. (2.14),
otherwise use Eq. (2.15).

Set aj1 = Aj

If (b; — a;)f'(Aj) <0 then
Choose \j11 € E(a;, Aj, b;) using a cubic interpolating either f(a;), f'(a;),
F5) f1(g), or faz), fb3), f(X), f/(Ag)-
Set bjy1 = b,

else
Choose Ajy1 € T(aj, A;) using a cubic that interpolates f(a;), f'(a;), f(A)),
F'().
Set bj11 = a;

end if

end if

When interpolating, we use the truncation scheme defined by

) la+n(b—a)b—myb—a)] if a<b
T(ab) = { b+ 7(a—0b),a—T7i(a—0)] if b<a (2.16)
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where 0 < 7 <1y < % When extrapolating, we define

[min(73, A), min(7y4, A)] if a<A<b=o00
AN+710—a),b—16b—a)] if a<A<b (2.17)
b+ T16(a—b),\—15(a—0)] if b<A<a

E(a, A\, b)

Where1<73§T4andO<T5§T@-§%.

2.3.5 Trust Region
The dogleg technique

Given a quadratic model:
1 1
f(x+h)~qh)= flx)+h"Vf(z)+ 5h,TVQf(m)h =f(z)+h'g+ 5hTGh

the problem:
m’in{q(h)} subject to: ||h|| <R

is solved approximately by the following technique termed by Powell as the dogleg method
[124]. This is one way to approximately solve the above constrained optimization problem
inside the trust region defined by its radius R. Two points are calculated. The Cauchy
point ®. = x + h, and the Newton point: n = @ + hy. The Cauchy point is the
minimum along the gradient direction, i.e. h, = —\g with A\ = ggTTng, while the Newton
step is given by: hy = —G 'g. If ||hy|| < R the Newton point is taken as the next trial

iterate. Otherwise the first point where the piecewise linear trajectory: € — . — Tx
intersects the sphere of radius R centered at x, is taken as the next trial iterate.

Dennis & Mei [34] proposed a similar procedure termed double dogleg, that defines
another point xp = @ + hp with:

(9T9)2

(s''cg)(s ' g)

hp=Chy, (=08y+0.2, and 7=
and a modified trajectory: * — x. — xp — xy.

The updating scheme of the trust region radius is given below:

(1) Calculate the ratio of the actual to the expected reduction: r*) = %

F®) stands for f(x®) and fED = f(x® 4 p®).

, where

(2) Accept or reject the trial point according to:

If »*) < 0 then
b)) = gk pkt1) — ¢k)

else
2+ = (k) L pk)

end if
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(3) if 7*) < 0.25 then
RU+D = [nM]|/4
else if 7®) > 0.75 and |h™®| = R*®) then
R*+1D) — 9 R(k)
else
REFD — R&)

end if

2.3.6 Sum of squares problems
Levenberg—Marquardt method for sum of squares

For the case where the objective function is a sum of squares, i.e.

with 7T(x) = (fi(x), fo(x),..., fu(x))T, a special method has been proposed first by
Levenberg [87] and later on by Marquardt [100]. Let J be the Jacobian matrix 8“ and
let D be a diagonal matrix. The quadratic approximation to f(x + h) is given by.

o(h) = f(z) + g" (@)h + Sh Bla)h

and is being minimized under the condition ||Dh|| < R, where R is the radius of the trust
region. The trust region in this case is a hyper—ellipsoid with semi-axis lengths R/D;;.
Since g = 2J7r and if the Gauss-Newton approximation is made i.e. B(z) ~ 2J7J, we
get using the Lagrange multiplier procedure:

[JTT + \DTDlh=—-J"r or h()\) =—-[J'J+A\DTD]'JTr

Initially we set D( ) = || 2= ar(m<0>) | Vi .., N. The k' iteration of the algorithm is
as:
(1) It | D®R® (0 )H R® then
Set 5 = h®(0)

else
find a A*) > 0 such that || D®AR® (AR = R®)
Set 6% = Rk (A®)
end if
If f(x® +6%)) < f(x®)) then
Set z*+D = z£*) + §*®) and calculate J*+Y
else
Set £*+D) = 2*) and JE+D = Jk)
end if
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(2) Update R®™ to R**V (the algorithm is similar to the one described for the dogleg
case).

(3) Choose D1 as:
D™ = max {D(k)

11 [

||%:j”>||} Vi=1,2,...,N

A very robust implementation of the above is described by Moré [105].

2.4 Methods that use second derivatives

2.4.1 Newton’s Method

The idea behind Newton’s method is the basis of many algorithms. Again the quadratic
model 2.4 is employed and under the assumption that the initial point is near the min-
imum, i.e. |h| = |z* — | is small, we may determine h by solving the linear system
Gh = —g. The algorithm is similar to the one described for the Quasi-Newton meth-
ods, replacing however the updates to the B matrix with the calculation of the Hessian
matrix G. While G is positive definite the above procedure is stable, however G may
become singular or indefinite, in which case the above algorithm has to be modified to
be operational. Many alternatives have been suggested in the literature under the name
Modified Newton methods, [60],[58]. However the method by Gill and Murray [52], seems
to perform better. Their method uses an LDLT Cholesky factorization for the Hessian,
where L is a lower triangular matrix with all diagonal elements equal to one. This is
possible when G is positive definite. When G is indefinite or singular, then a diagonal
matrix is added to G suitably to ensure positive definiteness, and this modified G is
factorized. The resulting linear system is then solved taking advantage of the existing
factors. This method attains quadratic convergence near the minimum, a very desirable
feature. A disadvantage of the method is the usually expensive calculation of the Hessian
and its factorization at every iteration.

2.5 Termination Criteria

The issue when to terminate an algorithm, and therefore regard the current point as a
minimizer, is important. Ideally the necessary conditions alone (?7?), could dictate the
termination. However in practice, this will not work most of the time. For one thing,
the gradient will very rarely if ever, become exactly equal to zero, due to the rounding
errors that prevent exact arithmetic. In addition the optimality conditions (?7?), assume
that the objective function is twice continuously differentiable, which actually may not
be the case. Hence practical termination criteria had to be developed that deviate from
the ideally expected. An obvious modification that has been frequently employed is:

Vf(z)] <e

28



where € is a small positive number. This rule is not scale invariant and hence is not
recommended for general use. Some other rules, that can be used in combination are
listed.

12 — 2 *=D || f(2®)] € (scale invariant)
|x(k) _ x(k—1)| < e(1+ |$(k)| )

fa®D) = f@®) < emaz(f@W)], [f*)])

IN

For the Simplex method, an appropriate termination criterion is based upon:

1 <& _
— Y [fi—fl<e
n+1i:0

_ 1 &
where, f = n+1;fi
The tolerances (all denoted above by €), should be chosen with care and taking in account
the accuracy of the calculations. Additional checks may be performed to establish the
quality of the approximate minimizer and possibly improve it, after the minimization
algorithm has come to an end.
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CHAPTER 3

AN ALGORITHM FOR CONVEX QUADRATIC
PROGRAMMING SUBJECT TO BOUND
CONSTRAINTS

3.1 Summary

We present an algorithm for solving a quadratic programming problem with positive
definite Hessian and bound constraints, that employs a Lagrange multiplier approach.
The proposed method falls in the category of active set techniques. The algorithm, at
each iteration, modifies the minimization parameters both in the primal space and in
the dual space (Lagrange multipliers). The method may be profitably used on a number
of problems from the fields of Physics, Chemistry, Computer Science and Engineering.
Comparative results of numerical experiments are reported demonstrating the advantages
of the proposed approach.

3.2 Introduction

The problem of minimizing a convex quadratic function subject to bound constraints
appears quite frequently in applications. For instance, many problems in computational
physics and engineering, are reduced to quadratic programming problems. Portfolio man-
agement can also be formulated as quadratic programming problem [120]. In the field
of Artificial Intelligence, and especially in Support Vector Machines (SVM) an efficient
quadratic solver is crucial for the training process [64, 113]. Also methods for calculating
the radiation intensity in oncology treatment are formulated as quadratic optimization
problems [18]. In Physics, Chemistry and Engineering, the resulting optimization prob-
lems are most often highly non-linear. Iterative optimization methods, model the objective
function by truncating its Taylor expansion up to and including the quadratic term. Solv-
ing efficiently the recurring quadratic problems is crucial for the overall performance of
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the optimization procedure. In Section 2.3.5 we present the role of the proposed method
in the general setting of Sequential Quadratic Programming methods for non-linear pro-
gramming. To be more specific Quasi-Newton (BFGS, DFP, SR1) or modified Newton
methods that are among the most important non-linear optimizers, are implemented in
the framework of trust region methods that require the solution of a quadratic problem
at each iteration. The Quadratic Programming problem with simple bounds is stated as:

1
¢(x) = min §$TB:E +274d, (3.1)
subject to: a; <x; <b;,Viel={1,2,---,n}

where x,d € R" and B is a symmetric, positive definite n X n matrix.

For the problem in Eq. (3.1) two major strategies exist in the literature, both of which
require feasible steps to be taken.

The first one is the Active Set strategy [53, 40, 8] which generates iterates on a face of
the feasible box until either a minimizer of the objective function is found or a point on
the boundary of that face is reached. The basic disadvantage of this approach, especially
in the large-scale case, is that constraints are added or removed one at a time, thus
requiring a number of iterations proportional to the problem size. To overcome this,
gradient projection methods [28, 8] were proposed. In that framework the active set
algorithm is allowed to add or remove many constraints per iteration.

The second strategy [164, 66, 26] consists in treating the inequality constraints using
interior point algorithms. In brief, an interior point algorithm consists of adding a series of
parameterized barrier functions which are minimized using Newton’s method. The major
computational cost is due to the solution of a linear system, which provides a feasible
search direction. Recently, D’ Apuzzo et. al. [29] presented a parallel implementation of
an interior-point method for box-constrained quadratic programming.

In the present article we propose an infeasible active set algorithm, which generates a
finite number of iterations that are not necessarily descent. In each step we maintain the
first order optimality condition along with the complementarity constraint, until primal
and dual feasibility hold. Two closely related methods in the literature are the Projected
Newton method [7] and the infeasible method of Kunisch and Rendl [80] that treats only
upper bounds. In the first case the first order optimality condition is satisfied, primal
feasibility is maintained throughout the iterations and a line search scheme is applied to
guarantee convergence. In the second case the new iterate is uniquely determined by the
active set. Hence note that the problem may be solved in at most 2" iterations'. We
recognize that bound constraints are a very special case of linear inequalities, which may
in general have the form Ax > b, A being an m X n matrix and b is a vector € R™.
Our investigation is also motivated by the fact that in the convex case, and under certain
conditions a problem subject to inequality constraints can be transformed to a bound

197 is the number of all possible active sets
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constrained one, using duality, i.e.:

1
min ~z' Br +2"d (3.2)
TER™ 2

subject to: Az > b

is equivalent to the dual:

L org T3
max —oy By+y'd (3.3)

subject to: y > 0

where B = AB™'AT a positive definite matrix and d = AB~'d + b. The dual problem in
Eq. (3.3) is also a quadratic problem subject to bounds. Let y* be the solution of the dual
problem. We can then obtain, under certain circumstances, the solution to the initial
problem of Eq. (3.2) as:

z* = B HATy* — d) (3.4)

The paper is organized as follows. The proposed algorithm is described in Section 3.3.
In Section 3.4 we briefly present three different competing quadratic programming codes
and comparison on five different test problem types is performed in Section 3.5. Finally, in
Section 2.3.5 we present a trust region approach for nonlinear bound constrained problems
that takes full advantage of the present quadratic programming method.

3.3 Solving the quadratic problem

For the problem in Eq. (3.1), we construct the associated Lagrangian:
1
L(z,\, p) = ixTBa: +a27d — X'z —a) — pu"(b— ) (3.5)
The KKT necessary conditions at the minimum z*, \*, u* € R" require that:

Bx*+d—XN+u"=0
>0, pr>0,Viel
A(xf—a;) =0, Viel (3.6)
pi(bi—z;) =0, Viel
x] € [ag,b;], Viel

A solution to the above system (3.6), can be obtained through an active set strategy
described in detail in Algorithm 1:
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Algorithm 1 BOXCQP

Initially set: & =0, A? = ;4© =0 and 2 = —B7 4.
If (9 is feasible, Stop, the solution is: z* = (¥,
At iteration k, the quantities 2, \*) 4 ®) are available.

1. Define the sets:

L® = {i:z (k) < aj, or xz( ) = = qa; and )\(k) >0}
ur = iz (k > b;, or x ) = b; and /LZ()>O}
Sk = {i:1a; < ml( ) < b;, or xgk) = a; and /\Z(k) <0,

or xgk) —b; and 4P <0}

)

Note that L®) uU® y S®)

2. Set:
xEkH) = a, ung) =0, Vie LW
w7V = b, AV =0, vie U®
AR — o, ) — 0, vie s®
3. Solve:

B.’L‘<k+1) +d= )\(k+1) . M(k+1)
for the n unknowns:

k+1 V ES
(kH Vi e U
)\ik“), Vi e LW

4. Check if the new point is a solution and decide to either stop or iterate.

If (2" € [a;,b;] Vi € S® and pFV >0, vie UP
and )\Ekﬂ >0, Vi€ L(k)) Then
Stop, the solution is: z* = z*+V.
Else
set k <— k + 1 and iterate from Step 1.

Endif

The solution of the linear system in Step 3 of Algorithm 3.3, needs further considera-
tion. Let us rewrite the system in a componentwise fashion.
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> B e 4 dy =AY - Y e (3.7)
jel

(k+1) k+1
e =

Since Vi € S we have that )\ = 0, hence we can calculate x( +1) , Vi € Sk

by splitting the sum in Eq. (3.7) and taking into account Step 2 of the algorithm, ie.:

Z Bijx §k+1 - Z Bija; — Z Bijb; — d;, Vi € St) (3.8)

jeS®) jeL®) GjeU®)

The submatrix B;;, with i,j € S®) is positive definite as can be readily verified, given
that the full matrix B is. The calculation of A; k+1) Vi e L™ and of u( ) , VieU®
straightforward and is given by:

A =N "Bl d;, vie L® (3.9)
jeI

Y = =N " Bl —d;, vie U® (3.10)
Jj€erl

Convergence analysis in the line of Kunisch and Rendl [80] may be followed also for our
method. We numerically tested cases with thousands of variables and a wide spectra for
the condition number of B ranging from 1.259 to 10°. When B becomes nearly singular,
then oscillation occurs as expected. (Note that for such cases the linear system Bx = —d
is ill conditioned). At this point corrective measures may be taken.

The main computational task of the algorithm above, is the solution of the linear
system in Step 3. The size of the system may vary according to the size of the active set
in each iteration. In our implementation we solve the linear system using either using a
direct solver via Cholesky decomposition (Variant 1) or the conjugate gradient method
(without any preconditioning) (Variant 2). We also provide the option to initially use an
inaccurate-inexpensive conjugate gradient search to obtain a starting point, and then to
switch back to Cholesky decomposition (Variant 3).

3.4 Other convex quadratic codes

There exist several Quadratic Programming codes in the literature. We have chosen
to compare with three of them, specifically with QPBOX, QLD and QUACAN. These
codes share several common features so that the comparison is both meaningful and fair.
All codes are written in the same language (FORTRAN 77) so that different language
overheads are eliminated. Also they are written by leading experts int he field of Quadratic
Programming, so that their quality is guaranteed. Notice also that all codes are specific
to the problem, and not of general purpose nature and are distributed freely through the
World Wide Web, at the moment of this writing.
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3.4.1 QPBOX

QPBOX [97] is a Fortran77 package for box constrained quadratic programs developed at
IMM of the Technical University of Denmark. The bound constrained quadratic program
is solved via a dual problem, which is the minimization of an unbounded, piecewise
quadratic function. The dual problem involves a lower bound of A, i.e the smallest
eigenvalue of a symmetric, positive definite matrix, and is solved by Newton iteration
with line search. (Downloadable from http://wwa.imm.dtu.dk/”hbn/Software/).

3.4.2 QLD

This program [136] is due to K.Schittkowski of the University of Bayreuth, Germany
and is a modification of code due to MJD Powell of the University of Cambridge. It
is essentially an active set, interior point method and supports general linear constraints
too. (Downloadable from http://siconos.gforge.inria.fr/Documentation/Numerics\_Doxygen/
910001\ _8f-source.html).

3.4.3 QUACAN

This program combines conjugate gradients and gradient projection techniques, as in
the algorithm of Moré J.J. and Toraldo G. (1991). QUACAN [49] is specialized for
convex problems subject to simple bounds. (Downloadable from http://search.cpan.org/
src/ELLIPSE/PDL—Upt—NonLinear—0.0Q/opti\_lib/box9903.f).

3.5 Results of Numerical Experiments

To verify the effectiveness of the proposed approach we experimented with five different
problem types, and measured cpu times to make a comparison possible. We have imple-
mented BOXCQP in Fortan 77 and used a 64-bit AMD Opteron processor with Linux
operating system and the GNU g77 FORTRAN compiler.

In the subsections that follow we describe in detail the test problems used and we

report the results of our experiments. In every experiment we have applied all the three
variants of BOXCQP (see Section 3.3).

3.5.1 Random problems

The first set of experiments treats randomly generated problems. We generate problems
following the general guidelines of [106]. The Hessian matrices B have the form

B = M"M with M = D27 (3.11)

where ,
D = diag(d, ..., d,) with d; = 10=—17cond (3.12)
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where ncond is a positive real, controlling the condition number of B (ko(B) = 107m¢o"4)
and Z is a Householder matrix,
2
Z=I-—2" 3.13
P (3.13)
The vectors d,a and b are created by the following procedure, which is controlled by two

real numbers in [0, 1], namely act_prob and up_low_prob:

Random problem creation

for 1 =0 ton do
a; < rand(—1,0)
b; « rand(0, 1)
for 1 =0 ton do
Get random &; € [0, 1]
if & < act_prob then
Get random & € [0, 1] {Add i to the active set.}
if 52 < up_low_prob then
x; < b; {On upper bound.}
; < rand(0, 1)
AN+ 0
else
x; < a; {On lower bound.}
pi <=0
Ai < rand(0,1)
else
z; < (a; + b;)/2 {i in the interior.}
pi <0
A0
Calculate d <~ —Bxz + A — o {From Eq. (3.6).}

We have created three classes of random problems:

(a) Problems that the solution has approximately 50% of the variables on the bounds
with equal probability to be either on the lower or on the upper bound (act_prob = %,
up_low_prob = 0.5).

(b) Problems that the solution has approximately 90% of the variables on the bounds

with equal probability to be on either the lower or on the upper bound (act_prob =

9

15> up-low_prob = 0.5).

(c) Problems that the solution has approximately 10% of the variables on the bounds

with equal probability to be either on the lower or on the upper bound (act_prob =

1

15> up-low_prob = 0.5).

For every random problem class we have created Hessian matrices with three different
condition numbers:
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- Using ncond = 0.1 and hence, x3(B) = 1.259
- Using ncond = 1 and hence, ko(B) = 10
- Using ncond = 5 and hence, ko(B) = 10°

The results for the three variants of BOXCQP against the other other quadratic codes
for the classes (a), (b) and (c¢) and for three different condition numbers are shown in
Tables 3.1, 3.2 and 3.3 respectively.

From the tables, we observe that our method performed worse only on the ill condi-
tioned problems of class (c¢) (20 cases in Table 3.3 were k2(B) = 10°). In all other cases,
there exists a BOXCQP variant that outperforms all the tested codes. As a general obser-
vation we notice that Variant 2, performs better in the majority of the well conditioned
problems, whereas Variants 1 and 3 that incorporate the Choleksy decomposition exhibit
higher efficiency in the nearly ill conditioned problems. We also note that in the ill condi-
tioned case where act_prob = 0.1 (approximately 10% of the variables of the solution are
on the bounds) QPBOX and QLD outperform all three variants of BOXCQP. Commend
on Fig 3.5 3.6 3.6 Variant 2 scales very well with dimension for well conditioned problems
ncond = 0.1, ncond = 1 followed by Variant 3. Variant 1 on the other hand performs
better in the ill conditioned case. Seems that Variant 3 is a good compromise when you
don’t know in advanced the condition number.

As a rule of thumb we propose the usage of Variant 2 when the matrix B is well
conditioned and Variant 1 when B is ill conditioned. In cases where we cannot afford to
calculate the condition number Variant 3 may be appropriate.

3.5.2 Circus Tent problem

The circus tent problem is taken from Matlab’s optimization demo as an example of large-
scale quadratic programming with simple bounds. The problem is to build a circus tent
to cover a square lot. The tent is elastic and is to be supported by five poles. The question
is to find the shape of the tent at equilibrium, that corresponds to the minimum of the
energy function. As we can see in Figure 3.1, the problem has only lower bounds imposed
by the five poles and the ground. The surface formed by the elastic tent, is determined
by solving the bound constrained optimization problem:

1
min g(z) = §ITB$ +2"d (3.14)
subject to: a; <x; Yie I ={1,2,--- n}
where ¢(x) corresponds to the energy function and H is a 5-point finite difference
Laplacian over a square grid. It is obvious from Table 3.4 that variant 2 outperforms

all other codes. Notice that matrix B exhibits large sparse patterns that favors CGR
iterations .
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Figure 3.1: Circus tent problem.

3.5.3 Biharmonic Equation problem

We consider the problem of describing small vertical deformations of an horizontal, elastic
membrane clamped on a rectangular boundary, under the influence of a vertical force. The
membrane is constrained to remain below an obstacle. For an in depth discussion of this
problem see [80]. The formulation of the problem is given by Eq.( 3.15).

1
min 5gcTB:c +z7d (3.15)
subject to: x; <b Yie [ ={1,2,--- n}

We see an example in Fig 3.2 of a membrane under the influence of a vertical force.
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Figure 3.2: On the left we show the acting force, on the right is the final shape of the

membrane.

It is obvious from Table 3.4 that variant 3 performs better than all the other codes.
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3.5.4 Intensity Modulated Radiation Therapy

This problem arises in the field of radiotherapy and concerns the determination of the
spatial distribution of the radiation, in a way that the patient’s vital organs are minimally
irradiated. Knowing the beam settings and the intensity profile, one can calculate the
radiation dose. Inversely, when a desired dose is required, the proper intensity profile for
given beam settings can be retrieved by solving a quadratic problem. The beam settings
are successively modified in an effort to satisfy a set of clinical constraints, and hence the
quadratic subproblem (shown in Eq. (3.16)), must be solved a large number of times [18].

1
min g(z) = §mTB$ +a%d (3.16)
subject to x; >0 Vie I ={1,2,--- n}

The results reported in Table 3.4, correspond to real world data, kindly provided by S.
Breedveld (private communication). In this example, seven beams are combined resulting
to a quadratic problem with 2342 parameters(see last line of Table 3.4).

3.5.5 Support Vector Classification

In this classification problem, the goal is to separate two classes using a hyperplane h(y) =
wTy+3, which is determined from available examples (D = {(y*, '), (*,2%),... (v}, 1)}, y €
R™, t € —1,1). Furthermore it is desirable to produce a classifier that will work well on
unseen examples, i.e. it will generalize well. Consider the example in Fig. 3.3. There
are many possible linear classifiers that can separate the data, but there is only one that
maximizes the distance to the nearest data point of each class. This classifier is termed
the optimal separating hyperplane and intuitively, one would expect that generalizes op-

timally.

/ optimal
separating hyperplane

Figure 3.3: Optimal separating classifier.

The formulation of the maximum distance linear classifier (if we omit the constant
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term f of the hyperplane equation?) is a convex quadratic problem with simple bounds
on the variables. The resulting problem has the form:

1
min QxTBx —z'e (3.17)

subject to: 0 <ux; <C Viel={1,2,--- ,n}

where e € R' and with e; = 1, By; = t'#/K(y*,y’) and K(y1,y2) is the kernel function
performing the non-linear mapping into the feature space. The parameters z € R! are La-
grange multipliers of an original quadratic problem, that define the separating hyperplane
using the relation:

!
why =Y 2t K(y',y) (3.18)
i=1
Hence the separating surface is given by:

h(y) = sgn(w*"y) (3.19)

In our experiments we used the CLOUDS [107] data set, which is a two-dimensional
data set with two classes. We have constructed the problem in Eq. (3.18) using an
RBF Kernel function K (yi,12) = exp(fm“z—gyw), and setting C' = 100. The experiments
conducted follow the procedure:

e Form the training set by extracting | examples from the dataset and let the rest
examples (5000-1) form the test set.

e Construct the matrix B for the problem in Eq. (3.18)
e Apply each solver, obtain the corresponding separating surface and test-set error.

In these experiments the large condition number of matrix B leads to ill conditioned
problems. To circumvent this, we added in the main diagonal of B a small positive term of
order 1072, The resulting classification surfaces for [ = 200, 500, 1000 and 2000 training
examples from CLOUDS dataset are shown in Fig. 3.4.

The first 12 lines of Table 3.4 contain results for a varying number of training pat-
terns. The addition of the O(1072) term in the main diagonal led to the creation of well
conditioned matrices that could be efficiently solved by CGR algorithm.

3.6 Conclusions

The BOXCQP algorithm specialized to solve box-constrained convex quadratic problems,
has been developed. We have presented a number of applications in Computer Science,
Physics and Engineering where BOXCQP has been applied. In addition a trust region
method for nonlinear problems is sketched, that takes advantage BOXCQP in order to

2Also known as explicit bias.
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(a) 200 training patterns (b) 500 training patterns

(c¢) 1000 training patterns (d) 2000 training patterns

Figure 3.4: Examples of SVM classification.

efficiently solve unconstrained and bound constrained non-linear problems. From the
experiments one observes the robustness of our method even in the case of nearly ill
conditioned problems.

Notice that all the energy minimization problems presented in this work, exhibit large
sparsity patterns. Sparsity can be exploited by using special linear solvers and further
significant speed-up is expected.

Our software can be downloaded from http://www.cs.uoi.gr/"voglis both in a
FORTRAN 77 and in a Matlab version.

41



Runtime in secs

Runtime in secs

Performance scaling plot for ncond=0.1
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Figure 3.5: Plot for act_prob = 0.5 and ncond = 0.1

Performance scaling plot for ncond=1
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Figure 3.6: Plot for act_prob = 0.5 and ncond =1
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Performance scaling plot for ncond=5
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Table 3.1: Random table results, act_prob = 0.5, up_low_prob = 0.5

Prob. Name Var.l | Var2 | Var.3 | QUACAN | QPBOX | QLD
Random (ncond = 0.1,n = 100, f* = —103.70) 0.00 0.00 0.00 0.00 0.00 0.010
Random (ncond = 1,n = 100, f* = —248.90) 0.00 0.00 0.00 0.00 0.00 0.01
Random (ncond = 5,n = 100, f* = —259614) 0.00 0.02 0.00 0.16 0.01 0.01
Random (ncond = 0.1,n = 200, f* = —183.32) 0.02 0.00 0.003 | 0.00 0.06 0.08
Random (ncond = 1,n = 200, f* = —421.78) 0.02 0.00 0.01 0.03 0.05 0.07
Random (ncond = 5,n = 200, f* = —608139) 0.03 0.18 0.03 1.38 0.07 0.07
Random (ncond = 0.1,n = 300, f* = —394.03) 0.08 0.01 0.01 0.02 0.19 0.25
Random (ncond = 1,n = 300, f* = —707.29) 0.08 0.02 0.02 0.08 0.20 0.26
Random (ncond = 5,n = 300, f* = —1146677) 0.12 0.75 0.12 5.328 0.25 0.25
Random (ncond = 0.1,n = 400, f* = —502.26) 0.19 0.02 0.050 | 0.06 0.44 0.60
Random (ncond = 1,n = 400, f* = —607.83) 0.22 0.08 0.11 0.25 0.47 0.61
Random (ncond = 5,n = 400, f* = —1679600) 0.37 2.00 0.42 16.16 0.69 0.58
Random (ncond = 0.1,n = 500, f* = —762.53) 0.40 0.05 0.09 0.10 0.86 1.23
Random (ncond = 1,n = 500, f* = —1133.68) 0.4141 | 0.15 0.18 0.48 0.85 1.19
Random (ncond = 5,n = 500, f* = —1692549) 0.63 4.04 0.87 48.75 1.24 1.25
Random (ncond = 0.1,n = 600, f* = —994.19) 0.78 0.06 0.12 0.14 1.43 2.13
Random (ncond = 1,n = 600, f* = —1288.29) 0.90 0.24 0.37 0.66 1.57 2.14
Random (ncond = 5,n = 600, f* = —2049820) 1.16 9.72 1.27 48.69 1.97 2.14
Random (ncond = 0.1,n = 700, f* = —838.28) 1.34 0.09 0.20 0.23 2.35 3.46
Random (ncond = 1,n = 700, f* = —1703.28) 1.31 0.28 0.34 0.73 2.45 3.68
Random (ncond = 5,n = 700, f* = —2328669) 2.49 20.45 | 2.84 164.35 3.92 3.45
Random (ncond = 0.1,n = 800, f* = —645.14) 2.58 0.13 0.27 0.31 3.80 5.44
Random (ncond = 1,n = 800, f* = —1824.65) 2.59 0.42 0.53 1.26 3.76 5.37
Random (ncond = 5,n = 800, f* = —2630417) 358 | 32.21 | 3.72 | 108.13 5.76 5.47
Random (ncond = 0.1,n = 900, f* = —596.17) 4.02 0.19 0.40 0.68 5.70 7.50
Random (ncond = 1,n = 900, f* = —1951.62) 4.04 0.63 0.77 2.13 5.60 7.44
Random (ncond = 5,n = 900, f* = —2904251) 5.16 46.01 | 5.87 145.91 7.39 7.64
Random (ncond = 0.1,n = 1000, f* = —1327.91) | 4.52 0.22 0.54 0.50 7.83 10.17
Random (ncond = 1,n = 1000, f* = —2677.47) 4.58 0.66 0.95 1.68 7.93 10.00

continued on next page
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continued from previous page

Random (ncond = 5,n = 1000, f* = —3082720) 6.82 72.48 8.19 143.93 10.02 9.93

Random (ncond = 0.1,n = 1100, f* = —1464.97) | 7.86 0.35 0.77 0.81 10.69 13.79
Random (ncond = 1,n = 1100, f* = —2061.31) 7.98 1.01 1.45 3.50 10.31 13.57
Random (ncond = 5,n = 1100, f* = —4224564) 10.84 | 85.98 12.03 | 213.99 14.21 13.77
Random (ncond = 0.1,n = 1200, f* = —1332.93) 9.40 0.33 1.23 0.75 13.26 18.05
Random (ncond = 1,n = 1200, f* = —1978.65) 9.02 0.96 2.29 3.32 13.49 19.19
Random (ncond = 5,n = 1200, f* = —4071507) 11.08 | 90.54 11.95 187.50 16.90 19.31
Random (ncond = 0.1,n = 1300, f* = —2247.07) | 10.73 | 0.41 1.29 1.14 17.33 23.89
Random (ncond = 1,n = 1300, f* = —2698.07) 11.67 | 1.46 2.91 4.43 17.73 24.35
Random (ncond = 5,n = 1400, f* = —1537.81) 16.66 136.48 | 20.56 | 733.69 25.75 24.06
Random (ncond = 0.1,n = 1400, f* = —2247.07) | 12.03 | 0.43 1.57 1.14 20.94 30.16
Random (ncond = 1,n = 1400, f* = —2860.81) 11.97 | 1.20 2.15 3.51 21.41 30.57
Random (ncond = 5,n = 1400, f* = —4446068) 17.48 | 118.56 | 17.92 | 300.58 27.72 30.07
Random (ncond = 0.1,n = 1500, f* = —1287.82) 17.70 | 0.50 2.16 1.14 25.30 36.80
Random (ncond = 1,n = 1500, f* = —2952.20) 2042 | 1.92 5.78 5.21 26.37 35.48
Random (ncond = 5,n = 1500, f* = —3811836) 27.47 | 226.89 | 34.67 | 624.51 47.77 36.22
Random (ncond = 0.1,n = 1600, f* = —2321.86) 23.34 | 0.61 2.68 1.76 29.76 48.56
Random (ncond = 1,n = 1600, f* = —3679.48) 26.29 | 2.60 4.57 7.79 33.50 46.80
Random (ncond = 5,n = 1600, f* = —5524905) 36.36 | 302.91 | 49.70 | 895.78 37.99 46.23
Random (ncond = 0.1,n = 1700, f* = —2994.18) | 34.09 | 0.89 4.37 2.48 37.61 51.78
Random (ncond = 1,n = 1700, f* = —3748.60) 35.90 | 2.82 7.45 8.43 39.12 53.46
Random (ncond = 5,n = 1700, f* = —5223138) 38.31 262.87 | 43.32 | 734.07 52.66 54.31
Random (ncond = 0.1,n = 1800, f* = —1354.26) | 29.42 | 0.68 4.43 2.13 43.82 64.54
Random (ncond = 1,n = 1800, f* = —3020.69) 28.75 | 1.93 4.79 7.11 43.91 64.10
Random (ncond = 5,n = 1800, f* = —5748462) 48.49 | 352.77 | 57.25 | 925.31 57.65 63.13
Random (ncond = 0.1,n = 1900, f* = —1466.46) | 47.30 | 0.90 5.20 2.10 52.67 76.41
Random (ncond = 1,n = 1900, f* = —4447.00) 52.71 | 3.55 12.38 | 8.67 51.68 75.52
Random (ncond = 5,n = 1900, f* = —6772368) 67.32 | 298.62 | 60.88 1043.96 | 72.19 75.50
Random (ncond = 0.1,n = 2000, f* = —1536.18) | 47.95 | 0.92 6.05 2.55 58.39 89.83
Random (ncond = 1,n = 2000, f* = —5177.91) 47.75 | 2.75 7.32 7.57 60.00 91.10
Random (ncond = 5,n = 2000, f* = —6248198) 74.03 | 395.21 70.79 | 711.86 103.15 | 89.13
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Table 3.2: Random table results, act_prob = 0.9, up_low_prob = 0.5

Prob. Name Vard | Var.2 | Var.3 | QUACAN | QPBOX | QLD
Random (ncond = 0.1,n = 100, f* = —213.04) 0.00 0.01 0.01 0.00 0.00 0.00
Random (ncond = 1,n = 100, f* = —404.78) 0.00 0.01 0.01 0.00 0.00 0.00
Random (ncond = 5,n = 100, f* = —494902 0.24 0.01 0.01 0.00 0.01 0.00
Random (ncond = 0.1,n = 200, f* = —521.19) 0.02 0.00 0.00 0.01 0.06 0.10
Random (ncond = 1,n = 200, f* = —972.38) 0.02 | 001 | 0.01 0.01 0.06 0.11
Random (ncond = 5,n = 200, f* = —1236934 0.03 0.10 0.02 2.20 0.06 0.10
Random (ncond = 0.1,n = 300, f* = —382.97) 0.07 0.00 0.01 0.02 0.19 0.34
Random (ncond = 1,n = 300, f* = —891.98) 0.07 0.02 0.02 0.04 0.20 0.34
Random (ncond = 5,n = 300, f* = —1614883 0.08 0.10 0.05 2.45 0.19 0.33
Random (ncond = 0.1,n = 400, f* = —767.40) 0.16 0.02 0.02 0.05 0.46 0.80
Random (ncond = 1,n = 400, f* = —1589.16) 0.16 0.05 0.05 0.11 0.44 0.82
Random (ncond = 5,n = 400, f* = —2559084 0.19 0.64 0.19 10.93 0.49 0.81
Random (ncond = 0.1,n = 500, f* = —1011.44) 0.35 0.04 0.04 0.10 0.88 1.79
Random (ncond = 1,n = 500, f* = —1837.85) 0.37 0.15 0.15 0.38 0.84 1.70
Random (ncond = 5,n = 500, f* = —2567167 0.40 1.04 0.50 43.83 0.89 1.69
Random (ncond = 0.1,n = 600, f* = —874.34) 0.70 0.05 0.05 0.15 1.59 2.93
Random (ncond = 1,n = 600, f* = —2851.60) 0.64 0.13 0.13 0.35 1.48 3.16
Random (ncond = 5,n = 600, f* = —3219702 0.77 2.29 0.78 35.44 1.57 2.99
Random (ncond = 0.1,n = 700, f* = —1718.10) 149 | 0.09 | 0.09 0.27 2.53 4.79
Random (ncond = 1,n = 700, f* = —2322.62) 1.53 0.32 0.33 1.10 2.74 4.84
Random (ncond = 5,n = 700, f* = —3907450 1.31 3.78 1.23 104.96 2.49 5.08
Random (ncond = 0.1,n = 800, f* = —1847.63) 2.39 0.11 0.11 0.26 3.77 7.53
Random (necond = 1,n = 800, f* = —2810.93) 2.42 0.35 0.36 0.96 3.82 7.47
Random (ncond = 5,n = 800, f* — —4336447) 252 | 9.36 | 2.10 63.45 4.09 7.40
Random (ncond = 0.1,n = 900, f* = —1926.40) 2.93 0.14 0.14 0.40 5.51 11.00
Random (ncond = 1,n = 900, f* = —2586.61) 3.78 0.49 0.49 1.48 5.55 10.30
Random (ncond = 5,n = 900, f* = —4953068) 4.00 11.63 3.21 129.98 5.79 10.33
Random (ncond = 0.1,n = 1000, f* = —1327.91) 4.52 0.22 0.54 0.49 7.83 10.17
Random (ncond = 1,n = 1000, f* = —3738.74) 3.57 0.43 0.43 1.45 7.27 15.08
Random (ncond = 5,n = 1000, f* = —5054535) 3.91 9.30 3.07 180.95 8.53 15.12
Random (ncond = 0.1,n = 1100, f* = —1464.97) 7.85 0.34 0.77 0.81 10.68 13.79
Random (ncond = 1,n = 1100, f* = —3223.46) 5.68 0.66 0.66 2.62 9.66 20.50
Random (ncond = 5,n = 1100, f* = —5699765) 7.86 19.25 6.08 300.41 11.82 18.90
Random (neond = 0.1,n = 1200, f* = —1332.93) 9.40 | 032 | 1.22 0.74 13.25 | 18.05
Random (ncond = 1,n = 1200, f* = —3052.69) 8.40 0.73 0.73 3.01 12.95 25.86
Random (ncond = 5,n = 1200, f* = —6273425) 7.69 19.61 5.51 209.04 13.56 27.15
Random (ncond = 0.1,n = 1300, f* = —2247.07) 10.73 0.41 1.29 1.14 17.33 23.88
Random (ncond = 1,n = 1300, f* = —5120.61) 9.76 0.96 0.96 3.52 16.73 34.33
Random (ncond = 5,n = 1300, f* = —6959699) 10.34 26.22 8.07 365.77 17.86 33.73
Random (ncond = 0.1,n = 1400, f* = —1537.81) 12.03 0.43 1.56 1.14 20.94 30.15
Random (ncond = 10,n = 1400, f* = — — 5818.67) 12.53 1.29 1.30 3.32 20.75 40.12
Random (ncond = 5,n = 1400, f* = —6708835) 13.08 55.20 11.63 363.79 21.79 39.71
Random (ncond = 0.1,n = 1500, f* = —1287.82) 17.69 0.49 2.15 1.14 25.30 36.80
Random (ncond = 1,n = 1500, f* = 4595.18) 20.42 1.59 1.60 4.72 25.96 49.28
Random (ncond = 5,n = 1500, f* = —8134587) 21.22 68.82 16.76 387.54 26.71 49.82
Random (ncond = 0.1,n = 1600, f* = —2315.79) 23.34 0.61 2.68 1.76 29.76 48.55
Random (neond = 1,n = 1600, f* = —7025.33) 2388 | 2.06 | 2.07 7.24 33.57 | 63.22
Random (ncond = 5,n = 1600, f* = —8357410) 22.53 64.27 22.67 663.67 33.521 69.35
Random (ncond = 0.1,n = 1700, f* = —2994.18) 34.09 0.89 4.36 2.48 37.61 51.78
Random (ncond = 1,n = 1700, f* = —5597.19) 30.40 1.95 1.95 5.84 37.00 73.40
Random (ncond = 5,n = 1700, f* = —8926662) 30.31 106.51 | 24.51 488.59 45.261 88.21
Random (ncond = 0.1,n = 1800, f* = —4272.84) 28.56 0.61 0.62 1.59 51.00 88.60

continued on next page

45




continued from previous page

Random (ncond = 1,n = 1800, f* = —7183.86) 28.57 1.65 1.66 5.11 43.85 88.02
Random (ncond = 5,n = 1800, f* = —8926662) 30.31 | 106.52 | 24.51 | 488.60 | 45.26 88.21
Random (ncond = 0.1,n = 1900, f* = —6047.49) | 42.79 0.69 0.71 2.29 53.38 | 106.33
Random (ncond = 1,n = 1900, f* = —6443.84) 42.80 2.48 2.48 9.87 49.56 | 106.76
Random (ncond = 5,n = 1900, f* = —9768911) 44.13 97.03 29.84 | 979.92 | 54.03 | 105.90
Random (ncond = 0.1,n = 2000, f* = —5199.87) | 39.84 0.59 0.61 2.14 73.93 | 128.85
Random (ncond = 1,n = 2000, f* = —7383.81) 40.05 2.36 2.41 8.78 62.69 | 128.56
Random (ncond = 5,n = 2000, f* = —10262511) | 42.04 | 147.56 | 32.04 | 613.54 | 67.91 | 128.35
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Table 3.3: Random table results, act_prob = 0.1, up_low _prob = 0.5

Prob. Name - Parameters Var.1 Var.2 Var.3 QUACAN | QPOX | QLD
Random (ncond = 0.1,n = 100, f* = —33.75) 0.00 0.00 0.00 0.00 0.01 0.00
Random (ncond = 1,n = 100, f* = —61.16) 0.00 0.00 0.00 0.01 0.01 0.01
Random (ncond = 5,n = 100, f* = —198582) 0.00 0.06 0.01 0.12 0.01 0.00
Random (ncond = 0.1,n = 200, f* = —61.26) 0.03 0.00 0.02 0.01 0.06 0.03
Random (ncond = 1,n = 200, f* = —137.74) 0.03 0.01 0.02 0.03 0.06 0.03
Random (ncond = 5,n = 200, f* = —198507) 0.06 0.82 0.10 1.00 0.072 0.04
Random (ncond = 0.1,n = 300, f* = —98.13) 0.12 0.01 0.06 0.01 0.22 0.12
Random (ncond = 1,n = 300, f* = —335.72) 0.11 0.03 0.06 0.07 0.21 0.14
Random (ncond = 5,n = 300, f* = —294620) 0.23 1.27 0.18 3.43 0.23 0.13
Random (ncond = 0.1,n = 400, f* = —81.61) 0.28 0.03 0.14 0.05 0.52 0.30
Random (ncond = 1,n = 400, f* = —239.87) 0.29 0.10 0.19 0.20 0.51 0.29
Random (ncond = 5,n = 400, f* = —371506) 0.73 13.43 1.15 11.81 0.57 0.29
Random (ncond = 0.1,n = 500, f* = —165.39) 0.58 0.05 0.27 0.09 0.98 0.61
Random (ncond = 1,n = 500, f* = —250.77) 0.69 0.17 0.45 0.39 0.99 0.57
Random (ncond = 5,n = 500, f* = —503874) 1.25 22.10 2.33 24.34 1.04 0.57
Random (ncond = 0.1,n = 600, f* = —120.53) 1.12 0.08 0.52 0.12 1.70 1.03
Random (ncond = 1,n = 600, f* = —420.14) 1.08 0.24 0.59 0.55 1.71 1.07
Random (ncond = 5,n = 600, f* = —646953) 2.69 36.03 3.69 37.16 1.84 1.05
Random (ncond = 0.1,n = 700, f* = —215.51) 2.05 0.12 0.92 0.28 2.83 1.72
Random (ncond = 1,n = 700, f* = —608.39) 3.42 0.67 2.23 1.13 291 1.75
Random (ncond = 5,n = 700, f* = —866604) 4.74 73.42 7.17 71.99 3.05 1.64
Random (ncond = 0.1,n = 800, f* = —379.52) 3.96 0.20 1.67 0.31 4.58 2.97
Random (ncond = 1,n = 800, f* = —555.21) 4.18 0.60 2.08 1.13 4.69 2.73
Random (ncond = 5,n = 800, f* = —874662) 9.41 113.31 13.11 84.98 5.02 2.87
Random (ncond = 0.1,n = 900, f* = —162.00) 6.42 0.27 2.79 0.52 6.89 3.85
Random (ncond = 1,n = 900, f* = —702.73) 6.28 0.87 2.99 1.73 6.91 3.83
Random (ncond = 5,n = 900, f* = —1288215) 14.06 | 159.45 | 18.67 144.42 7.42 3.77
Random (ncond = 0.1,n = 1000, f* = —385.19) 8.10 0.33 4.12 0.49 9.67 4.92
Random (ncond = 1,n = 1000, f* = —744.63) 7.80 0.93 4.17 1.99 9.58 5.23
Random (ncond = 5,n = 1000, f* = —947787) 21.76 | 150.66 | 23.29 137.16 10.21 4.78
Random (ncond = 0.1,n = 1100, f* = —359.04) 12.62 0.41 5.45 0.93 12.45 7.01
Random (ncond = 1,n = 1100, f* = —815.00) 9.65 1.08 4.58 2.60 11.98 7.34
Random (ncond = 5,n = 1100, f* = —1398369) 27.49 262.46 36.10 206.25 13.12 7.21
Random (ncond = 0.1,n = 1200, f* = —473.98) | 15.27 0.50 7.10 0.66 15.82 9.64
Random (ncond = 1,n = 1200, f* = —757.89) 15.40 1.42 7.73 3.18 15.69 9.55
Random (ncond = 5,n = 1200, f* = —1719411) 38.69 332.99 51.92 208.28 16.41 9.46
Random (ncond = 0.1,n = 1300, f* = —387.00) 21.73 0.65 9.41 1.39 34.45 11.82
Random (ncond = 1,n = 1300, f* = —982.13) 21.78 1.85 10.21 4.12 19.54 12.06
Random (ncond = 5,n = 1300, f* = —1549329) 41.39 481.25 71.13 316.36 20.80 11.74
Random (ncond = 0.1,n = 1400, f* = —475.6) 24.19 0.69 12.07 1.28 25.21 14.47
Random (ncond = 1,n = 1400, f* = —993.08) 24.13 1.92 12.59 3.87 25.08 14.61
Random (ncond = 5,n = 1400, f* = —2063165) 51.78 570.86 93.98 254.72 26.55 14.44
Random (ncond = 0.1,n = 1500, f* = —311.40) | 35.39 0.82 15.43 1.14 29.92 18.17
Random (ncond = 1,n = 1500, f* = —1076.26) 34.83 2.37 15.71 6.19 31.23 19.00
Random (ncond = 5,n = 1500, f* = —1791434) 80.21 628.68 | 111.98 510.94 32.73 18.67
Random (ncond = 0.1,n = 1600, f* = —285.54) 42.09 1.09 18.83 2.06 39.03 25.64
Random (ncond = 1,n = 1600, f* = —1112.70) 60.71 4.21 38.91 8.60 39.03 25.60
Random (ncond = 5,n = 1600, f* = —1794845) 80.80 482.62 | 109.59 765.19 41.66 25.64
Random (ncond = 0.1,n = 1700, f* = —552.04) 52.12 1.13 22.32 1.88 45.16 27.56
Random (ncond = 1,n = 1700, f* = —1238.63) 74.48 4.33 45.94 7.83 45.62 28.54
Random (ncond = 5,n = 1700, f* = —1845689) 125.11 | 559.45 | 133.35 630.73 47.11 27.14
Random (ncond = 0.1,n = 1800, f* = —579.5) 56.08 1.13 28.06 1.67 51.92 33.74
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Random (ncond = 1,n = 1800, f* = —1122.75) 54.58 3.15 27.59 6.78 52.20 | 33.69
Random (ncond = 5,n = 1800, f* = —2751580) | 130.07 | 819.08 180.85 | 876.60 | 55.17 | 34.36
Random (ncond = 0.1,n = 1900, f* = —566.86) 76.20 1.37 34.12 3.00 60.27 | 40.06
Random (ncond = 1,n = 1900, f* = —1194.64) 75.6 3.92 35.20 9.03 60.39 | 40.63
Random (ncond = 5,n = 1900, f* = —2139161) | 145.81 902.77 162.77 | 712.32 | 62.87 | 39.40
Random (ncond = 0.1,n = 2000, f* = —621.46) 78.98 1.36 37.10 1.91 69.26 | 49.50
Random (ncond = 1,n = 2000, f* = —1443.17) 114.84 4.57 74.21 8.00 69.67 | 49.85
Random (ncond = 5,n = 2000, f* = —2589665) | 189.95 | 1191.16 | 269.69 | 670.03 | 73.12 | 50.21
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[ Prob. Name Var.1 Var.2 Var.3 [ QUACAN [ QPBOX | QLD |
SVM (n = 100), f* = —167.79 0.00 0.00 0.00 0.01 0.01 0.00
SVM (n = 200), f* = —384.11 0.0430 | 0.0352 | 0.0391 0.1523 0.0703 0.0742
SVM (n = 300), f* = —545.54 0.1367 | 0.0977 | 0.1016 0.3945 0.2305 0.2539
SVM (n = 400), f* = —736.00 03672 | 0.2891 | 0.3359 2.0039 0.5352 0.6289
SVM (n =500), f* = —933.94 0.7031 | 0.6133 | 0.7070 4.6914 1.0508 1.2734
SVM (n = 600), f* = —1073.77 11797 | 0.8398 [ 0.9727 6.5430 1.8516 2.3633
SVM (n = 700), f* = —1222.33 22656 | 15078 | 1.8516 14.3320 3.0273 3.8125
SVM (n = 800), f* = —1323.44 3.3789 | 1.8750 | 2.2539 | 21.7461 4.6836 6.1953
SVM (n = 900), f* = —1431.59 56680 | 3.3984 | 3.8438 | 27.1602 7.3281 8.2031
SVM (n =1000), f* = —1539.77 | 7.2578 | 4.2930 | 50117 | 34.0078 | 10.3945 | 11.3281
SVM (n = 2000), f* = —2849.68 | 68.7852 | 22.0078 | 36.2461 | 256.2266 | 77.2969 | 104.3086
SVM (n = 3000), f* = —4490.68 | 263.3477 | 63.9688 | 151.4023 | 1068.9766 | 264.5586 | 354.4297
Tent (n = 100), /* = 0.0168 0.0078 | 0.0039 | 0.0039 0.0039 N.C 0.0039
Tent (n = 400), f/* = 0.3162 0.322 0.132 0.217 N.C N.C 0.248
Tent (n = 900), f* = 0.4442 5.570 1.453 3.273 N.C N.C 2.77
Tent (n = 1600), f* = 0.5023 48.3008 | 9.5742 | 29.1133 N.C N.C 20.5352
Tent (n = 3600), f/* = 0.5455 557.74 55.74 284.05 N.C N.C 246.04
Tent (n = 4900), f* = 0.5540 1333.51 | 15049 [ 696.21 N.C N.C 617.58
Biharm (n = 100), f* = —0.0001 | 0.0030 | 0.0030 | 0.0020 0.0040 0.0120 0.0130
Biharm (n = 400), f* = —0.0004 | 0.1958 | 0.2090 | 0.1880 0.6450 0.6382 0.7539
Biharm (n = 900), f* = —0.0008 | 4.2788 | 3.1328 | 2.9180 18.5229 | 10.4912 | 9.2886
Biharm (n = 1600), f* = —0.0015 | 23.3280 | 17.8920 | 15.3110 | 119.6610 | 82.1220 | 60.8680
Biharm (n = 2500), f* = —0.0023 | 106.1869 | 77.2411 | 60.5740 | 775.0340 | 333.9110 | 222.7870
Biharm (n = 3600), f* = —0.0033 | 308.7246 | 271.4639 | 186.8857 | 2988.0826 | 1071.3447 | 684.5688
Biharm (n = 4900), f* = —0.0045 | 816.13 | 705.52 | 484.45 | 8282.04 [ 3067.21 | 1837.66
IMRT (n = 2342), f/* = 0.0563 54.22 33.11 40.56 85.11 67.88 73.22

Table 3.4: CPU times (secs). (IN.C: No convergence)
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CHAPTER 4

A RECTANGULAR TRUST REGION APPROACH
FOR UNCONSTRAINED AND BOUND
CONSTRAINED NONLINEAR OPTIMIZATION

4.1 Summary

A trust region algorithm for unconstrained and bound constrained nonlinear optimization
problems is presented. The trust region is a rectangular hyperbox in contrast with the
commonly used hyperellipsoid. The resulting quadratic subproblems are solved approx-
imatelly by an adaptation of Powell’s dogleg method for rectangular trust regions and
a the novel quadatratic programming algorithm presented in Chapter 3. Comparative

results of numerical experiments are reported.

4.2 Introduction

Non-linear optimization plays an important role in many fields of science and engineering,
in the industry, as well as in a plethora of practical problems. Frequently the optimization
parameters are constrained inside a range imposed by the nature of the problem at hand.
Developing methods for bound constrained optimization is hence quite useful. We refer to
[27] (pp. 10-12) for a list of application areas. The most efficient optimization methods are
based on Newton’s method where a quadratic model is adopted as a local approximation to
the objective function. Two general approaches have been followed. One uses a line-search
along a properly selected descent direction, while the other permits steps of restricted size
in an effort to maintain the reliability of the quadratic approximation. The approaches in
this second class, bear the generic name Trust-Region techniques. In this article we deal
with a method of that type.

We develop a method that adopts a rectangular shape for the trust region. This
geometry has the obvious advantage of the linearity of the subproblem constraints and
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in addition allows effortless adaptation to bound constrained problems. The emerging
quadratic subproblems are of the sort:

1
min §STBS + s7g subject to: a; < s; < b; (4.1)

a modification of Powell’s [125] dogleg technique is developed to obtain an approximate
solution and an exact technique based on quadratic algorithm in Chapter 3.

We embed this scheme in a quasi—-Newton framework that uses a positive definite
approximation to the Hessian matrix. This renders the problem in Eq.4.1 a strictly
convex one, and hence the dogleg technique is applicable.

In Section 2, we describe in brief the trust region class of algorithms along the lines of
Conn, Gould and Toint [27]. In Sections 3 and 4 we present the proposed methodology
along with our experimental results. Finally our conclusions are layed out in Section 5.

4.3 Trust Region Methods

Trust region methods fall in the category of sequential quadratic programming. The
algorithms in this class are iterative procedures in which the objective function f(z) is
represented by a quadratic model inside a suitable neighborhood (the trust region) of the
current iterate, as implied by the Taylor series expansion. This local model of f(z) at the

k' iteration can be written as:
1
fzp +5) = my(s) = f(ar) +gfs+ §STBkS (4.2)

where g, = Vf(x;) and By, is a symmetric approximation to V2f(zy).
The trust region may be defined by:

T, ={zeR"| ||z —z]| <Ay} (4.3)

It is obvious that different choices for the norm lead to different trust region shapes. The
Euclidean norm || - ||2, corresponds to a hypershpere, while the || - ||oc norm defines a
hyperbox.

Given the model and the trust region, we seek a step s; with ||sg|| < Ay, such that
the model is sufficiently reduced in value. Using this step we compare the reduction in
the model to that in the objective function. If they agree to a certain extend, the step
is accepted and the trust region is either expanded or remains the same. Otherwise the
step is rejected and the trust region is contracted. The basic trust region algorithm is
sketched in Alg. 4.7
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Algorithm 4.7 Basic trust region

S0: Pick the initial point and trust region parameter xy and Ay, and set £ = 0.

S1: Construct a quadratic model:
my(s) = f(zg + 5)
S2: Calculate s with |[sg|| < Ay, so as to sufficiently reduce my.
S3: Compute the ratio of actual to expected reduction, 7, = %
will determine if the step will be accepted or not and the update for A,.

. This value

S4: Increment k < k + 1 and repeat from S1.

4.4 Dogleg approximate solution

As mentioned in the introduction, our algorithm is a modification of Powell’s dogleg
method suitable for rectangular trust regions. The dogleg path is defined as:

aC for0<a<1
s(a) =
CH+(a—1)(N-=-C) for1<a<?2
T
where C' = —%gk is the Cauchy step, and N = — k_lgk is the Newton step, that is
k

the unconstrained minimizer of my. In Fig. 4.1 we show the dogleg path for the cases of
the || - || and the || -||o norm. The quadratic model my(s(a)), decreases monotonically
as a increases assuming that By is positive definite. In the original paper, the dogleg path
was truncated as soon as it intersected with the trust region boundary. We distinguish
the three following cases:

Casel: NeT;
Case2: CeTyand N ¢ T
Case 3: C ¢ T,and N ¢ T

In our algorithm cases 1 and 2 are treated the same way as in Powell’s original
paper[125]. However in case 3, we prefer a slightly different approach. Instead of taking
the maximum feasible step along C' (PC' = bC, b < 1) which is the case in the origi-
nal algorithm, we proceed further towards N in the direction N — PC' until a bound is
encountered. In Fig.4.2 we show such a case when the trust region is a hyperbox. The
definition of the dogleg path under this modification is:

S(@)_ aC for0<a<b
bC' 4+ (a—b)(N —bC) forb<a<1+b
[[PC||2

where b = SerE € [0,1]. It can be trivially shown that along this path my(s(a))

monotonically decreases, reaching so a lower value for the model.

22



/ X Dogleg Path

/// 1
3
HyperBox

Figure 4.1: Dogleg path
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We wish to apply our method to the more general problem:

min f(z) subject to: I; < x; < (4.4)
TeER,

This covers both unconstrained and bound constrained problems.

We employ BFGS updates to guarantee the positive definiteness of the approximation
B, to the Hessian matrix. We construct the model my(s) as described in Section 2, and
we omit the constant term f(z) in Eq. 4.11.

The trust region at the k™ iteration is defined as:

T, ={z e RN" | ||z — zklloo < Ak} (4.5)
and thus the dogleg step must be constrained by:

in other words:

From Eq. 4.7, and the fact that the new point x; + s must be feasible, the subproblem

can be restated as:
Minge gn My (s) = %STBkS +sTg,

max(l; — z;, —Ag] <'s; < minfu; — 2y, Ag]
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Figure 4.2: Our approach in Case 3

It is worth mentioning that when the original problem involves bound constraints, the
trust region shape is a hyperectangle. When no bounds are present the trust region is
just a hypercube.

Special care must be taken when an iterate x, reaches a bound. We define the active

set at a point x, as the set of indices:

Alz) = {i|xi—uiand(§xfi<0}u

of
a1, > 0} (4.8)

When A(zy) # 0 the dogleg step s, that is computed from the quadratic subproblem
may lead outside the feasible region and hence no progress can be achieved. To deal with
this situation, we reduce the dimension of the subproblem by excluding the minimization
parameters that belong to the active set. Let m the number of parameters in the active
set. The dimension of the subproblem is reduced to n —m. In Fig.4.3, we present a case
that progress would have been impossible without the reduction.

{Z | l‘zzlz and

Our algorithm is presented in Alg. 4.8.

4.4.1 Experimental results

In order to investigate the behavior of the DOGBOX algorithm, we have performed a
substantial amount of numerical testing. We have attempted to solve 35 unconstrained
and bound constrained test problems taken from the More collection [106].
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Algorithm 4.8 DOGBOX

S0: Pick the initial point and trust region parameter zg and Ag, and set k =0

S1: If active constrains exist, reduce the subproblem’s dimension. Bj and gr are reduced
quantities.

S2: Construct the quadratic model around zy:

my(s) = 1/257 Brs + 57 g

max[li — Ty, —A] S §i S mln[uz — Ty, A]
1 %

S3: Calculate dogleg step 3

if N = —B,{gk is feasible then

S5, =N
else
. P ge ~ - :
ifC = _ng%ikgk gr. 1s feasible then

find the maximum « such that
C+ax(N-C) €Ty
Sp=C+ax(N-C)

else
find the maximum f such that
PC =8C €T,
find the maximum « such that
PC+ax(N—-PC) €Ty,
S5k =PC+ax(N—-PC)

end if

end if

S4: Using the reduced step si, calculate the full space step s, and the ratio 7.
S5: Choose the new point x4 according to:

if r, < 0.1 then
Th+1 = Tk
else
Tk4+1 = Tk + Sk
endif

S6: Update trust region Ay according to:

if r, < 0.25 then

Agtr = ||sk]|/4

else if 7, > 0.75 and ||sg|| = Ag then
Agy1 =24

else
A1 = Ay

endif

25
S7: Increment k£ < k + 1 and repeat from S1.
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The implementation was written in double precision FORTRAN 77, and was incorpo-
rated in the Merlin Optimization Environment [114].

In the unconstrained case we compare our hyperbox-dogleg method to the originally
proposed dogleg that is implemented in Merlin (command TRUST). We start the min-
imization from the points recommended by More (Test Points 1 and 2). Both methods
use BFGS updates to approximate the Hessian matrix and use exactly the same scheme
to treat the trust region. The stopping criteria are identical as well. The aim of these
experiments is to verify that, in the unconstrained case, our method is as effective as the
original one proposed by Powell. The results are shown in Table 4.1, were the number of
iterations (”1t.”), the function calls (" FC”) and the gradient calls (" GC”) are reported
for each method. In this table, ”*” denotes that the two methods ended up in different
minima, and hence any comparison is meaningless.

For the bound constrained tests, the bounds were generated by the following two
schemes, were = stands for the initial starting points recommended by More.

(l—rjz<z<(l+4+rz z€R"0<r<l1 (4.9)

r—c<zx<z+4+c¢ z,cER" (4.10)
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Care was taken that in our experiments the unconstrained minimum was feasible in some,
but not in all, cases. In the bound constrained case, we compare our method against
Merlin’s TRUST method and the well known Tolmin[127] algorithm which is also included
in the Merlin distribution. The results of the two bound constrained tests are shown in
Table 4.2 for Eq.4.9 and Table 4.3 for Eq.4.10. We should point out that the symbol ”—”
in these tables means that the method did not converge to the solution.

The presented results for the unconstrained case, offer a useful insight about the be-
havior of our algorithm. It seems that our method performs better (although marginally)
than the original dogleg-trust region method in the majority of the test problems. We
can infer that our slight modification in the dogleg path, is responsible for that.

In the bound constrained case results, we witness a dramatic improvement when we
compare TRUST to our implementation. This is expected due to the hyberbox nature
of our approach, that helps dealing with bounds in a straightforward way. Another
conclusion that can be drawn is that our method behaves similarly to Tolmin in most
cases, and overall perfoms slightly better.

Table 4.1: Unconstrained case

Test Point 1 Test Point 2
Problem TRUST DOGBOX TRUST DOGBOX
Name It. FC | GC It. FC | GC It. FC | GC It. FC | GC
ROSEN 40 47 41 37 44 38 26 31 27 27 34 28

FRE-ROT 13 40 13 14 34 14 14 40 14 14 40 14
BRO-B-S 34 43 35 34 43 35 37 50 37 37 50 38

BEA 19 20 19 18 19 18 16 19 16 18 19 20
JEN-SAM 1 7 2 1 7 2 1 17 2 1 17 2
HEL-VAL 33 43 34 30 38 30 * * * * * *
BARD 23 42 23 20 39 20 23 41 23 22 40 22
GAUS 7 19 7 7 18 8 15 15 16 13 14 14
GULF 1 2 1 1 2 1 2 22 2 2 22 2
BOX3 37 39 38 39 40 42 52 57 53 51 57 52
POW-SIN 67 71 68 88 89 94 92 97 93 71 74 72
WOOD 36 44 36 37 46 37 24 30 25 34 43 35

KOW-0OSB 33 49 33 34 49 34 41 56 41 42 62 42
BRO-DEN 37 65 37 41 69 41 42 69 42 49 83 49

OSB1 67 91 67 69 92 69 111 | 142 | 111 | 101 | 133 | 101
BIG-E6 44 62 44 46 69 46 41 57 41 40 58 40
OSB2 66 89 66 61 89 61 49 75 49 40 63 40
WATS 159 | 177 | 159 | 131 | 156 | 131 180 | 216 | 180 | 188 | 225 | 188
X-ROS 92 107 92 104 | 123 | 104 95 115 95 98 121 98
X-POW-S 204 | 218 | 204 | 221 | 247 | 231 254 | 274 | 254 | 204 | 221 | 204
PENI 202 | 226 | 202 | 172 | 217 | 172 57 81 57 38 61 38
PENII 203 | 241 | 203 | 270 | 300 | 271 259 | 300 | 260 | 253 | 300 | 254
VAR-DIM 15 21 15 25 31 25 23 28 23 24 29 24
TRIG 34 48 34 30 46 30 36 50 36 39 54 39

BR-A-LIN 19 36 19 18 34 18 1 1 1 1 1 1
DISC-INT 29 30 29 33 35 33 29 29 29 34 37 35

LIN-FR 3 5 4 2 3 2 3 4 3 2 3 2
LIN-R1 3 25 3 3 25 3 3 27 3 3 25 3
LIN-R10 3 24 3 4 28 4 5 28 5 4 27
CHEB 38 55 38 40 63 40 150 | 186 | 150 | 106 | 144 | 106
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Table 4.2: Constrained case (1)

Test Point 1 Test Point 2
Problem TRUST DOGBOX TOLMIN TRUST DOGBOX TOLMIN
Name It. | FC | GC It. FC | GC | FC | GC It. | FC | GC It. FC | GC | FC | GC
ROSEN 6 39 6 2 2 2 3 2 5 11 2 2 2 3 2
FRE-ROT 39 84 39 2 2 2 3 2 1 2 1 2 2 2 3 2
POW-B-S 11 29 11 2 2 2 3 2 13 32 13 3 3 3 5 4
BROW-B-S 8 65 8 3 48 3 37 36 6 63 6 3 3 3 4 3
BEAL 46 93 46 3 3 3 3 1 2 1 3 3 3 4 3
JEN-SAM 1 2 1 3 3 3 5 4 1 13 3 3 3 6 5
GAUS 15 16 15 7 18 8 14 15 56 73 56 9 9 9 31 32
MEYE 63 | 117 63 20 47 20 25 24 - - - 12 12 12 23 22
GULF 50 | 100 50 6 6 6 8 7 50 97 50 10 10 10 8 7
BOX3 5 5 6 4 4 4 5 4 7 32 7 4 4 4 5 4
POW-SI - - - 4 4 4 5 4 - - - 3 3 3 4 3
KOW-OSB 68 84 68 13 13 13 20 19 58 | 105 58 7 7 7 8 7
BRO-DEN 1 9 2 3 3 3 7 6 1 12 2 3 3 3 5 4
OSB1 66 | 115 66 250 | 339 | 250 19 18 - - - 11 11 11 16 15
BIG-EX 53 70 53 10 11 10 19 18 30 46 30 16 32 16 27 26
OSB2 73 91 73 33 53 33 59 58 58 76 58 14 30 14 22 21
WATS 1 0 0 0 0 0 0 0 3 2 21 21 21 42 41
X-ROSE 7 33 7 2 2 2 3 2 6 40 6 2 2 2 3 2
X-POW-S - - - 6 6 6 6 5 - - - 3 3 3 4 3
PEN1 2 36 2 5 5 5 6 5 1 2 1 5 5 5 6 5
PEN2 50 97 50 5 5 5 10 9 90 | 136 90 5 5 5 7 6
VAR-DIM 22 82 22 10 10 10 11 10 20 70 20 10 10 10 11 10
TRIG 61 78 61 19 36 19 33 32 53 99 53 11 11 11 13 12
BR-A-LIN 8 41 8 3 3 3 4 3 0 0 0 0 0 0 0 0
DISC-BOUN - - - 20 35 20 39 38 0 0 0 0 0 0 0 0
LIN-FR 46 90 46 2 2 2 3 2 45 89 45 2 2 2 3 2
LIN-R1 1 5 2 11 11 11 12 11 1 7 2 11 11 11 12 11
LIN-R10 1 4 2 9 9 9 10 9 1 6 2 9 9 9 10 9
CHEB 49 69 49 44 66 44 60 59 74 | 143 74 52% 96 52 86 85

4.5 Boxcqp exact solution

We present in this section a trust region method for non-linear optimization with bound
constraints, where the trust region is a hyperbox, in contrast with the usual hypersphere
or hyperellipsoid shapes. The rectangular trust region is natural for problems with bound
constraints, because even when there is an overlap with the feasible region, its geometry is
preserved. Trust region methods fall in the category of sequential quadratic programming.
These algorithms are iterative and the objective function f(x) (assumed to be twice
continuously differentiable), is approximated in a proper neighborhood of the current
iterate (the trust region), by a quadratic model. Namely, at the k" iteration the model
is given by:

F@F +5) ~mW® (s) = f(a®) 4+ sTg® + %STB('“)S (4.11)

where ¢®) = Vf(x®) and B® in the case of Newton’s method is a positive definite
modification of the Hessian, while in the case of quasi-Newton methods is a positive
definite matrix produced by a low rank relevant update.
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Table 4.3: Constrained case (2)

Problem Test Point 1 Test Point 2
Name TRUST DOGBOX TOLMIN TRUST DOGBOX TOLMIN
It. FC | GC | It. | FC | GC | FC | GC It. FC | GC | It. | FC | GC | FC | GC
ROSEN 24 60 24 14 17 14 17 16 26 66 26 5 5 5 11 10
FREU-ROT 16 44 16 9 9 9 28 27 42 99 42 3 3 3 5
BROW-B-S 7 64 7 3 44 3 15 14 14 78 14 3 3 3 4 3
BEAL - - - 8 24 8 20 19 1 2 1 2 2 2 3 2
JEN-SAM - - - 27 54 27 55 54 - - - 20 50 20 67 66
GAUS 9 9 9 7 18 7 14 13 49 52 41 14 28 15 33 32
MEYE 62 116 62 12 24 12 27 26 79 170 79 47 60 47 22 21
BOX3 6 35 6 4 4 4 5 4 7 35 7 5 5 5 6 5
POW-SI 63 94 63 17 37 17 45 44 - - - 10 41 10 23 22
KOW-0OSB 36 52 36 33 43 33 48 47 41 57 41 44 64 44 46 45
BRO-DEN - - - 5 5 5 10 9 - - - 5 5 5 8 7
OSB1 76 102 76 70 93 70 103 | 102 300 | 300 | 300 | 91 | 124 91 99 98
BIG-EX 31 47 31 21 38 21 31 30 28 45 28 17 34 17 36 35
OSB2 84 106 84 54 78 54 91 90 53 69 53 19 37 19 39 38
X-ROSE 34 72 34 36 53 36 41 40 7 130 7 11 40 11 42 41
X-POW-S 79 118 79 32 61 32 56 55 - - - 9 34 9 27 26
PEN1 1 2 1 7 7 7 13 12 1 2 1 5 5 5 6 5
VAR-DIM 202 | 258 | 202 1 2 1 3 2 - - - 18 19 18 37 36
TRIG 28 41 28 32 47 32 53 52 * * * * * * * *
BR-A-LIN - - - 17 35 17 34 33 1 0 0 1 0 0 0 0
DISC-BOUN 27 30 27 33 35 33 46 45 32 34 32 34 37 35 50 49
DISC-INT 25 25 25 25 25 25 31 30 27 27 27 26 26 26 33 32
BROY-TRI 60 78 60 64 98 64 48 47 27 69 27 12 12 12 30 29
BROY-BAN 88 119 88 68 | 109 68 88 87 26 76 26 11 11 11 26 25
LIN-FR 48 93 48 2 2 2 3 2 47 92 47 2 2 2 3 2
LIN-R1 - - - 12 12 12 21 20 1 9 2 11 11 11 12 11
LIN-R10 - - - 10 10 10 19 18 1 8 2 9 9 9 10 9
CHEB 44 66 44 42 66 42 53 52 * * * * * * * *

The trust region may be defined by:

T® = {z e R | ||z — W] < AW} (4.12)
It is obvious that different choices for the norm lead to different trust region shapes. The
Euclidean norm || - ||2, corresponds to a hypershpere, while the || - ||oc norm defines a
hyperbox.

Given the model and the trust region, we seek a step ||s®|| < A® that minimizes
m®¥)(s). We compare the actual reduction 6f*) = f(z®) — f(2® + s®) to the model
reduction dm®*) = m®(0) — m®(s*)). If they agree to a certain extend, the step is
accepted and the trust region is either expanded or remains the same. Otherwise the step
is rejected and the trust region is contracted. The code for this method is to be added
to the upcoming version 4.0 of Merlin Optimization Environment [114]. The basic trust
region algorithm is sketched in Algorithm 2.

Algorithm 2 Basic trust region

1. Pick the initial point and trust region parameter £(*) and A® and set k = 0.
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2. Construct a quadratic model:

1
f@®+5) =m®(s) = f(a®) 4+ s"g® + QSTB(IC)S

3. Minimize m®)(s) and hence determine |[s®*)|| < A®)

4. Compute the ratio of actual to expected reduction: r*) = %, and update the

trust region, following the strategy of J. E. Dennis, R. B. Schnabel (1996) (Appendix
A, page 338).

5. Increment k < k + 1 and repeat from 1.

Consider the bound constrained problem:
min f(z), subject to: I; < x; < u;
T

(The unconstrained case is obtained by letting u; = —l; — 00.)
Let ) be the k-th iterate of the trust region algorithm.
Hence step 3 of Algorithm 2 becomes:

1
min m®(s) = s" g™ + §STB(]“)3 (4.13)
subject to: max(l; — xgk), —A®) < 5; < min(u; — zgk), AR

In the unconstrained case, our experiments (that used a BEGS update), showed similar
performance to spherical trust region implementations. For the bound constrained case
our method is obviously superior, since it maintains the simplicity of the rectangular trust
region, where our efficient quadratic solver is applicable [155]. Note that the trust region
formed by the intersection of a sphere with the rectangular box defined by the parameter
bounds, is not easy to treat. Concluding, further numerical tests showed that our method
performs similarly to active set methods with line-search.

4.5.1 Experimental results
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Table 4.4: Unconstrained case

Test Point 1

Test Point 2

Problem TRUST TRUSTQP TRUST TRUSTQP
Name It. FC | GC | It. FC | GC It. FC | GC | It. FC | GC
ROSEN 40 47 41 37 44 38 26 31 27 27 34 28
FRE-ROT 13 40 13 14 34 14 14 40 14 14 40 14
BRO-B-S 34 43 35 34 43 35 37 50 37 37 50 38
BEA 19 20 19 18 19 18 16 19 16 18 19 20
JEN-SAM 1 7 2 1 7 2 1 17 2 1 17 2
HEL-VAL 33 43 34 30 38 30 * * * *
BARD 23 42 23 20 39 20 23 41 23 22 40 22
GAUS 7 19 7 18 8 15 15 16 13 14 14
GULF 1 2 1 1 2 1 2 22 2 2 22 2
BOX3 37 39 38 39 40 42 52 57 53 51 57 52
POW-SIN 67 71 68 88 89 94 92 97 93 71 74 72
WOOD 36 44 36 37 46 37 24 30 25 34 43 35
KOW-0OSB 33 49 33 34 49 34 41 56 41 42 62 42
BRO-DEN 37 65 37 41 69 41 42 69 42 49 83 49
OSB1 67 91 67 69 92 69 111 | 142 | 111 | 101 | 133 | 101
BIG-E6 44 62 44 46 69 46 41 57 41 40 58 40
OSB2 66 89 66 61 89 61 49 75 49 40 63 40
WATS 159 | 177 | 159 | 131 | 156 | 131 180 | 216 | 180 | 188 | 225 | 188
X-ROS 92 107 | 92 104 | 123 | 104 95 115 95 98 121 98
X-POW-S 204 | 218 | 204 | 221 | 247 | 231 254 | 274 | 254 | 204 | 221 | 204
PENI 202 | 226 | 202 | 172 | 217 | 172 57 81 57 38 61 38
PENII 203 | 241 | 203 | 270 | 300 | 271 259 | 300 | 260 | 253 | 300 | 254
VAR-DIM 15 21 15 25 31 25 23 28 23 24 29 24
TRIG 34 48 34 30 46 30 36 50 36 39 54 39
BR-A-LIN 19 36 19 18 34 18 1 1 1 1 1 1
DISC-INT 29 30 29 33 35 33 29 29 29 34 37 35
LIN-FR 3 5 4 2 3 2 3 4 3 2 3 2
LIN-R1 3 25 3 3 25 3 3 27 3 3 25 3
LIN-R10 3 24 3 28 4 5 28 5 4 27

CHEB 38 55 38 40 63 40 150 | 186 | 150 | 106 | 144 | 106
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Table 4.5: Constrained case (1)

Test Point 1

Test Point 2

Problem TRUST TRUSTQP TOLMIN TRUST TRUSTQP TOLMIN
Name It. | FC | GC It. FC | GC | FC | GC It. | FC | GC It. FC | GC | FC | GC
ROSEN 6 39 6 2 2 2 3 2 5 11 6 2 2 2 3 2
FRE-ROT 39 84 39 2 2 2 3 2 1 2 1 2 2 2 3 2
POW-B-S 11 29 11 2 2 2 3 2 13 32 13 3 3 3 5 4
BROW-B-S 8 65 8 3 48 3 37 36 6 63 6 3 3 3 4 3
BEAL 46 93 46 3 3 3 4 3 1 2 1 3 3 3 4 3
JEN-SAM 1 2 1 3 3 3 5 4 1 13 2 3 3 3 6 5
GAUS 15 16 15 7 18 8 14 15 56 73 56 9 9 9 31 32
MEYE 63 | 117 | 63 20 47 20 25 24 - - - 12 12 12 23 22
GULF 50 | 100 50 6 6 6 8 7 50 97 50 10 10 10 8 7
BOX3 5 5 6 4 4 4 5 4 7 32 7 4 4 4 5 4
POW-SI - - - 4 4 4 5 4 - - - 3 3 3 4 3
KOW-OSB 68 84 68 13 13 13 20 19 58 | 105 58 7 7 7 8 7
BRO-DEN 1 9 2 3 3 3 7 6 1 12 2 3 3 3 5 4
OSB1 66 | 115 66 250 | 339 | 250 | 19 18 - - - 11 11 11 16 15
BIG-EX 53 70 53 10 11 10 19 18 30 46 30 16 32 16 27 26
OSB2 73 91 73 33 53 33 59 58 58 76 58 14 30 14 22 21
WATS 1 0 0 0 0 0 0 0 1 3 2 21 21 21 42 41
X-ROSE 7 33 7 2 2 2 3 2 6 40 6 2 2 2 3 2
X-POW-S - - - 6 6 6 6 5 - - - 3 3 3 4 3
PEN1 2 36 2 5 5 5 6 5 1 2 1 5 5 5 6 5
PEN2 50 97 50 5 5 5 10 9 90 | 136 90 5 5 5 7 6
VAR-DIM 22 82 22 10 10 10 11 10 20 70 20 10 10 10 11 10
TRIG 61 78 61 19 36 19 33 32 53 99 53 11 11 11 13 12
BR-A-LIN 8 41 8 3 3 3 4 3 0 0 0 0 0 0 0 0
DISC-BOUN - - - 20 35 20 39 38 0 0 0 0 0 0 0 0
LIN-FR 46 90 46 2 2 2 3 2 45 89 45 2 2 2 3 2
LIN-R1 1 5 2 11 11 11 12 11 1 7 2 11 11 11 12 11
LIN-R10 1 4 2 9 9 9 10 9 1 6 2 9 9 9 10 9
CHEB 49 69 49 44 66 44 60 59 74 | 143 74 52% | 96 52 86 85
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Table 4.6: Constrained case (2)

Problem Test Point 1 Test Point 2
Name TRUST TRUSTQP TOLMIN TRUST TRUSTQP TOLMIN
1t. FC | GC | It. | FC | GC | FC | GC It. FC | GC | It. | FC | GC | FC | GC
ROSEN 24 60 24 14 17 14 17 16 26 66 26 5 5 5 11 10
FREU-ROT 16 44 16 9 9 9 28 27 42 99 42 3 3 3 5 4
BROW-B-S 7 64 7 3 44 3 15 14 14 78 14 3 3 3 4 3
BEAL - - - 8 24 8 20 19 1 2 1 2 2 2 3 2
JEN-SAM - - - 27 | 54 27 55 54 - - - 20 50 20 67 66
GAUS 9 9 9 7 18 7 14 13 49 52 41 14 28 15 33 32
MEYE 62 116 62 12 24 12 27 26 79 170 79 47 60 47 22 21
BOX3 6 35 6 4 4 4 5 4 7 35 7 5 5 5 6 5
POW-SI 63 94 63 17 37 17 45 44 - - - 10 41 10 23 22
KOW-0OSB 36 52 36 33 43 33 48 47 41 57 41 44 64 44 46 45
BRO-DEN - - - 5 5 5 10 9 - - - 5 5 5 8 7
OSB1 76 102 76 70 93 70 103 102 300 | 300 300 91 124 91 99 98
BIG-EX 31 47 31 21 38 21 31 30 28 45 28 17 34 17 36 35
OSB2 84 106 84 54 78 54 91 90 53 69 53 19 37 19 39 38
X-ROSE 34 72 34 36 53 36 41 40 7 130 77 11 40 11 42 41
X-POW-S 79 118 79 32 61 32 56 55 - - - 9 34 9 27 26
PEN1 1 2 1 7 7 7 13 12 1 2 1 5 5 5 6 5
VAR-DIM 202 258 202 1 2 1 3 2 - - - 18 19 18 37 36
TRIG 28 41 28 32 47 32 53 52 * * * * * * * *
BR-A-LIN - - - 17 35 17 34 33 1 0 0 1 0 0 0 0
DISC-BOUN 27 30 27 33 35 33 46 45 32 34 32 34 37 35 50 49
DISC-INT 25 25 25 25 25 25 31 30 27 27 27 26 26 26 33 32
BROY-TRI 60 78 60 64 98 64 48 47 27 69 27 12 12 12 30 29
BROY-BAN 88 119 88 68 | 109 68 88 87 26 76 26 11 11 11 26 25
LIN-FR 48 93 48 2 2 2 3 2 47 92 47 2 2 2 3 2
LIN-R1 - - - 12 12 12 21 20 1 9 2 11 11 11 12 11
LIN-R10 - - - 10 10 10 19 18 1 8 2 9 10 9
CHEB 44 66 44 | 42 66 42 53 52 * * * * * * * *
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CHAPTER 5

A HYBRID LOCAL SEARCH METHOD FOR
NEURAL-NETWORK TRAINING

5.1 Introduction

In this section our approach to develop a local search method suitable for supervised
training of feed-forward artificial neural networks, with one hidden layer and sigmoidal
activation functions. The resulting Sum-of-Squares objective function is minimized using a
hybrid technique that switches between the Gauss—Newton approach in the small residual
case, and Newton’s method (Section 2.4.1)in case where large residuals are detected. This
is done in the spirit of Fletcher[43] where instead of Newton’s method, a variable metric
method (BFGS)(Section 2.3.3) was preferred in order to avoid the calculation of the
Hessian matrix, which in the general case is both costly and cumbersome. In the special
case that we consider here, the Hessian matrix can be expressed analytically and calculated
efficiently by taking advantage of the properties of the sigmoidal activation function and

its derivatives.

5.1.1 Problem Description

Artificial Neural Network (ANN) training is a subject of central interest due to the
widespread involvement of ANNs in a variety of scientific as well as practical tasks, such
as data fitting, modelling, classification, pattern recognition, solution of differential equa-
tions etc. The “back—propagation” technique, that has been widely used mainly due to
the simplicity of its implementation, is far from being satisfactory. Its main shortcom-
ings, i.e. the oscillatory behavior and the sensitivity to round—off that causes premature
termination, were early recognized. As a consequence, several alternative approaches em-
ploying efficient and robust optimization methods have been tried out. Among the various
optimization techniques, Newton’s method is the one with the most desirable properties.
However it requires the computation of the Hessian matrix which may be inaccurate and
very expensive if performed numerically, or very complicated to be expressed analytically.
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Hence due to this extra burden, Newton’s method is not the preferred method in a host
of practical applications. Training ANNs is an optimization problem, where the objec-
tive function can be cast as a sum of squared terms. This structure can be exploited
to devise efficient approaches. In cases where the value of the objective function at the
minimum is close to zero, an excellent approximation for the Hessian matrix exists that
does not involve second derivatives. This is the well known “Gauss—Newton” approach.
When however the value at the minimum is far from zero then the Hessian is not well
approximated with severe consequences on the convergence of the approach. Taking the
above into account, a hybrid method has been developed by Fletcher[43], which at run
time detects, according to a simple criterion, the problem category, and switches appropri-
ately to either the Gauss-Newton or to the BEFGS Quasi—-Newton method. Quasi—-Newton
methods do not use second order derivatives; instead they maintain at each iteration a
positive definite approximation for the Hessian via an updating scheme, using gradient
information only. Nowadays Quasi-Newton are considered the most succesful general
purpose optimization methods and are being widely used. In this article we focus on the
special problem of ANN training and we use a modified Newton instead of BFGS in the
proposed framework of Fletcher[43]. We derive analytical closed-form expressions for the
Hessian of this problem and present the sigmoidal properties that can be exploited to
make the implementation efficient.

Let N(z,p) denote an ANN with input vector x and weights p. In our case this will
be a perceptron with one hidden layer with sigmoidal units and linear output activation,

ie.
ZPZ (n42)—(n+1)0 (Z Pi(n+2)—(n+1)+k Tk +pz(n+2)> (5.1)
k=1
where:
e x;, Vi=1,---,n are the components of the input vector z € R™.
e p;, Vi=1,--- h(n+ 2) are the components of the weight vector p.

e h, denotes the number of hidden units.
e 0(z) = (1 +exp(—z))~!is the sigmoid used as activation.

The training of the ANN to existing data is performed by minimizing the following “Error

function”:
| M M
f(p)ziz 552 (25, p) = yxJ? (5.2)
K=1 K=1
Useful expressions are its gradient:
M
=V,f(p) = Z rgVyrg = JIr (5.3)
K=1
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and the Hessian:

M
G = sz(p) =JVJ + Z TKVZTK (5:4)
K=1
Where J is the Jacobian given by: Jg ; = %"T’;

5.1.2 Description of the algorithm

Nonlinear least-squares problems are among the most commonly occurring and important
applications, such as neural network training. Let r : ®" — R™, with m > n be a
nonlinear mapping. The problem is:

Find a local minimum z* of

N | —

£@) = 5 () = 3@ (o)

Assuming that r;(z) is twice differentiable function then the derivatives of f are given
by:

g(z) = Vf(z) = J(z)r(z) (5.5)
G(z) =V’ f(z) = J ()] () + Y _ri(x)V?ri(z) (5.6)

i=1

where J(x) is the Jacobian matrix with elements J;; = Iri®) and G(z) is the Hessian

zj
matrix, with elements G; = %,28%. Throughout this paper we will use the notation Jj,
10T

Gy, gr and fi, for J(xy), G(xk), g(xx) and f(xzy) respectively.

Many methods have been suggested for solving such problems. In this work we only
consider Newton-like methods with line search. These methods have the form of the
minimization algorithm 5.9.

Within this framework, different methods correspond to different choices for the matrix
By.. Two well known methods which have been extensively studied and constitute the
basis for several others are the damped modified Newton method (see Section 2.4.1)for
general nonlinear optimization and the damped Gauss-Newton method(see Section ?7?)
for nonlinear least squares problems.

Combining the methods

In comparing GN and Newton methods, the GN is generally preferred for zero residual
problem (ZRP) that is when r(z*) = 0, whereas Newton-like methods are preferred for
large residual problems (LRP) or when .J; looses rank.

Usually is not known beforehand whether a problem will turn out to have small or large
residuals at the solution. It seems reasonable, therefore, to consider hybrid algorithms,
which would behave like Gauss-Newton if the residuals turn out to be small (and take
advantage of the cost savings associated with these methods) but switch to Newton like
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Algorithm 5.9 Newton-like + Line Search Framework
Let zj; be the current estimate of x*

S1. [Test for convergence] If the conditions for convergence are satisfied, the algorithm termi-

nates with z* = z; as solution

S2. [Compute search direction] Compute a non-zero vector pg, by solving

Brpk = —gk (5.7)

where By is some positive definite approximation of the hessian V2f;. This property
ensures that py is a descent direction.

S3. [Compute step length] Compute a positive scalar ay, called step length, which satisfies the
two conditions
F@e + awpr) < fr + pargi p (5.8)

\g(zk + agsi) sk < —ogi s (5.9)

p€(0,1) and o € (p,1) known as Wolfe conditions.

S4. [Update the estimate of the minimum] Set xp11 < k + agpr, k < k + 1 and go back to
step S1.

steps if the residuals at the solution are large (with the cost of approximating or computing
second order derivatives).

We use Fletcher’s criterion to switch between the GN approximation (J!J;) and a
positive definite modification of the full Hessian.

In this way the method will asymptotically take Newton steps for a LRP and GN
steps for ZRP.

Following Fletcher, the quantity

lim fk - fk+1 . 0 for the LRP,
k»o  fp 1 for the ZRP.

Therefore this quantity defines a straightforward criterion that can be used to switch the
minimizing procedure from GN to modified Newton.
We replace the second step of the minimization algorithm with the following

S2. Compute search direction.

V3 fe i fuo1— i/ fro1 <6

Set Bk =
JkTJ;C otherwise.

Solve Byipr = —gi to get the search direction pyg
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5.1.3 Hessian Calculation

Using the mapping i = I(n+2) —(n+1)+mand j =r(n+2) — (n+ 1) + s where

I,r=1...hand m,s=0...n+ 1 we can write —a2év(‘”K’p)

62N('rK7p)

OPUn+2)— (n+1)+mOPr(n+2)— (n+1)+s

in a form

Lt}

(5.10)

For simplicity we denote Y; = > )| Djn+2)—(n+1)+k%k + Pjnt2)- Using the above notation
we can derive an analytic formula for the Hessian matrix of a feedforward artificial neural
network N(z,p). The resulting formula is displayed in Table 5.1.

Table 5.1: Analytic Hessian calculation

l=r|m=0 s=0 0
s=1...n o' (Y;)xs
s=n+1 a'(Y;)
m=1...n s=0 o' (Yj)am
s=1...n pz(n+2)—(n+1)$m$30"(Yj>
s=n+1 Pin+2)—(n+1)Tm0” (Y)
m=n+1 s = o' (Y;)
s=1...n pl(n+2)—(n+1)$sU”(Yj)
s=n+1 Piint2)—(ns1)0" (Y;)
l#r|m=0...n+1]s=0...n+1 0

5.2 Experimental results

In order to compare the convergence speed of our hybrid method, to other well known
algorithms we have contacted a series of experiments using the Merlin Optimization
environment[114]. The Merlin testbed provides a set of powerful and robust minimization
routines, that guarantee its effectiveness.

We have tested our method against five other minimization procedures namely the
Quasi-Newton (Tolmin[127]), the Gauss-Newton with line search, the Hybrid BFGS-
Gauss-Newton!,the damped modified Newton and the conjugate gradients with Polack—
Ribiere updates.

The strategy that we followed was to start the minimization in the neighborhood of a
local minimum and calculate the iterations and function calls that each method performed
in order to reach it. In this way we have a clear view of the convergence rate.

In the tables (5.2) and (5.3) we present the results for a training problem with input
dimension n = 2 hidden nodes h = 5 and training data M = 100. This problem falls
into the LRP category because the minimum reached is non-zero. Each table displays the

results for two different minima of the same training problem.

1 As it was presented in the original paper of Fletcher
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On the other hand, the results for a ZRP case are shown in the tables (5.4) and
(5.5)This training problem has input dimension n = 10 hidden nodes h = 10 and training

Table 5.2: LRP: Minimum No 1

Method Iterations | Function calls
Hybrid Newton 126 357
Hybrid BFGS 335 652
Newton 719 1000
Gauss-Newton 1000 3000
Tolmin 174 252
Conjugate Gradient 1480 6000

Minimum value 18.486

Table 5.3: LRP: Minimum No 2

Method Iterations | Function calls
Hybrid Newton 20 64
Hybrid BFGS 33 100
Newton 35 a7
Gauss-Newton 150 301
Tolmin 74 107
Conjugate Gradient 7 302
Minimum value 19.266

data M = 100. Again we present two results for different local minima.

Table 5.4: ZRP: Minimum No 1

Method Iterations | Function calls | Minimum reached

Hybrid Newton 115 275 0

Hybrid BFGS 363 487 0

Newton 316 364 0

Gauss-Newton 257 296 0

Tolmin 513 697 0

Conjugate Gradient 2318 10000 1.0768
Minimum value 0

tion for each case.
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Finally we present comparative results using the well known More’s test set of func-
tions. We compared Merlin’s BFGS and Levenberg-Marquardt implementations to the
proposed hybrid approach. The number of gradient calls is equal to the number of itera-




Table 5.5: ZRP: Minimum No 2

Method Iterations | Function calls | Minimum reached
Hybrid Newton 599 1000 0.0961
Hybrid BFGS 623 713 0.0101
Newton 759 1000 2.3282
Gauss-Newton 734 1000 0.4374
Tolmin 710 1000 0.0733
Conjugate Gradient 965 4000 1.2228
Minimum value 0

5.3 Conclusion

We have presented a novel hybrid method focused in Artificial Neural Network training.
Our proposal combines the hybrid ideas of Fletcher[43] and an efficient way to compute
analytically second order derivatives.
more extensive experimentation should be contacted.

We are currently investigating online schemes for exact Hessian calculation, in order
to increase the speed of our method. We also search for a better way to distinguish
between LRP and SRP. Another extension is to calculate derivatives for alternative ANN

Our preliminary results are promising, however

architectures and use the proposed algorithm for their training process.
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Test name BFGS LEVE Hybrid Newton
Func Eval/Iter Func Eval/Iter Func Eval/Iter(Gauss Steps)
1.986 *10-16 0.000 3.958*%10-16
ROSENBROCK 80/12 10//3 16/2(1)
*10- *10-
FREUDENSTEIN AND ROTH 7'18737/11;) 16 788288//13 31 61?1908(2)
POWELL BADLY SCALED Acc Stop 1'232%;/28632 1'12(;2/1(;;378
5 b * e *10_
BROWN BADLY SCALED TITMEIT | 250 1025 o 1t
100 A
BEALE 1.315691/1;418 552;;51?700 10012‘/4152269(1)
JENNRICH AND SAMPSON zg%) 275119/'55 572/22(28)
.024*10-34 1.271*107 . *10-
HELICAL VALEY ’ 0183/2043 730—80 i 51?3?13(01355
.214*10- .214%*10- .214*10-
BARD : 142/12 ’ : 46/90 ’ 8148/17(06;3
1.128*10- .564 1.128*10-
GAUSSIAN 25?/33 : (;15/65 240%7(09;;
MEYER Ace Stop 28881;7(;1708 100?)27/71?]%15(6)
3.849*%1072
GULF 0 Iterations
The gradient criterion is satisfied
1. *10-24 2. *10-32 .718%10-22
BOX 3-D 013062/;)2 7;3/2(0) ’ ’ 171:/5(04)
7.263*%10724 1.609*%10-63 7.222%10-32
POWELL SINGULAR 712/75 367,70 1471/73(62)
1.187*10-17 0.000 1.187%10-17
WOOoD 587/62 36/7 169/18(13)
*10- 57%107 57%107
KOWALIK AND OSBORNE S L0001 /833()
Ao b DS wiay | wmn o
i o
BIGGS EXP6 ;;83;)167 167%'3/85307 Acc Stop
1. 1. 1.
OSBORNE 2 5497/9107 1717?54 466;3?1)
2.829%10-1 2. *10-
WATSON 789693 / ]0843 8823160 / 3093 48238/20(2)
1. *10-1 . 1. *10-1
EXTENDED ROSENBROCK ;9956/5065 ig/og 2?)?7/10(29)5
. *10-1 .112*10- .928%10-32
EXTENDED POWELL SINGULAR 33770;9/10476 3 952/70268 11%6%7?7%)
2.249%*10- 2.249*10- 2.249*10-
PENALTY 1 1882/1855 173/32 ’ 918/%0(?05)
*70- *10-
PENALTY 1 o hce Stop
2.674*%10-30 0.000 0.000
VARIABLY DIMENSIONED T15/35 155/14 85/3(2)
*10_ *10- < *10-
T | RN
* *10-
BROWN ALMOST LINPAR maeoG | Lo OaTeI050
*10- < *10- 2%10-¢
DISCRETE BOUNDARY PR 9'375581/130521 2'50930/190 33 829(?;/91?7)21
*10_° b *10- *10.9¢
DISCRETE INTEGRAL EQ 1'151764/1;722 3'22990/190 33 1;;2‘;;]?;;
.974 1.521 1.34
BROYDEN TRIDIAGONAL 1'?291’;78 5835/51 545/?;39(4>
2. 12. .469*10-1
BROYDEN BANDED 2122%6 4555/?1:3 3385?18(011?
LINEAR, FULL RANK i:/gzg 1283(;0 92/939(91)
LINEAR, RANK 1 108/4 20018 1587401
LINEAR, RANKL ZERO o o o
CHEBYQUAD Ace Stop 10?6-(;25(?;/1;81;133 3?513;713??;)
2.595 0.000 1.999%10-14
LARGE EXTENDED ROSENBROCK | 4. 00 /6704 406/5 10121/47(33)
* DY «
EXTENDED BEALE 5'92150/100;{16 29882629./6(?/02953 10000f:/6458895(23)
b %10 *10_
EXTENDED WOOD siese/ize | 1siajee a059)17(12)

Table 5.6: Comparative results for the More’s test set
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CHAPTER 6

PARALLELIZING DERIVATIVES

6.1 Summary

We present a software library for numerically estimating first and second order partial
derivatives of a function by finite differencing. Various truncation schemes are offered
resulting in corresponding formulas that are accurate to order O(h), O(h?), and O(h?),
h being the differencing step. The derivatives are calculated via forward, backward and
central differences. Care has been taken that only feasible points are used in the case
where bound constraints are imposed on the variables. The Hessian may be approximated
either from function or from gradient values. There are three versions of the software:
a sequential version, an OpenMP version for shared memory architectures and an MPI
version for distributed systems (clusters). The parallel versions exploit the multiprocessing
capability offered by computer clusters, as well as modern multicore systems and due to
the independent character of the derivative computation, the speed up scales almost
linearly with the number of available processors/cores.

6.2 Introduction

Estimating derivatives is a common subtask in many applications. For example the ma-
jority of optimization methods employ the gradient and/or the Hessian of the objective
function [111, 78, 53, 35, 40|, while for the solution of nonlinear systems the Jacobian
matrix [35, 40] is required.

There are several methods for calculating derivatives. Methods that manipulate sym-
bolically analytic expressions and provide the derivative in closed form [162, 102], are
exact but of limited applicability. Automatic differentiation (AD) [62] is a promising
alternative that has been rather recently developed. Given the source code that imple-
ments a function, the AD software creates the code for its derivative exploiting repeated
application of the chain rule. Although this is a powerful technique, the complexity of
the process is considerable and sometimes the gains are marginal.
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In a growing number of real world applications in science and engineering, the under-
lying functions are represented by large and complicated computer codes and the user
may find it difficult or almost impossible to follow the original program (if it is available
in source form) and develop the corresponding code for the derivative. An alternative is
offered by finite differencing, where the derivatives are approximated from function values
at suitably chosen points. The corresponding formulae may be derived in a number of
ways, and a detailed classification is given in [11]. Recently Khan and Ohba [79] reported
formulas based on Taylor expansion, suitable for highly oscillating functions and Li [89]
extended this method by employing equally and unequally spaced points to estimate
derivatives of arbitrary order.

Derivative estimation via finite differencing is simple but computationally expensive,
since it requires a number of function evaluations. Moreover there are several applications
where the time for a single function call is substantial. For example, the determination of
stable molecular conformations via “molecular mechanics” [22, 129], ab—initio quantum
mechanical structure calculations [129, 76], construction of potentials for the atomistic
simulation of materials [165, 115], the construction of nuclear forces [84], phase—shift
analysis from nucleon—nucleon scattering data [132], the solution of partial differential
equations via Galerkin type of methods [81, 82, 83| and all cases where the function’s value
is a result of a simulation. In such cases parallelism could play a key role in accelerating
the process. Assuming that we have an ample number of available processors, the cost
for the derivative calculation may become almost equal to that of a single function call if
parallel processing is employed.

In the literature there exist several software packages for estimating derivatives nu-
merically. In the GSL library [50] the authors provide a five-point rule for central dif-
ferences and four-point rules for forward/backward differences using an adaptive scheme
to achieve the desired accuracy. NAG library [121] provides subroutine DO4AAF that cal-
culates derivatives up to 14" order for a univariate function using an extended Neville’s
algorithm [96, 95]. In the book of Mathews [101] three subroutines are offered for dif-
ferentiating univariate functions, one of which takes in account upper and lower variable
bounds. The numDeriv package [51] differentiates multivariate functions using Richard-
son extrapolation and calculates the Jacobian and Hessian matrices. Package DIFF [112]
differentiates univariate functions up to the third order using Neville’s process. Mathemat-
ica [162] provides a command (ND) for differentiation up to any order, using Richardson’s
extrapolation to the limit. Package LNIDIF [157] calculates first and second order deriva-
tives having non-uniformly spaced points, out to three dimensions. IMSL library provides
subroutine DERIV [75] for calculating up to third order derivatives of univariate functions.
From the above only [51] supports multivariate functions, while [157] is limited to three
dimensional functions. Note that the implementation of these packages is sequential,
hence they cannot exploit the advantage offered by the architecture of distributed or par-
allel systems. This capability is important and that is why even automatic differentiation
packages, such as [21], have followed the parallel implementation path.
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The software described in this article, supports multivariate functions, respects vari-
able bounds, offers several prescribed accuracy levels, and is implemented using state of
the art parallel techniques in the framework of MPI [48] and OpenMP [30] platforms.
The rest of the paper is organized as follows. In Section 2 we provide derivative formulas.
In Section 3 we briefly sketch the parallelization strategy followed, and in Section 4 we
describe the interface of the subroutines included in the library. Installation instructions
are given in Section 5. Finally in Section 6 we present and analyze numerical experi-
ments that concern both the accuracy and the efficiency of the software. In the software’s
distribution extensive test runs are included.

6.3 Derivative formulae

In the following, we present derivative formulae using forward differences (FD), backward
differences (BD), and central differences (CD), for several levels of accuracy. The formulae
for FD and BD are common. FD use positive while BD use negative differencing step.
The reason for this variety is to handle the bound constraints case, i.e. when z; € [a;, b;].
Consider the case where the derivative at the bound z; = a; is desired. Then the proper
formula to use is from the forward difference class, since otherwise infeasible x—values
will be used, which may lead to numerical errors. (Imagine for example, a quantity under
the square root sign that becomes negative when z is infeasible). The software takes into
account bound constraints, in the sense that only feasible points are used to evaluate the
derivatives, and given the level of the desired accuracy, the proper formula is automatically
employed. In the case where there are no bounds or when the bounds are not violated, the
default selection is the FD formula for O(h) and the CD formulae for O(h?) and O(h*).

6.3.1 First order derivatives

The formulae of this section are used to evaluate the gradient of a scalar function and the
Jacobian of a vector function. Each formula uses a different stepsize that is determined by
approximately minimizing the total (truncation and roundoff) error [53]. In what follows
we denote by 7 the relative error in the calculation of f, that defaults to the machine
precision in absence of such information.

1. Accurate to order O(h)

h = £/npmax{1, |z|}
FD/BD formula:
df(z) _ fle+h)— f(z)
dx h

Q

(6.1)

2. Accurate to order O(h?)
h = +n'? max{1, |z|}
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(a) CD formula:
df(z) _ fle+h) - flz—h)
o~ 5 (6.2)

(b) FD/BD formula:

df(x) _Af(x+h)—3f(x)— f(z+2h)

dv 2h 6.3
3. Accurate to order O(h?)
h = 4> max{1, |z|}
(a) CD formula:
df(x) 1 ( flx+h)—flx—"h) flz+2h)— f(x—2h)
dv 3 (4 2h a 4h ) (6.4)
(b) FD/BD formula:
df(z) 1 (. fla+h)—flx) _ fle+2h)—[f(z)
W”ﬁ(“ h 50 oh .
flz+4h) — f(z)  fle+8h) - f(z) .
14 i B 8h )

The gradient of a function f(x), z € RY is calculated as:

of () _ df(:r+aei)|a:0, Vi=1,2,... N
ox; do

where ¢; is the unit vector in the i"* direction. The gradient is coded using all formulae
(6.1) to (6.5).
The Jacobian of a vector function F7(z) = (f1(z), f2(x),- .., far(z)) is given by:

I Ofi(x)  dfi(z + ae;)
te — 8:1/'Z - da ‘a:()

with t = 1,2,...,M and i = 1,2,..., N. Formulae up to O(h?) are implemented (only
formulae (6.1), (6.2) and (6.3)).

6.3.2 Second order derivatives

The library offers two options for the estimation of the Hessian elements. If the gradient
0

gi(r) = _gif)

otherwise it is estimated using function values.

is available, the Hessian may be estimated by differencing the gradient,
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Using the gradient

1. Accurate to order O(h;) + O(h;)
hy = £y/mmax{1, |z;|} for k =1,
FD/BD formula:

a2f(:13) ~ 1 gz(:r + hj@j) — gz(.f) i gj(x + hzez) — g]({lT) (6 6)
2. Accurate to order O(h7) + O(h3)
hi, = £nY3 max{1, |z|} for k =i,
(a) FD/BD formula:
O*f(x) 1 [(4gi(x+ hje;) — gi(x + 2hje;) — 3gi(x)
3= +
a.CL‘iaiEj 2 2h]
(6.7)
4gj(.%' + hzez) — gj(.fC + 2hz€z) — 3g](x)
2h;
(b) CD formula:
f@) 1 (gilz+hje;) = gila = hie;) .
8372'8{1)]' 2 2h]
(6.8)
9j(@ + hie;) — gj(x — hie;)
2h;

Using function values

1. Accurate to order O(h;) + O(h;)
hi, = 02 max{1, x|} for k =1,
FD/BD formula:

0*f(x) 1
8xi8x]~ - hzhj

(f(z + hie; + hje;) — f(x + hie;) — f(x + hje;) + f(x)) (6.9)

2. Accurate to order O(h;h;)
hi, = 0 max{1, x|} for k =i,

(a) FD/BD formula:
Off-diagonal elements:
’f(z) 1
aiﬂiaﬂf]’ - 4hzhj

+f(x + 2hie; + 2hje;)

—4f(x + hie; + 2hjej) — 4f(z + 2hie; + hje;)
—12f(x + hie;) — 12f(x + hje;)

+3f(z + 2hie;) + 3f(x + 2hje;))

(6.10)
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Diagonal elements:
1

82;(5 '~ 77 (2 (2) = f(w+ 3hies) +4f (2 + 2hies) = 5f (@ + hies))  (6.11)

)

(b) CD formula:
Off-diagonal elements:

0 f(x) 1
8.’1’,‘ia$j ~ 4hlhj (f(.l’ + hiei + hjej) + f(ill' - hiei - hjej) (612)

—f(a: + hiei - thj) - f(a: — hiei + hjej))

Diagonal elements:

*f(x) 1
ox? h?

) )

Q

(f(x+ hie;) + f(x — he;) — 2f(x)) (6.13)

(c) Mixed CD and FD(BD) formula:

) 1
aiﬁiafl}j - 4hzh]

(4 (f(@ + hie; + hjey) — f(x + hie; — hje;))

=3 (f(z + hje;) — f(z — hje;))
— (f(lE + 2h161 + hjej) — f(fl? + thez — hjej)))

(6.14)

6.4 Parallelization strategy

For the shared-memory parallelization of the Numerical Differentiation Library (NDL) we
have used OpenMP, the standard programming model for a wide range of parallel plat-
forms including small-scale SMPs and emerging multi-core processors. OpenMP defines
a portable programming interface based on directives, i.e. annotations that enclose loops
and sections of code. In addition, it provides a means of seamless parallelization of NDL,
as it allows the construction of a parallel program as a natural extension of its sequential
counterpart. To achieve optimal load balance and speedup in NDL, we exploit its inherent
nested parallelism [147], that results from the multiple function evaluations performed at
each coordinate direction. Nested parallelism is a major feature of OpenMP that allows
multiple levels of parallelism to be active simultaneously. Nowadays, several research and
commercial OpenMP compilers support more than one level of parallelism.

The parallelization of the software library on multiprocessor clusters has been based
on the master-worker programming paradigm, a fundamental approach for parallel and
distributed computing. In NDL, task parallelism is possible due to the independent
function evaluations assigned by the master to the workers. For each function evaluation,
the master provides the input vector x to the worker and receives the computed function
value f(z). The parallel version of NDL has been coded using the LWRPC library [65], a
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runtime environment which is part of the software and provides a lightweight framework
for executing task parallelism on top of MPI. LWRPC is a flexible and portable runtime
library that implements a two-level thread model (where user-level threads run on top
of kernel-level threads [23]) on clusters of multiprocessors, trying to exploit the shared-
memory hardware whenever this is available.

It provides transparent data movement and load balancing and allows for static and
dynamic scheduling of tasks. Furthermore, it supports multiple levels of parallelism and
enables the same code to run efficiently on both distributed and shared memory multi-
processors.

In LWRPC, a task is represented with a data structure, called work descriptor. Tasks
are distributed to the available nodes and eventually executed on top of user-level threads.
The same approach has also been followed for the master which is the primary task. An
MPI process runs on each cluster node and utilizes one or more kernel threads that ex-
ecute these tasks. Moreover, task submission and management is performed completely
asynchronously by means of a special per-node server thread. There are ready queues
where tasks are submitted for execution. The submission of a work descriptor to a local
queue is always performed through hardware shared memory, otherwise appropriate mes-
sages are sent to the server thread of the remote node. Each work descriptor (i.e. task) is
associated with an owner node. If a task finishes on its owner node, its parent is notified
directly through shared memory. Otherwise, a message is sent to the owner node and this
notification is performed by the server thread of that node.

When the application is executed on shared memory machines, the runtime library,
and accordingly the application, operates exclusively through the available hardware.
However, whenever a task is inserted on a remote node, its data has to be sent explicitly. In
this case, we associate each work descriptor with the arguments (data) of its corresponding
function, similarly to the Remote Procedure Call protocol [145]. For each argument,
the user specifies its MPI data type and number of elements, an intent attribute, and
optionally a reduction operator. These MPI-specific details are the only references made
to message passing programming at the user level. Note that, the explicit data movement
is performed transparently to the user.

The parallel routines that NDL exports to MPI programs are designed to be called
by all MPI processes that participate in the program execution, similarly to the MPI
collective communication routines. This design adheres to the SPMD (Single Program
Multiple Data) execution model that MPI supports by default. When an NDL parallel
routine is invoked, the execution model switches to master-worker and the thread of the
process with rank 0 becomes responsible for distributing the tasks to the workers and
gathering the results. In NDL, each task corresponds to a function evaluation at a given
point. Before returning from the library call to the user program, the execution model
switches back to SPMD and the results are broadcast from the master to the rest of the
MPI processes. This is schematically illustrated in Fig. 6.1.

In the case of second order derivatives we use a nested parallelization model that is
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Master-Slave

Figure 6.1: Library’s Programming Model

provided by the LWRPC library. By nested we mean that each element of the Hessian is
calculated, as a first level job, by a single worker. That leads to (N? + N)/2 first level
jobs. Every first level job is responsible to perform function/gradient evaluations, second
level jobs, according to the desired accuracy and the bounds. By inspecting the formulae
of the previous section, it is readily deduced that the required number of second level jobs

ranges between two and nine.

6.5 User interface

We have implemented subroutines for calculating gradients, Hessians and Jacobians. In all
cases we provide serial, OpenMP—parallel and MPI-parallel subroutines. Every subroutine
has a standard and an advanced interface. The advanced interface allows the user to
specify bounds on the variables and an estimate for the relative accuracy of the function
evaluation. It also returns the number of function calls, error codes and optionally issues
verbose output.

6.5.1 Naming conventions

We use the following naming convention for the subroutines:
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xNDLyz ( arguments )
where x, denotes the type of parallelization and can be:
empty: for the serial version
O: for the OpenMP—parallel version
P: for the MPI-parallel version
y denotes the order of accuracy and can be:
G: for the gradient
H: for the Hessian
J: for the Jacobian
z denotes the interface type correspondingly and can be:
empty: for the standard interface
A: for the advanced interface

where by empty is meant that the symbol is missing.

For example subroutine PNDLGA stands for the MPI-parallel code (P) for the gradient
calculation (G) using the advanced interface (A). Also, NDLJ is the serial subroutine to
calculate the Jacobian matrix using the standard interface.

6.5.2 Common arguments

The provided subroutines share a number of common arguments which are described
bellow.

X Array containing the point at which the calculation is desired.

N The dimensionality of the function.

XU

(input)
(input)

XL (input)  Array containing the lower bounds on the variables.
( ) Array containing the upper bounds on the variables.
(input)

FEPS The user’s estimate for the relative precision of the function evalu-

ation. If FEPS=0 it is reset to the machine’s precision.

IORD (input) Requested order of accuracy. Possible values for gradients are 1, 2,
4 and for Hessians and Jacobians 1, 2.

IPRINT  (input)  Controls the amount of printout from the routine. Note that all
output appears on the standard output device. Possible values
are:
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w N = O

No printout at all.
Fatal error messages are printed.
Warning messages are printed.

Detailed information is printed (the formula that was
used, differentiation steps and the resulting derivatives
vector).

NOC  (output) Number of calls to the function being differenciated.

IERR  (output)  Error indicator. Possible values are:

w N = O

W

No errors at all.
Improper IORD value.
The supplied N is less than 1.

Some of the supplied upper bounds (XU) are less than
the corresponding lower bounds (XL).

Some of the supplied variables are out of bounds.

The value of FEPS is incorrect (less than 0 or greater
than 1).

The supplied IPRINT is incorrect.

N exceeds the maximum allowed value (MAXN). MAXN
must be increased appropriately and the library must be
reconfigured.

There is not enough internal storage. MAXN must be
increased to match the number of squared terms (M) and
the library must be reconfigured.

The number of squared terms (M) is less than 1.

6.5.3 Gradient calculation

Given a multidimensional function (F), these routines return the gradient vector (G) by

applying a numerical differentiation formula according to the desired order of accuracy

(IORD). The user provided function F must be declared as:

FUNCTION F ( X, N )

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION X(N)

Standard interface:

SUBROUTINE NDLG (F,X,N,IORD,G)

Advanced interface:

SUBROUTINE NDLGA (F,X,N,XL,XU,FEPS,IORD,IPRINT,G,NOC,IERR)
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F  (input)  The function to be differentiated.

G (output)  Array containing the resulting gradient vector

6.5.4 Jacobian calculation

Given a multidimensional function that is written as a sum of squared terms (residuals):

these routines return the Jacobian matrix (FJ) by applying a numerical differentiation
formula according to the desired order of accuracy (IORD). The user provided subroutine
must declared as:

SUBROUTINE RSD ( X, N, M, F )
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N), F(M)

Standard interface:

SUBROUTINE NDLJ (RSD,X,N,M,IORD,FJ,LD)

Advanced interface:

SUBROUTINE NDLJA (RSD,X,N,M,XL,XU,FEPS,IORD,IPRINT,FJ,LD, NOC,IERR)

RSD  (input) A subroutine that returns the residuals.
M (input)  The number of squared terms.

LD  (input) Leading dimension of matrix FJ.

FJ  (output) The Jacobian matrix. J;;(z) = ag—fw
J

6.5.5 Hessian calculation
Using gradients

Given a routine (GRD) that evaluates analytically the first partial derivatives of a func-
tion, these routines return the Hessian matrix (HES) by applying a numerical differen-
tiation formula according to the desired order of accuracy (IORD). The user provided
subroutine GRD must be declared as:

SUBROUTINE GRD ( X, N, G )
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N), G(N)
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Standard interface:

SUBROUTINE NDLHG (GRD,X,N,IORD,HES,LD)

Advanced interface:

SUBROUTINE NDLHGA (GRD,X,N,XL,XU,FEPS,IORD,IPRINT,HES,LD,NOC,IERR)

GRD  (input) A subroutine that returns the gradient vector (G), given the values
of the variables (X).

LD  (input)  Leading dimension of matrix HES.
HES (output) Array containing the resulting Hessian matrix. Note that only the
lower triangular part (plus the diagonal elements) is returned.
Using function values

Given a multidimensional function (F), these routines return the Hessian matrix (HES)
by applying a numerical differentiation formula according to the desired order of accuracy
(IORD). The user provided function F must be declared as:

FUNCTION F ( X, N )
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N)

Standard interface:

SUBROUTINE NDLHF (F,X,N,IORD,HES,LD)

Advanced interface:

SUBROUTINE NDLHFA (F,X,N,XL,XU,FEPS,IORD,IPRINT,HES,LD,NOC,IERR)

F  (input)  The function to be differentiated.
LD  (input)  Leading dimension of matrix HES.

HES (output)  Array containing the resulting Hessian matrix. Note that only the
lower triangular part (plus the diagonal elements) is returned.

6.6 Installation instructions and sample program

In this section we describe in brief how to configure and install the software and we provide
a basic sample program for the MPI—parallel case.

6.6.1 Installation instructions

The software is distributed as a tar.gz file and can be uncompressed and extracted by

issuing
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gunzip ndl-1.0.tar.gz tar -xvf ndl-1.0.tar.gz

A directory called nd1-1.0 will be created with three subdirectories serial, openmp and
mpi containing the serial, OpenMP-parallel and MPI-parallel distributions respectively.
Any of the three distributions can be installed by entering the corresponding directory
and executing the following steps:

1. Configure the package:
./configure

In the case of OpenMP one must specify the Fortran compiler with the appropriate
options. For example:

./configure F77=gfortran FFLAGS=-fopenmp ./configure F77=ifort
FFLAGS=-openmp

Other configuration choices include the specification of the installation directory:
./configure --prefix=<install-dir>
the definition of the desired C and Fortran compilers:
./configure CC=<path-to-mpicc> F77=<path-to-mpif77>
and the definition of the maximum problem dimension:
./configure --with-maxn=<num>
Further help for the configuration parameters can be obtained by entering;:
./configure --help
2. Build the library:
make

For each distribution a library file will be created, 1ibndl.a for the serial version,
libpndl.a for the OpenMP-parallel version and 1ibondl.a for the MPI-parallel
version. This step also compiles the provided test run code.

3. Install the library:
make install

By default the NDL library files will be placed in /usr/local/lib.
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6.6.2 Sample program

We present a sample program (file osample.f) that uses the OpenMP version of our
library in order to calculate the gradient of the function f(x1,22) = x1 cos(xa)+ 22 cos(xy)
using order O(h?).

program otest

implicit double precision (a-h, o0-z)
parameter (n=2)

dimension x(n), g(n)

external f

C
x(1) = 1.040
x(2) = 1.1d0
iord = 2
call ondlg ( f, x, n, iord, g )
print *, ’point ’, (x(i), i=1, n)
print *, ’gradient ’, (g(i), i=1, n)
end
G

function f(x,n)

implicit double precision (a-h, o-z)
dimension x(n)

f = x(1)*cos(x(2))+x(2)*cos(x(1))
end

The above sample program can be compiled and executed using:

$ gfortran -o osample osample.f -londl $ export OMP_NUM_THREADS=2
$ ./osample

Command export OMP_NUM_THREADS=<num> sets the number of worker threads in the
OpenMP runtime library [30]. The MPI version of the above a sample program is pre-
sented bellow (file psample.f).

program ptest

implicit double precision (a-h, o0-z)
parameter (n=2)

dimension x(n), g(n)

external f

include ’mpif.h’

call mpi_init(mpierror)
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x(1) = 1.0d0
x(2) = 1.1d0
iord = 2

call pndlg ( f, x, n, iord, g )

C
call mpi_comm_rank (mpi_comm_world,irank,ierr)
if (irank.eq.0) then
print *, ’point ’, (x(i), i=1, n)
print *, ’gradient ’, (g(i), i=1, n)
endif
c
call mpi_finalize(mpierror)
end
G

function f(x,n)

implicit double precision (a-h, o0-z)
dimension x(n)

f = x(1)*cos(x(2))+x(2)*cos(x(1))
end

The above sample program can be compiled and executed using:

$ mpif77 -o psample psample.f -lpndl $§ mpirun -n 2 ./psample

6.7 Performance results

In Table 6.1 we report the relative error defined as:

k
o _ 10— £

T max(L, [ (2)])

where f#)(z) is the exact k*" order derivative and f;’;) is a finite difference approximation
to it. We used the five test functions listed in the first column. The relative error has been
calculated at eleven equidistant points in [—1, 1]. In columns 2—4 we report the maximum
(among these points) err®, for the O(h), O(h?) and O(h?*) formulae. Correspondingly in
columns 5-6 we report the maximum err® for the O(h) and O(h?) formulae.

In order to measure the performance of the parallel-NDL implementation we have con-
ducted extensive tests for both OpenMP and MPI-parallel versions. We have performed
two sets of experiments:

F1: We used a 500-dimensional test function (without imposing bounds on the
variables) and we calculated the gradient with O(h*) precision. That leads to a
total of 2000 function evaluations. We have arranged for function evaluation time
to be 1 ms, 10 ms and 100 ms respectively, via appropriate artificial delays.
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Table 6.1: Relative errors in several example functions.

First order Second order
Function O(h) O(h?)  O(hY) O(h) O(h?)
sin x 1.5E-08 2.0E-11 1.1E-13 1.0E-05 5.3E-09
e’ 2.0E-08 2.4E-11 1.9E-13 1.4E-05 5.4E-09
2?sinz 4.7E-08 1.0E-10 6.7E-13 6.0E-05 2.5E-08

re % +sin3x 1.5E-07 2.2E-10 5.1E-12 2.2E-04 1.2E-07
27+ 225 — 5x  5.3E-07 2.7E-09 6.2E-11 8.2E-05 1.4E-07

E2: We used a 20-dimensional test function (without imposing bounds on the vari-
ables) and we calculated the gradient with O(h*) precision. In this setting the total
number of function evaluations is 80. The computational cost for each function call
was again set to be 1 ms, 10 ms and 100 ms respectively.

We measure the speedup s defined as s = T7/T),, where T; is the time required for

execution on one processor and 7, is the real time required when running on p processors.

6.7.1 MPI-parallel

Our experiments are performed on a 200 node Hewlett-Packard XC cluster system. Each
node has 2 AMD Opteron—248 processors and 4GB main memory, while the nodes are
interconnected with Gigabit Ethernet.

In Fig. 6.2 we present the results from experiment E1. The solid line represents the
ideal speedup. For the 1 ms and 10 ms test functions where the communication times are
comparable to execution times, the speedup is reduced to approximately 35% and 70%
away from the ideal, while the speedup for the 100 ms function almost coincides with the
ideal as it was expected. The results for experiment E2 are presented in Fig. 6.3, where
similar behavior is observed. The steps in the curves for the 10 ms and 100 ms functions
are due to the way the required 80 function evaluations are distributed to the available
processors. If the number of processors p divides exactly the number of tasks n;, then all

n nt

p processors are employed for " cycles. Otherwise p processors are fully utilized for [7]

cycles, and one more cycle is needed employing n; mod p processors.

6.7.2 OpenMP—parallel

The same experiments were conducted on a shared-memory multiprocessor system equipped
with 4 Dual-Core 3.0GHz Intel Xeon processors and 4GB main memory, running 64-bit
Debian Linux. In Fig. 6.4 we present the results only for the 1 ms test function since the
others (10 ms, 100 ms test functions) almost coincide with the ideal speedup. We notice
a 19% reduction from the ideal speedup when N = 20.
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Figure 6.3: Speedup for experiment E2 (N = 20)

6.8 Test run description
Extensive test runs for the serial and parallel versions of the library were performed and

are available with the distribution. The user is advised to repeat these runs in order to
validate the installation. The relevant files are located in a subdirectory named test.
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CHAPTER 7

SURVEY ON STOCHASTIC (GLOBAL
OPTIMIZATION

The global Optimization problem (P) can be stated as:

min f(z)
subject to x € S

where f is a continuous function on S and S C R"™ is a compact body. Some of the
methods we will describe require additional assumptions on the objective function f or
the feasible region S;we will note them wherever necessary. We will not consider very
specialized subclasses of problems. However, under these weak conditions we know that
the optimal solution value

f*= max f(x) (7.1)
exists and is attained, i.e. the set
S*={zxeS: flx)=f"} (7.2)

is nonempty.

It is well-known that the global optimization problem (P) is inherently unsolvable in a
finite number of steps. This can be verified as follows|[]. For any continuously differentiable
function f, any point z and any neighborhood o of x, there exists a function f’ such that
f+ fis continuously differentiable, f+ f" equals f for all points outside B, and the global
optimum of f + f"is o (f + f’ is an indentation of f). Thus, for any point x, one cannot
verify with certainty that it is not the global optimum without evaluating the function in
at least one point in every neighborhood o of x. As o can be chosen arbitrarily small, it
follows that any method designed to solve the global optimization problem would require
an unbounded number of steps. Thus, generally, we shall not be able to find a point in S*
in finite time. Usually we will therefore consider the global optimization problem solved

if we have found a point in

B (S*)={x € S: ||z —x"|| <€ for some z* € S*} (7.3)
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or in the level set

Se={xeS: f(x)>f"—e} (7.4)

for some € > 0 [Dixon].

7.1 Introduction

In this chapter we will discuss stochastic methods for solving the following general global
optimization problem (P). Stochastic methods will be understood to be methods that
contain some stochastic elements. This means that either the outcome of the method
is itself a random variable (see Sections 7.3, 7.2 and 7.4), or the objective function is
considered to be a realization of a stochastic process. Therefore, we will have to sacrifice
the possibility of an absolute guarantee of success. Instead, we will usually aim at proving
that, as the effort increases to infinity, an element of B.(S*) or S will be found with
probability one.

Section 7.3 discusses the so-called two-phase methods, i.e. methods which use both
random sampling (the global phase) and local optimization (the local phase). In Section
7.2 random search methods are described, which leads naturally to the class of Simulated
Annealing algorithms in Section 7.4.

7.2 Random Search Methods

The class of random search methods consists of algorithms which generate a sequence
of points in the feasible region following some prespecified probability distribution, or
sequence of probability distributions. The most basic algorithms from this class proceed by
generating points from a single probability distribution, i.e. the points are independently
and identically distributed random variables. Alternatively, the distribution from which
a point in the sequence is generated can be updated adaptively, i.e. depending on the
iteration number and on previous iteration points.

The algorithms discussed in this section are of a conceptual nature, in the sense that at
this point there does not exist an efficient implementation of these algorithms. However,
the theoretical results that can be obtained for these algorithms are interesting in itself.
Moreover, as we will see, they have a potential for inspiring (or theoretically supporting)
more practical algorithms for global optimization.

7.2.1 Pure Random Search

he simplest algorithm from the class of random search methods is the Pure Random
Search algorithm, which consists of generating a sequence of i.i.d. uniform points in the
feasible region S, while keeping track of the best point that is found. This algorithm offers
a probabilistic asymptotic guarantee in the sense that the global maximum will be found
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with probability one as the sample size grows to infinity. It is interesting to note that
this convergence result continues to hold if we replace the uniform distribution by any
distribution whose support has a nonempty intersection with S. An interesting question is

Algorithm 7.10 Pure Random Search (PRS)
Step 0. Setn =1, yg= —oc.

Step 1. Generate a point x from the uniform distribution over S.

Step 2. If f(z) > yn_1, then set y, = f(z) and z,, = x. Otherwise, set y,, = yn_1
and x,, = x,_1.

Step 3. Increment n and return to Step 1.

whether this algorithm has any advantage over its deterministic counterpart grid search,
in which the function is evaluated in each point of a regular grid over S. One obvious
advantage of PRS is that it can be implemented adapiively, i.e. the number of points
generated does not need to be decided in advance. Another advantage is that the term
regular grid is not well-defined for some arbitrary number of points =- over an arbitrary
set S. The two algorithms have been more extensively analyzed by e.g. [Anderssen and
Bloomfield]. The result of their analysis is that the points of the random sample cover S
more efficiently (according to some probabilistic criterion) than grid points do, at least if
the dimension of the problem is not too low.

7.2.2 Random Search

Let {52, be a sequence of probability distributions on R?. Then consider the following
conceptual algorithm: The map D with domain S x R¢ and range S satisfies the following

Algorithm 7.11 Random Search

Step 0. Set n =0 and choose zy € S.
Step 1. Generate ¥, from the distribution p,.

Step 2. Set x,11 = D(x,, ynt1), increment n and return to Step 1.

condition:
f(D(z,y)) < f(z) and if y € S, f(D(z,y)) < f(y)) (7.5)

This condition ensures that the sequence {f(z,)}°, is monotone increasing with proba-
bility one. In fact, if:

o0

T = na)) =0 (7.6)

n=0
for all sets A that ¢(A) > 0, this sequnce will converge to f* with probability one. If
the random search algorithm is adaptive, i.e. if we allow the distribution u, to depend
on the values of xy, ..., x,, then the convergence issue becomes more complicated. In the
remainder of this section we will discuss two classes of adaptive random search algorithms
for which convergence to the global optimum is obvious.
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7.2.3 Pure Adaptive Search
The Pure Adaptive Search (PAS) algorithm differs from the PRS algorithm in that it

forces improvement in each iteration. Because of this feature the PAS algorithm fits in
the general class of random search algorithms discussed above. In PAS, an iteration point
is generated from the uniform distribution on the subset of points that are improving with
respect to the previous iteration point. More formally, the algorithm reads: [Zabinksy

Algorithm 7.12 Pure Adaptive Search (PAS)

Step 0. Set n =0 and choose 1y = co.
Step 1. Generate ,,; uniformly distributed in S,11 ={z € S: f(x) < y,}.
Step 2. Set y,41 = f(Zpe1). Increment n and return to Step 1.

and Smith] provide a theorem that states that for a large class of global optimization
problems with convex feasible regions in R?, exists an upper bound on the expected
number of iterations to achieve a solution arbirtary close to a global optimum.

Unfortunately, in practice, we encounter the following difficulties with directly imple-
menting the Pure Adaptive Search algorithm:

1. Constructing the improving region
Sn={z €5: f(x) > f(zn-1)}

2. Generating a point uniformly distributed in S,,.

One way to avoid these difficulties is by using the acceptance-rejection method for gen-
erating points in S,. That is, generate points uniformly in the feasible region S until we
find a point that is in S,.

7.2.4 Adaptive Search

In the Adaptive Search framework, points should be generated from the Boltzmann dis-
tribution 7, with density function

gr(z) oc e/ @/T

where T is a “small” positive number. This is appropriate because for small T" the distri-
bution 7, will“concentrate near the global maximum”. An important advantage of this
algorithm is that sampling is done from the feasible region S, instead of from a nested
set of smaller level sets of f. This avoids the two difficulties of PAS listed in the previous
section. The price that has to be paid for this is that the distribution from which we have
to sample changes during the course of the algorithm.

The number of trial points necessary in Step 1 can be influenced by an appropriate
choice of the parameter T in Step 2 (where this choice will depend on the particular
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Algorithm 7.13 Adaptive Search (AS)
Step 0. Set n =0, Ty = oo and yy = o0.

Step 1. Generate x from the distribution 7, over S. If f(z) < y,, set x,41 = .
Otherwise, repeat from Step 1.

Step 2. Set y,411 = f(x,41) and set the parameter T, .1 = 7(y,+1), where 7 is an
R*-valued nonincreasing function. Increment n and return to Step 1.

shape of the distributions 7r). In accordance with the usual convention we will refer
to the parameter T as the temperature parameter. A particular choice of temperature
paB rameters {7},,—o} is then called a cooling schedule. The proposed cooling schedule
for Adaptive Search is the following: given the current best function value vy, choose the
temperature 7}, in such a way that a random variable generated from 7, has a better
function value than y, with probability at least 18c. In this case the expected number of
points that have to be generated at each temperature is at most ﬁ This analysis leads
to the cooling schedule: o
Y

m(y) = D) (7.7)
where 71 _o(v, 1) is the critical value of a gamma distributed random variable with pa-
rameters v and 1 at level 1fa.

7.2.5 Controlled Random Search (CRS)

There are several versions of this method that is based upon heuristics. We describe here
a modification of Price’s [128] algorithm, similar but not identical to the one described in
[17]. The method seeks for one global minimum in a given domain S. Here the feasible
domain S is considered to be a rectangular hyperbox. The algorithm has been designed for
problems where the objective function is affected by the presence of noise and its gradient
is not analytically available. Such problems, in the case of local optimization are treated
with reasonable success by the irregular Simplex method [109], described in section 2.2.2.
CRS is inspired in part by the tactic followed in that method, i.e. maintaining a population
of points and performing operations such as reflection with respect to a centroid, etc.

Note that if more than one global minima exist, this method will locate only one of
them.

The steps of the procedure are given by: CRS is simple to code and hence it has been
frequently used in several applications. There exist several versions of the algorithm in
the literature; however the main idea is common to all of them and no major performance
differences have been observed.
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Algorithm 7.14 Controlled Random Search
Step 0. Set M >d+1,e=10"° w = 1000
Set k=0, S = {a, 2k, ... 2k}
Evaluate fF = f(zf) fori=1,2,...,, M
Step 1. f*F = max{fF}, and let the corresponding point be denoted as x

max
k k-
TTLZTL mn*

It f rlﬁzam - mm

Step 2. Choose at random N + 1 points {zf
Calculate the weighted centroids:

N N
k k., k k kog(ok
szzwj%ja fwzzwjf(xij>
j=1

k
max"*

= min{f’“} and the corresponding point is denoted as z
< e, polish zF . via a local search procedure and STOP.
zy } from S*.

107 ,Ll,...,

=1

~.

where
k k E )2
U)k _ n; nk _ 1 d)k _ w( mazr fmzn)
T ! T k ) - 0
’ Zj\;l nf ! f(mzj) mzn ¢k T?LLMB - fmm

Calculate a trial point z*as:

fi) = fu
maw_fr]fun—i_gék

where AF = 2ck —af if fi < f(al) and AE = 22F — ¢ if fE > f(ak).
If 7% ¢ S repeat Step 2.
Compute f(TF).
Step 3. 1If f(z*) > f* _ then
Calculate the success rate (the fraction of function evaluations

+ Ak

that led to a new lower upper bound).
If success rate > 50% then
Set S¥1 = Sk k =k + 1 and goto Step 2.

k k

Calculate y* = = +2’N, compute f, = f(y")
If f, > fF .. then
Set S¥*1 = Sk k =k + 1 and goto Step 2.
Set SET = Sk J{y*} — {2k .}, k =k + 1 and GOTO Step 1.
Step 4. Set Skt =Sk J{z*} — {2k .}
Increment: k£ =k + 1 and goto Step 1.

7.3 Two-phase Methods

In this section we will discuss stochastic methods in which two phases can be distinguished.
Firstly, we have a global phase, in which the function is evaluated in a number of randomly
sampled points. Secondly, in the local phase these sample points are manipulated, e.g.
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by means of local searches, to yield a candidate global minimum. Most of these methods
can be viewed as variants of the so-called Multistart algorithm. The global phase of this
algorithm consists of generating a sample of points from a uniform distribution over S.
In the local phase a local search procedure L is applied to each of these points, yielding
various local minima. For a more extensive review of two-phase methods we refer to
[Rinnooy Kan and Timmer|. Some essential properties of the local search procedure L
will be presented in Section YY. The careful selection and implementation of the local
search plays a very important role in two-phase methods and became a basic direction of

our research.

7.3.1 Multistart

The simplest way to make use of a local search procedure L occurs in a method known as
Multistart. This method is obviously much more attractive than Pure Random Search.

Algorithm 7.15 Multistart
Step 0. Setn=1, yg= —oc.

Step 1. Generate a point x from the uniform distribution over S and apply L to
x yielding 2.

Step 2. If f(2') > y,_1, then set y,, = f(2') and z, = 2’. Otherwise, set y, = yn_1
and x,, = x,_1.

Step 3. Increment n and return to Step 1.

However, the procedure is still lacking in efficiency. The main reason for this is that it will
inevitably find each local maximum several times. Since local searches are the most time
consuming part of the procedure, L should ideally be invoked no more than once in every
region of attraction, where the region of attraction of the local maximum z is defined as
the set of points in S starting from which L will converge to z*. The clustering methods
and the Multi Level Single Linkage algorithms discussed in the following two subsections
have been designed with this objective in mind.

7.3.2 Clustering Methods

The basic idea behind clustering methods is to start from a uniform sample from S, to
create groups of mutually “close” points, and to start L. no more than once in each of those
groups. Two ways to create such groups from the initial sample have been proposed. The
first, called reduction [Becker and Lago]), only retains a fraction y of the sample consisting
of the points with the highest function values. The second, called concentration [Torn],
transforms the sample by allowing one or a few steepest descent steps from every point.

The basic framework for identifying clusters of points that result from the sample
obtained by one of the above methods is always the same. Clusters are formed in a
stepwise fashion, starting from a seed point, which may be the unclustered point with the
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highest function value or the local maximum found by applying L to this point. Points
are then added to the cluster through application of a clustering rule.

In the remainder we will always use the reduction method as a starting point for
clustering. The reason for this is that with this method, within each cluster the points will
be uniformly distributed. Moreover, the clusters will correspond to connected components
of level sets. These two properties provide a powerful tool in determining statistically
correct clustering rules. The two most popular clustering rules are either density clustering
or Single Linkage clustering.

Density Clustering

A stepwise description of the density clustering algorithm is: The critical distance r;(x),

Algorithm 7.16 Density Clustering
Step 0. Set k=1, X*=0.
Step 1. Generate = points, Z(x—in+i; - - -, Xk, from the uniform distribution over

S, and determine the reduced sample consisting of the ykN best points
from the sample =1, ..., 2xn. Set © =1 and j = 1.

Step 2. If all reduced sample points have been assigned to a cluster, go to Step
4. If j < |X*| then choose the j-th local minimum in X* as the next seed
point and go to Step 3. If j > |X*|, then apply L to the unclustered
reduced sample point  with the lowest function value. If the resulting
local maximum z* is an element of X*, then assign 7 to the cluster initiated
by z* and return to Step 2. If z* ¢ X*, then add z*, to X* and let z* be
the next seed point.

Step 3. Add all unclustered reduced sample points which are within distance r;(z*)
of the seed point z*, to the cluster initiated by z*. If no point has been
added to the cluster for this specific value of r;(xz*), then increment j and
return to Step 2, else increment ¢ and repeat Step 3.

Step 4. Increment k£ and return to Step 1.

is chosen by [Rinnooy Kan and Timmer] to be equal to

1/d
' gm(m)) 8)

where H(x) denotes the Hessian at the point z and ( is some positive constant. The idea
behind this implementation is that the level set of the function f in the neighborhood of
a local maximum is approximated by an ellipsoid, or, in other words, the function f is
locally approximated by a quadratic function. Hence, the success of the method depends
on how well this approximation is. A method which does not a priori fix the shape of the
clusters is the Single Linkage clustering method.
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Single Linkage Clustering

In the Single Linkage method [Rinnoy Kan and Timmer] the clusters are formed sequen-
tially. Again, each cluster is initiated by a seed point. After a cluster C' is initiated, we
find an unclustered point x such that

d(z,C) = min ||z —y||

is minimal This point is than added to C, after which the procedure is repeated until d(x,
C) exceeds some critical value r*. Experiments suggest that Single Linkage clustering ap-
proximates the level sets more accurately than density clustering. A stepwise description
of the Single Linkage method is: The suggested value for the critical distance in Step 3

Algorithm 7.17 Single Linkage
Step 0. Setk=1, X*=0.
Step 1. Generate = points, Z(x—in+i; - - - , Xk, from the uniform distribution over

S, and determine the reduced sample consisting of the ykN best points
from the sample =1, ... xxn. Set j = 1.

Step 2. If all reduced sample points have been assigned to a cluster, go to Step
4. If j < |X*| then choose the j-th local minimum in X* as the next seed
point and go to Step 3. If j > | X*|, then select as the next seed point the
unclusterd reduced sample point = with the lowest function value. Apply
L to 7 to find a local maximum z*, and add z*, to X*

Step 3. Add all unclustered reduced sample points which are within distance r; of
a point already in the cluster initiated by the seed point selected in Step
2 to the cluster. Increment j and return to Step 2.

Step 4. Increment k£ and return to Step 1.

is:

" 1/d
Ty = L (F(l + 1y -m(S)- M) (7.9)

N kN

his choice guarantees that, if ( > 2, the probability that a local search is started by Single
Linkage in iteration k tends to zero with increasing k. Moreover, if ( > 4, then, even if
the sampling continues forever, the total number of local searches ever started by Single
Linkage is finite with probability one. This attractive property theoretically proves the
efficiency of the method in terms of number of local searches performed. However, in the
process we lost the asymptotic guarantee of success. While Single Linkage is guaranteed
to find a local optimum in every connected component of the level set

{res:flx) 2y}

where ., is chosen in such a way that this level set has an ¢—measure .
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Typical Distance Clustering

A clustering procedure may form clusters of points by measuring the distanceof a candi-
date cluster point from the estimated center of the cluster. Thisdistance is checked against
a threshold and a decision is made accordingly.This threshold should be chosen properly
and depends on the problem under consideration. Hence to avoid the introduction of ad
hoc threshold values, an adaptive threshold called “typical distance” (r;) is defined as:

M

Z X, — L xz (710)

=1

Here x; are starting - points for the local search procedure L, and M is the number
of the performed local searches. The main idea behind equation (7.10) is that after a
number of iterations and a number of local searches the quantity r; will be a reasonable
approximation for the mean radius of the regions of attraction. To see this note that
if we denote by M; the number of times that the local search procedure discovered the
minimizer z;, then a mean radius for the region of attraction related to z; may be defined

as:
M,

1
RZZM;

where { (]), j=1,. l} ={z;, i=1,...,M} N A(x]), ie. L (xl(j)) = zj. Since by

definition M = >"," | Ml, where w is the number of local minima discovered so far, a mean

() *

(7.11)

radius may be defined as:

w M,
<R>= Z—Rz Zzl‘wl(j)—ﬁ

=1 j=1

(7.12)

Comparing eqgs. (7.10), (7.11) and (7.12), it follows that r, =< R >.
A point z is considered to be a “start point” if none of the following conditions is satisfied:

e There is an already located minimum z that satisfies the conditions

L (z=2)"(Vf(z) = V[f(z) >0

2. |z — 2] <ming; iz |z — 24|, 2 € X¥, z; € X*.
e 1 is near to another point y € V that satisfies the conditions
L |z —y|<m.

2. (x—y)"(Vf(x)=Vfy) >0

Hessian-based ISO-OCT Clustering

This method was proposed from [Tu and Mayne] and uses Hessian information to identify
clusters around minima. The authors intuition is based that in the neighbourhood of
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Algorithm 7.18 Typical Distance Clustering
Step 0. Set k=1, X*=0.
Step 1. Set V=T =0.
Sample N points via the Double Box procedure and add them to 7.
For all x € T do
Check if x is a valid starting point and if so add it to V.
Step 2. If % < % Then
N = min (N + &, NMAX)
Step 3. For all x € V do:
If = is a start point Then

Start a local search y = L(x)
Compute the typical distance r, using equation (7.10).
Add y to X~

Step 4. Increase k and repeat from Step 1.

local minima, the objective function is convex and any two isolated local minima must
be separated by a region where the function is non-convex, that is, the Hessian matrix is

either negative definite or indefinite.

(b) Initial sample (c) Sample with positive definite Hessian

Figure 7.1: An illustration of Hessian information

A description of this method is given in Algorithm7.19:
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Algorithm 7.19 Hessian-based [SO-OCT Clustering
Step 0. Initialize M, n, \.
Step 1. Generate = random points x;

Step 2. Compute the clustering parameters 6 and s using Eqs 7.137.14.

i _ Of(=m)
Step 3. Compute the gradient g(x;) = o
Step 4. Find n closest points of x; and compute the Hessian matrix H(x;) using

Eq 7.15.

Step 5. Compute the eigenvalues of H(x;). Then compute the scaled eigenvalues
Aij, 1,7 =1,..., N Discard z; if \;; < 0Vj. Retain the 80% of the points
with the largest scaled eigenvalues. .

Step 6. Identify clusters by applying the clustering analysis procedure ISO-OCT
to the Sreduced sample points.

Step 7. Perform local search L starting from the point with the smallest function
value in each cluster.

Step 8. Repear from Step 1.

1 1 & 1 - max min
5 = 0.2{5 (E;mi—zmﬁ;m — |>} (7.13)

o, = 056 (7.14)

(yr — H* ) (yp — H*s*)T
(yr — HEsF)Tsh

H* = H*+ (7.15)

where y* = Vf(z151) — Vf(xr) and s, = 241 — 25,

7.3.3 Multi Level Single Linkage

Multi Level Single Linkage is a method with combines the computational efficiency of
clustering methods with the theoretical virtues of Multistart. The local search procedure
L is applied to every sample point, except if there is another sample point within some
critical distance which has a larger function value. A stepwise description of the algorithm
is the following: The critical distance is again chosen to be

.M)”d

o (7.16)

1 .
T = ﬁ (F(l‘i‘g) (S)

In spite of its simplicity the theoretical properties of this algorithm are quite strong
[Rinnooy Kan and Timmer |:

1. If x is an arbitrary sample point, then the probability that L is applied to x in
iteration k tends to zero with increasing k.

2. Tf ( > 2, then the probability that a local search is applied in iteration k£ tends to
zero with increasing it.
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Algorithm 7.20 Multi Level Single Linkage
Step 0. Set k=1, X*=0.
Step 1. Generate = points, &' (y—jN+i, - - -, Xgn, from the uniform distribution over

S, and determine the reduced sample consisting of the ykN best points
from the sample =1, ..., zpn. Set 7 = 1.

Step 2. If there exists some j such that f(x;) > f(z;) and ||z;fz;|| < ry then go
to Step 3. Otherwise, apply L to x;, and add the local minimum found to
X

Step 3. Increment i. If 1 < kN, go to Step 2. Otherwise, increment k£ and go to
Step 1.

3. If ( > 4, then the total number of local searches started by MLSL is finite with
probability one.

4. Any local maximum will be found by MLSL within a finite number of iterations
with probability one.

The methods discussed in this section all aim at finding all local optima of the optimization
problem (P). However, expecially in cases where the number of local optima is very large,
this will not be the best strategy. Therefore in the next two sections we will discuss
random search methods, which directly aim at finding the global optimum.

7.3.4 Healed Topographical Multilevel Single Linkage

We describe now a stochastic method based on the MLSL algorithm of Rinnoy Kan and
Timmer[134], integrated with ideas from Viitanen [148] and Ali [3]. A healing technique
along with a threshold on the number of iterations is used, to prevent premature termina-
tion at the early stages of the algorithm. As it can be readily realized, healing, protects
the algorithm from premature termination, by delaying the growth of the ¢-values for a
number of initial iterations. As an additional control parameter, a threshold I; on the
minimum number of iterations is used. This forces the algorithm to iterate for at least I,

times.

7.3.5 Random Linkage

Random Linkage alogirithm was introduced in [Locatelli and Schoen] and as stepwise
description follows: It is understood that d;, = oo if Aj : f(x;) > f(x). The functions ¢
play the role of probabilistic thresholds. The whole algorithm may be seen as a generalized
acceptance/rejection method. If we set

1if 6 > ay
Pr(6) =

0 otherwise
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Algorithm 7.21 Healed Topographical Multi Level Single Linkage
Step 0. Set k=1, X*=0.
Step 1. Generate = points, &' (y—jN+i, - - -, Xgn, from the uniform distribution over

S, and determine the reduced sample consisting of the ykN best points
from the sample =1, ..., zpn. Set 7 = 1.

Step 2. This is the step that characterizes the method as “Topographical MLSL”.
In this step we first add to the sample the already found (initially none)
local minima. So the sample contains N + w points, w being the number
of the local minima found so far. For every point r; € S we find its ¢
closest neighbors b;;, j=1,---,c. If f(r;) < f(b;),Vj =1,--- ¢, then
the point r; is called a graph minimum. The start points for the local
searches are chosen from within the set of the graph minima. A point
from that set is a start point as long as:

1. It is not a local minimum found earlier, and

2. There is no other point within a critical distance r;, with a lower
function value.

Step 3. Increment k£ and go to Step 1.

Algorithm 7.22 Random Linkage

Step 0. Set k£ =0.
Step 1. Sample a single point 4,1 from the uniform distribution over S

Step 2. Start a local search L from xpyy with probability: ¢y (3k(2ks1)), where

Op =min{||z —zl|: j=1,...,k, f(z;) > f(2)}
Step 3. Increase k and repeat from Step 1

where ay, is a sequence of non-negative real numbers then we define the special sub-class of
Random Linkage Algorithms, denominated Threshold Random Linkage. For this special
class if

lim kY%, = oo
k—o0

then the probability of starting a local search tends to 0 as k — oo

7.4 Simulated Annealing

Simulated Annealing is a random search technique that avoids getting trapped in local
maxima by accepting, in addition to transitions corresponding to an increase in function
value, also transitions corresponding to a decrease in function value. The latter is done
in a limited way by means of a probabilistic acceptance criterion. In the course of the
maximization process, the probability of accepting deteriorations descends slowly towards
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zero. These ”deteriorations” make it possible to move away from local optima and explore
the feasible region S in its entirety.

Simulated Annealing originated from an analogy with the physical annealing proB ™ cess
of finding low energy states of a solid in a heat bath (see Metropolis et al. [59]). Pincus
[66] developed an algorithm based on this analogy for solving discretizations of continuous
global optimization problems.

7.4.1 The Algorithm

Recall that the Adaptive Search algorithm is based on the following property of the family
of Boltzmann distributions:
lim 7 (S,) = 1 (7.17)
T—0

for all € > 0. This same property is the basis of the Simulated Annealing algorithm.
In fact, in this section we will show how Simulated Annealing can be derived as an
approximation of Adaptive Search.

As noted in the previous section, the Adaptive Search is basically a conceptual al-
gorithm, since, in general, it will be extremely difficult to generate points directly from
the distribution mp. Therefore, consider taking the following, approximating approach.
Suppose we have a random walk on S, which converges to the uniform distribution on S.
Let the transition probability distribution given that the Markov chain is in state z € S
be denoted by R(z,-). We can then filter this random walk as follows. In every iteration,
given iteration point x,, we generate a point z,.1 from R(z,,-). Then, we accept this
point with probability:

min{1, e—(f(zn+1—f(:vn)))/T}

(the Metropolis criterion), i.e. with this probability we set x,1 < z,41. If we filter the
Markov chain given by R in this way, the sequence of points generated will converge to
the Boltzmann distribution mp. So, we can generate a sequence of points {X,(7T")}>,
with the property that for every € > 0

lim Pr(X,(T) € S.) = mr(Se) (7.18)

n—oo

Combining Eq. 7.17 and Eq. 7.18 we get

lim lim Pr(X,(T) € S.) =1 (7.19)

T—0n—o0

for all e > 0. The Simulated Annealing algorithm is motivated by Eq. 7.19. It consists of
generating a sequence Xg, X1, ... using the filtered random walk described above, except
that now the temperature parameter = will decrease to zero as we proceed, according
to an adaptive cooling schedule denoted by 7, (xq,. .., 2,). We can formulate the general
Simulated Annealing algorithm as follows.

For the simulated algorithm described in Alg. 7.23, f* — f* almost surely, as n — oo.
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Algorithm 7.23 Simulated Annealing
Step 0. Set n =0 choose zo € S and Tj € [0, x0].
Step 1. Select y,11 according to the probability R(z,, ).

Step 2. If f(yn+1> < f(xn)a set Tpni1 = Yn+1- If f(yn—i-l) > f(xn>a set Tnt+l=yn+1
with probability exp ((f(z,) — f(yns1))/T). Otherwise, set x,11 = x,
Step 3. Set T,41 = Tur1(Xo, ..., Tyt1), increment n amd return to Step 1.

7.4.2 Practical Implementations

In this section we will discuss several specific Simulated Annealing algorithms from the

literature.
Table 7.1: Simulated Annealing algorithms
Authors Candidate point genera- | Cooling scheme
tion
Vanderbilt and Louie [] y = 1z + Qu, u €| Ty =xTy
U(-V3.\/3), QQT = H
Bohachevsky,  Johnson | y =z + Ar ﬁg:ﬁh, u € R? T, = w, g,6>0
and Stein []
Corana et al. [] y = x+Uep, e, unit vector € | 1,411 = X1,
RYU € U(—up,up)
Romeinj and Smith y=x+ M0, ||0]] =1 T, = ﬁ;((zﬁ;l’
Dekkers and Aarts || Uniformly in S, with proba-
bilty p apply local search

7.5 Genetic Algorithms

Genetic Algorithms (GA), introduced by Holland [71], fall in the class of evolutionary
algorithms, and they certainly have become quite popular recently. There is a host of
articles, conference proceedings and books dedicated to their introduction, illustration
and description. We refer for example to Béck [4], Davis [32], Fogel [47], Goldberg [55],
Michalewicz [103], Rawlins [131], Whitley [159], [160] and Schwefel [139].

These methods search the space by letting a population of candidate solutions evolve
in an environment governed by rules inspired from the field of genetics; namely, crossover
and mutation. The individual solutions tend to improve over the generations, mimicking
the evolution of living species. Genetic algorithms require only function values and not
gradient or Hessian information, hence they are applicable as well to problems where
the objective function is non-smooth or contains noise. On the other hand, GAs may
converge, and usually do, at a very slow rate towards an accurate solution. To cure this
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inefficiency, several methods blend GAs with local search techniques and this combination
has proved to be quite satisfactory. GAs have been successfully applied to a host of
different optimization problems, like wire routing, scheduling, neural network training,
portfolio management, differential equation solving, etc. In the literature there are quite
a few, slightly different, methods that are based on genetic algorithms, and this may be
causing some confusion. However each variant is simply an adaptation of the underlying
basic algorithm, for a specific problem. This “spinal” algorithm on which all these variants
are based, may be described as follows:

1. Initialization : Create an initial population of individuals (points) randomly.

2. Elitism : Use a fitness function to rate each individual. This function is related to
the objective function and hence it depends on the problem at hand. The "fittest”
individuals survive, i.e. they will be present in the population of the next generation.

3. Selection : Individuals are selected for further genetic processing. The selection, that
is of stochastic nature, is biased by the fitness value.

4. Production : The selected individuals are transformed by genetic-like operations to
reproduce “children” for the next generation. These operations are:

a. Crossover : Probabilistic recombination of two parents to result in the produc-
tion of two children. There are various ways to implement this. A simple one

for continuous problems is to use linear combinations of the parents.

b. Mutation : Probabilistic random modification of a number of individuals. This
operation enhances the diversity of the population . There are many possible

ways as far as implementation is concerned.

The steps 2 through 4 are repeated until a termination condition is satisfied. There
are several termination criteria. A commonly used one, is to stop when a preset up-
per bound for the number of generations is reached. Another is based on measuring
the diversity of the produced population and decide to stop when this is below a
preset, threshold.

Practical implementations use various schemes for the fitness function, as well as for the
elitism, crossover and mutation operators. If the objective function is denoted by f(.),
the fitness function for the current generation may be casted as a probability measure for
survival. Let z;,Vi = 1,2,--- ;| M be the members (points) of the generation of population
size M. Then the probability for survival (fitness) may be written as:

N = fmaz + € — f (i)
P(Z'z) o M(fmam =+ 6) - ijLM f(l‘]>

¢ being a small number (e.g. 1077), and fae = _Izllaﬁ{f(:ri)}.

(7.20)

Note that P(x;) >0Vi=1,2,---, M and that Z P(x;) =1.
i=1,M
Elitism may be a deterministic operation, for example:
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“Pick K members with the highest fitness values”
or it may be complemented with a stochastic process of the sort:
“Pick additional L members at random, taking in account their fitness”.

Hence a member z; will be selected with a probability P(zx;), as given by relation (7.20).
This procedure is also known as the ”Roulette Wheel Selection”.

Maintaining the fittest member through the generations corresponds to imposing K >
1. Note that multiple copies of a highly fit member may occur in the generation to come.
This ”cloning” enhances the local character of the search, however, since the diversity of
the population is decreased, it may lead to a premature termination.

Crossover is a stochastic operation. A couple of parents (i.e. two distinct points) are
selected via the Roulette Wheel mechanism. Children then may be produced in a number
of ways.

Component Exchange : Let P, P, € RY be the points corresponding to the two
parents and let C'h; and C'hy be “children” points to be created. With probability %
choose either Chy (i) = P;(i) and Chy(i) = P, (i), or Chy(i) = P, (i) and Chy(i) =
Ps(i), Vi=1,2,---  N.

Linear Combination : In this case the children points are linear combinations of the
parent points, namely: Chy(i) = Ps(i) + ¢1(Pn(i) — P;(i)) and Chs(i) = Py(7) +
q2(Pf(i) — P, (3)). ¢1 and ¢o are random mixing parameters and they are chosen
in (—d, 1+ d), d being a small positive number typically around 0.25. Note that if
we set d = 0, the “children” automatically satisfy box constraints. However since
d is usually different than zero, children may not respect the box constraints and a
corrective action should be performed, for instance a projection on the bounds.

Mutation is a stochastic operation that adds random noise to selected members. A
choice made quite often is that as the generations proceed, the random noise added is
decreasing in amplitude. The rationale for this choice is that at the begining, mutation is
important for the exploration of the search domain. However as the generations advance
and the space is rather well covered, there is no need to spend function calls at random
points that are very likely to be useless.

Let N, and I, denote the maximum number of generations allowed and the current
generation count. Let also f > 0 be the mutation parameter. Then from a parent P a
child C'h is created component by component as:

Vi=1,2,---, N choose with probability % either

(1-1)8

Chi=P+ b —P)1—r, ™)
or

Chi =P — (Pi—a;))(1—r; ™)



a;, b; are the lower and upper bounds for the i** component and r; is a random number
n (0,1). Since P; € (a;,b;), note that C'h; € (a;,b;) as well, i.e. the box constraints are
respected.

7.6 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is a method inspired from the social behavior
of a group of living beings, like “bird flocking” and “fish schooling”. The social sharing of
information helps birds to profit from the discoveries and the gained experience of other
birds, in their search for food. This fact sparked the idea that such a model may be
used as an optimization method. Note that other methods as well, have been inspired
from natural processes, for example Genetic Algorithms and Simulated Annealing. PSO
provides a population based stochastic search, in which the individual point—particles are
moving according to rules that simulate a bird flock social behavior. The particles in
the swarm explore a multidimensional space in search of promising regions, i.e. regions
where the objective function assumes lower values. Each particle’s position is influenced
by its own observations and by information acquired from nearby particles. The best
particle positions are taken under consideration. Local information is conveyed by the
particle’s best position while global information is conveyed by the best positions of the
neighboring particles. PSO is suitable for minimizing all types of functions, continuous or
not, multimodal, or functions containing noise. No gradient information is required and is
not computationally expensive. Additional information may be found in the articles [71,
118, 117]. PSO caters for all types of objective functions, continuous or not, multimodal,
containing noise, etc. It does not require gradient information, only function values and is
very simple to implement. PSO methods have been successfully applied to many problems
[138] such as structural optimization, scheduling, neural network training, etc.

7.6.1 Description and rationale

At first one creates a swarm of M particles, with positions z¥ and corresponding velocities

Y

; (i =1,2,..., M), where the superscript denotes the number of time steps taken so

far. The position of each particle represents a potential solution. The particles will start
to move according to a relation of the form:

ot = ok 4 gkt (7.21)
Before discussing the way the velocities are updated a few comments are proper. Each
particle keeps a record of its current position x%, its best historical position b%, in the sense
that f(bF) = l—Hllink f(z}) and the best position y* attained by any particle so far. Influence

=l,...

from a particle’s own best position results to local exploration, while the influence from the
overall best position a particle ever had, points to global optimality. Having observed the
above we may proceed to derive a velocity update. A term proportional to bf — :vf directs
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the particle towards its best attained position. A term proportional to y* — xf directs the
particle towards the globally best position attained so far. A linear combination of the
above terms is considered, with random coefficients, i.e.:

it = 0f + & (0F — 2F) + byt — af) (7.22)

&1,& are random numbers uniformly distributed in (0,1), while ¢, ¢ are parameters
adjusting the velocity gain. Many authors have suggested the values ¢; = ¢ = 2. The
drawback of the update as it stands in eq. (7.22), is that it allows too high velocities
to occur, an undesirable fact that forces the swarm to drift past the region of the global
minimum. To address this issue, an inertia weight w is introduced [38] transforming the
update as:

vt = wof + &b — 2f) + eobely* — 2f) (7.23)

Large w values (i.e. values close to 1) encourage global exploration, while small values (i.e.
values close to 0) facilitate local searches. This observation led to another modification
by introducing a time-dependent inertia weight that initially assumes large values, so
that global exploration is favored, and subsequently is gradually reduced to promote local
tuning [141].

Another velocity update is based on the so called constriction factor denoted by Yy.
The scheme is quite similar to that of eq. (7.23). The advantage is that the value of x
has been derived analytically [25]. The update is given by:

vt = x (0 + a&(0f - af) + byt - 7)) (7.24)

and y is obtained by:

2
YT Re- V&gl (72
where ¢ = ¢ + ¢co, and ¢ > 4.

PSO has been successfully applied to a host of different problem classes, and has also
been combined with other techniques such as deflection, stretching and repulsion [119],
in order to retrieve not one but all the global minimizers, that an objective function may
possess.

PSO is still unexplored and further research is required to comprehent the capabilities
of this rather new technique. Many realistic applications await and it remains to be seen
if PSO can cope with them. The simplicity, the robustness and its wide applicability
render PSO an attractive method for global optimization.
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CHAPTER &

TOWARDS “IDEAL MULTISTART” A
STOCHASTIC APPROACH FOR LOCATING THE
MINIMA OF A CONTINUOUS FUNCTION INSIDE A
BOUNDED DOMAIN

8.1 Summary

A stochastic global optimization method based on Multistart is presented. In this, the
local search is conditionally applied with a probability that takes in account the topology
of the objective function at the detail offered by the current status of exploration. As a
result, the number of unnecessary local searches is drastically limited, yielding an efficient
method. Results of its application on a set of common test functions are reported, along
with a performance comparison against other established methods of similar nature.

8.2 Introduction

Global optimization (GO) has received a lot of attention in recent years [116], due to the
ever emerging scientific and industrial demand. For instance the description of the stable
conformations of a molecule [99, 158, 7], the management of mutual funds [167, 135, 9, 74],
location and allocation issues [45, 70], engineering design and the design of drugs [46, 154],
to mention a few topics, are in need of efficient global optimization techniques.

There exist several categories of GO methods. We distinguish two main classes: the
deterministic [44, 73] and the stochastic one. For a detailed account on classification
of stochastic algorithms we refer to [14]. Deterministic methods provide a theoretical
guarantee of locating the global optimum. Stochastic methods offer only a probabilistic
(asymptotic) guarantee: their convergence proofs usually declare that the global optimum
will be identified in infinite time with probability one. Moreover, stochastic methods adapt
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better to black-box formulations and extremely ill-behaved functions, whereas determin-
istic methods are usually based on at least some theoretical assumptions such as Lipschitz
continuity and heavily depends on the problem at hand. A direct comparison between
these two approaches may be found in [?], where the authors conclude that the stochastic
approach is to be preferred. In addition deterministic methods suffer from the problem
of dimensionality. For example, the complexity of interval global optimization [?] rises
exponentially with the problem’s dimension.
The problem we are interested in, may be expressed as:

Find all z; € S C R" that satisfy:
x;f:argmisnf(a:), Si=Sn{x, ||z — x| <€} (8.1)
TrES;

S is considered to be a bounded domain of finite measure and € a positive infinitesimally
small number. We are adopting the stochastic class of methods. One of the most widely
used stochastic algorithms is the so called Multistart [13]. It’s popularity stems from
it’s simplicity and inherent parallelization [153, 98, 37, 152]. Many stochastic methods
have been developed around it starting from the classic papers of [13, 133, 134, 150]
were the popular Single Linkage Clustering, Density Clustering and Multi—Level Single
Linkage procedures were introduced. Torn and Viitanen in [148] presented a Topographical
Clustering algorithm which was extended by Ali and Storey in [3] to the well known
Topographical Multi—Level Single Linkage algorithm. More recently Hart in his PhD
dissertation [67] proposes an adaptive method based on clustering and local searches,
Locatelli [93] introduces the family of Random Linkage algorithms and Schoen [137] and
Locatelli [92] give an analysis Two-phase methods. More recently, Liang et. al. [91]
introduce a function’s landscape approximation, Bolton et. al. [16] provide a parallel
framework based on clustering procedures while Tsoulos and Lagaris [151] proposed the
so called typical distance clustering. Also related software may be found in [?].

In Multistart a point is sampled uniformly from the feasible region, and subsequently
a local search is started from it. The weakness of this algorithm is that the same local
minima may be found over and over again, wasting so computational resources. For this
reason clustering methods have been developed that attempt to avoid repetitive discovery
of the same minima [133, 134, 150, 151, 152].

The Multistart algorithm is presented bellow:

Multistart Algorithm

Initialize: Set k=1
Sample z € S

ye = L(x)

Termination Control: If a stopping rule applies, STOP.
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Sample: Sample z € S

Main step: y = L(x)

If(y¢{y,i=1,2,...,k}) Then

k=k+1
Ye =Y
Endif

Iterate: Go back to the Termination Control step.

The “region of attraction” of a local minimum associated with a local search pro-
cedure L is defined as:
Ai={re S L(x)=2xa]} (8.2)

where £(x) is the minimizer returned when the local search procedure L is started at
point x. If S contains a total of w local minima, from the definition above follows:

LA =S (8.3)

Let m(A) indicate the Lebesgue measure of A C R™. If we assume a deterministic search
L, then the regions of attraction do not overlap, i.e. A;NA; =0 for i # j, and from eq.
(8.3) one obtains:

m(S) = Z m(A;) (8.4)

If a point in S is sampled from a uniform distribution, the apriori probability p; that it

is contained in A; is given by p; = T;(é")). If K points are sampled from S, the apriori

probability that at least one point is contained in A; is given by:

m(4;)

1-(1- m(S)

) =1—(1-p)" (8.5)

From the above we infer that for large enough K, this probability tends to one, i.e. it
becomes “asymptotically certain” that at least one sampled point will be found to belong
to A;. This holds VA;, with m(A4;) # 0.

In this article we first define the “Ideal Multistart”, a variation of Multistart in which

every local minimum is found only once. This ideal version assumes that the region of
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attraction of a minimizer is determined as soon as the minimizer is located. Since this is
a false hypothesis this version is of no practical value. It offers however a framework and
a goal to work towards.

In section (8.3), we lay—out the new ideas involved and we present the corresponding
algorithm, while in section (8.4), we give a description of the numerical experiments
that were performed along with the results. Finally in section (8.6), our conclusions are
summarized and we give a recommendation for future research

8.3 Description of the Method

"Ideal Multistart” starts by sampling a point from S and applying a local search leading
to the first minimum y;, with region of attraction A;. Sampling points from S'is continued
until a point is found that does not belong to A;. Once such a point is encountered, a local
search is performed that leads to the second minimum ys, having a region of attraction
Aj. The next sample point from which a local search will start, is a point that belongs
neither to A; nor to As, i.e. it does not belong to their union (A; (J A2). This procedure
goes on, until a stopping rule instructs termination. The detailed algorithm is laid out in
the following paragraph.

8.3.1 Ideal Multistart

Ideal Multistart Algorithm

Initialize: Set k=1
Sample z € S

yr = L(x)
Termination Control: If a stopping rule applies, STOP.
Sample: Sample z € S

Main step: If (x ¢ U*_, A;) Then

y = L(z)
k=k+1
Ye =Y
Endif
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Iterate: Go back to the Termination Control step.

This algorithm invokes the local search procedure only w times, w being the number of
existing minima of f(.) in S. The main step is deterministic and requires the regions of
attraction A; of the already located minima to be known, which is not the case in practice.
Hence we apply a stochastic modification to the main step, by allowing the local search
to be performed with a probability, namely:

Main step (Stochastic):
Calculate the probability p, that o ¢ UF_, A,
Draw a random number &£ € (0, 1) from a uniform distribution

If (£ <p) Then

y = L(r)

If (y¢{yi,i=1,2,...,k}) Then

k=k+1

Ye =Y

Endif

Endif

This step requires the probability that a point does not belong to the region of attraction
of any of the minima collected so far. This requirement is easier to fulfill, since even
with a low accuracy estimate for the probability, the algorithm will succeed. Notice
that an overestimated probability (p — 1) will transform the algorithm into the usual
Multistart. On the other hand underestimation (p — 0) is not of considerable cost,
since no local search is performed. Performance however will be optimized if reasonably
accurate estimates for the probability can be calculated. Several ways may be designed
to accomplish this goal. We suggest one in the following paragraph.
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8.3.2 Estimating the local search probability

The required probability may depend on several factors, such as the distance from existing
minimizers, the direction of the gradient, the number of times each minimizer has been
discovered, etc. We consider how each factor influences the probability and combine them
together to get the required estimate.

Let us define the mazimum attractive radius (MAR) as:

R, = m]aX{H:rg-i) — ]} (8.6)

(4)

where x;” are the sampled points which led the subsequent local search to the it" minimizer

Yi-

Given a sampled point z, let y be anyone of the recovered minimizers, with MAR
denoted by R. If ||y — z|| < R, then z is likely to be inside the region of attraction of y.
If however V f(z)T(y —x) > 0, i.e. the direction from x to y is ascent, then z is likely
to be outside y’s region of attraction. Letting z = ||y — z||/R, then an estimate of the
probability that x ¢ A(y) may be given by:

) 1, ifz>1or Vf(x)l(y—x) >0 3.7
p(z ¢ A(y)) = b(z,1) * [1 + M—Vvﬂg , otherwise (87)

[ is the number of times y has been recovered so far, while ¢(z,[) is a model with the
following properties.
lim ¢(z,1) — 0
z2—0
lim ¢(2,1) — 1
z—1
lim ¢(z,1) — 0
[—o0

0<ao(z,1) <1

(8.8)

Notice that the factor inside the square brackets in eq. (8.7), varies from zero to one, as
the gradient from anti-parallel becomes perpendicular to y — x.

The probability that z ¢ UF_, A; is given by the product Hle p(z ¢ A;) and may now
be approximated by the probability that z ¢ A,, A, being the region of attraction of
the nearest to x discovered minimizer y,. The rationale for this approximation is that if
x ¢ B(y;, R;) Vi # n, where B(y, R) is a sphere of radius R centered at y, then the above
approximation is exact since all other probabilities as following from eq. (7) equal 1. If
on the other hand z is inside the intersection of two or more overlapping spheres, the
product of small terms may result to too small a probability for a point that could lead
to a new minimum (see in fig. 8.1, an example). The spheres are expected to overlap, due
to the manner their radii are chosen by eq. (8.6). Hence the approximation is prudent,
and essentially in most cases does not overestimate the local search probability. One may
employ alternative approximations, by considering for example the first two (or more)
nearest minimizers. This is an issue that needs further consideration and is outside the
scope of the present article.
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Figure 8.1: A point x that would lead to a new minimum y, is inside the overlap region

of the spheres around two recovered minima y; and s

8.3.3 Local search properties

The probability model is based on distances from the discovered minima. It is implicitly
assumed that the closer to a minimum a point is, the greater the probability that falls
inside its region of attraction. This implies that the regions of attraction are contiguous
and surround the minima. This is not true for all local search procedures and hence this
assumption influences the local search choice. For example widely used methods such
as Newton or quasi Newton, employing either a line search or a trust region strategy,
create disjoint regions of attraction. Hence these methods have to be modified so that
their regions of attraction are contiguous, resembling those of a descent method with an
infinitesimal step. In Fig. 8.3 we connect start-points (marked by +) to the minimum
they arrive via a local search. This is a desirable local search since its regions of attraction
are contiguous. Start points are attracted towards the closeby minima.

In this work we apply the BEFGS method with a modified line search. This modification
creates contiguous regions of attraction ensuring a strictly descent path [133]

We present the associated algorithm bellow:

Modified Line Search Algorithm
Input:

k=0,By=1,¢>0

Step 1 (Calculate descent direction):

pr = —B 'V f(xy)
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If ||V f(x)|] > € Then

_ Pk
Pk = T (a)]

End if

Step 2 (Line search ):

ming(f(xr + apy)), yielding ay

Step 3 (Next iterate ):

Tpt1 = T + QP

Step 4 (Update approximation ):
Vi = Vf(@py1) — Vf(g)
Ok = Thy1 — Tk

Byi1 = bfgs_update(By, v, Ok

Step 5 (Termination Control):

If termination conditions are met stop, Else set k <— k + 1 and repeat from Step 1.

To illustrate the behaviour of this normalization at Step 1 of the line search we provide
figs. 8.2(a)-8.2(d). The unique minimum appearing int fig. 8.2(d) is the first minimum in
fig. 8.2(b). Note that in fig. 8.2(c) the line search ends up to the nearest minimum while
that of fig. 8.2(a) in a different minimum further apart.

In fig. 8.4 we connect start-points (marked by +) to the minimum the arrive via a
different local search. This illustrates an undesirable local search since its regions of
attraction are disjoint. Start points are attracted towards distant minima.

8.3.4 Asymptotic guaranty

The probability that minimizer y is found with one trial is given by:

(i) _ / Q) 9
py) = prg(®) (8.9)
Y z€A(y) L ‘S|

where 1/]S| is the pdf of the uniform distribution and p(LZ;(x) is the local search probability
at x. The superscript ¢ denotes the state of the process, i.e. the number of minima
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(a) Ackley’s function contour plot and (b) Function profile along with the back-
search step with ap = 1. tracking points
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(c) Same as (a) but using ag = ﬁ (d) Same as (b) for the normalized direc-
tion

Figure 8.2: Illustration of the modified line search

discovered so far, the number of times each minimizer is found, the MAR’s etc. The
probability that after k£ trials y is not found is then given by:

k

) =11 -p)) < (1 - miin{pé”}y (8.10)

=1

From the definition of pg(f) in eq. (8.9), we have:

() _ / () (9% / (W) (9%
) = Pre(®) o + Prg(®) (8.11)
Y €A1 (y) L8 ‘S| z€A2(y) s ’S|

where

Ai(y) = {z € A®Y); (ye — )" Vf(z) <0}
Ao(y) = {z € A@Y); (y —2)"Vf(z) > 0}
and y. = y.(x), is the closest to x discovered minimizer.

If y is not found yet (and hence y. # ), then As(y) # 0 and hence |A3(y)| # 0. Note
that

Vo € Ag(y), pih(z) =1
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Figure 8.3: A suitable local search, with contiguous regions of attraction

and hence from eq. (8.11)

Pl > [ Az (y)]

> >0,Vi=12-,k
Bl

At the limit as & — oo we deduce from above and eq. (8.10) that 7r3(,k) — 0, i.e. asymp-
totically all minimizers will be found.

8.3.5 A model for ¢(z,!)

Many models may be constructed with the desired properties described in (8.8). We
propose one that is simple to visualize and easy to implement.

b(z,1) = 2o PED s e (0,1) (8.12)

A graphical representation is depicted in Fig.(8.5).

8.3.6 The ADAPT Algorithm

The proposed algorithm, in summary, is presented below:

ADAPT Algorithm
Input:

The input function f : R™ — R The search domain S C R™ A local search procedure
L(x) having the properties described in Section 8.3.3.
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Figure 8.5: Model plots for several [ values

Initialize: Set k=1

Sample z € S
Yp = L(x)
re = o — yel|, i = 1

Termination Control: If a stopping rule applies, STOP.
Sample: Sample z € S

Main step: i = argmin||z — y;||
=1,k
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d = ||z =yl
If (d < r;) Then

If (Vf(z)"(y; — ) < 0) Then

lly: —=||
i

Z p—
_ (yi=2) "V (x)
p=d(zm) [1+ (U

Else

Endif

Let ¢ be a uniform random in [0, 1]

If (¢ < p) Then

y = L(x)

If ( y is new minimum ) Then
k=k+1,r.=1lz—ykl|, g =1

Else { We discovered the I-th local minimum }
ry = max(ry, ||z —yl|), m =n + 1

Endif

Else { Assuming that x belongs in the region of attraction of the i-th minimum

}
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r; = max(ry, ||z — yil|), ni =n; +1

Endif

Iterate: Go back to the Termination Control step.

8.4 Experiments and Comparison

The method has been tested on a number of test problems that are listed in Appendix
A. These test functions have been used in the past by many authors and hence they con-
stitute a convenient platform for comparison. We count for every problem the number of
local searches, the number of function and gradient evaluations and we report averages
on thirty experiments performed with different random number sequences. We also count
the number of minima found. All experiments used the “Double-Boz” stopping rule [85],
with the suggested compromise factor (0.5). The local search used by ADAPT is a modi-
fication of BFGS so that the resulting regions of attraction have the properties described
in Section 8.3.3. A comparison is made with the standard “Multistart” with the “Topolog-
ical Multilevel Single Linkage” (TML) method [?] and with MinFinder [151]. All of the
above methods use as a local minimizer subroutine TOLMIN due to M.J.D. Powell [127].
We coded Multistart, while the codes for TML and MinFinder used, were obtained from
the corresponding authors with the default parameters. Observing the results listed in
Table 8.1 we note that the performance of the new method (ADAPT) is overall superior.
MinFinder has similar performance on functions M0, Borne, Shubert(N=>5, 10) while it
has an edge with functions having a periodicity in their contour plots like Holder, Levy
No3, Rastrigin(N=2), and Shubert(N=2).

8.5 A parallel scheme

A sample Master-Slave parallel implementation is displayed below. The Master CPU

creates candidate start points. The Slave CPUs perform local searches. Note, that since

our method uses one point per iteration, each search is independent, enabling so maximum

utilization of the Slave CPUs. On the other hand, most clustering methods use a collection

of points, as for example in [133, 134, 151], that in turn create dependencies in the

application of the local searches, a fact that makes the parallelization less profitable.
Definitions:

e M-list: A list that holds the minimizers (managed by the Master CPU)

o S-list: A list of possible starting points (managed by the Master CPU)
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e L-list: There is one such list for every Slave CPU. Each contains the minimizers
discovered by the corresponding CPU.

Master CPU:
1. Check if a stopping rule applies. If so terminate.
2. Take in account the updated minimizers list (M-list).

3. Create candidate start points and add them to the starting list (S-list) and assign
to each one a zero flag.

Slave CPUs:
1. If no zero flag start-points exist in the S-list, wait.

2. Pick from the S-list a start—point with zero flag, change its flag to one, and apply a
local search.

3. Add the minimizer to a temporary local minimizer list (L-list).
Updater CPU:
1. Pick a minimizer from the L-list and check if it is a new minimizer.

2. If so, add it to the S-list.

8.6 Conclusions and further Work

The adaptive character of the method enables a reasonably accurate estimate of the
probability that a point belongs to a region of attraction. This in turn, on one hand saves
a large fraction of local search applications, and on the other hand prevents the systematic
overlook of regions of attraction, reducing therefore the risk of loosing minima. The
method is robust and efficient as has been deduced from the results of the computational
experiments. Most of the stochastic global optimization approaches use a population of
points to proceed and thus the population size is an additional parameter that affects the
performance of the method. The present work in contrast, uses a single point per iteration
without any adjustable parameters. This feature adds another (obvious) advantage in the
case where the parallel implementation is of interest.

A parallel algorithm that would benefit from a cluster of tightly coupled processors or
from a parallel shared memory system would be significant development. Such systems
are nowadays widely available and offer the possibility of solving harder problems. Work
in this direction is underway.

Other models for the probability, such as adaptively grown Gaussian mixtures, may
be considered and some early, preliminary results are promising.
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CHAPTER 9

SAMPLINCG FROM A SUM OF NORMAL
DISTRIBUTIONS. AN APPLICATION TO GLOBAL
OPTIMIZATION

9.1 Introduction

In this chapter we will propose a novel method for selecting candidate starting points for
stochastic two-phase algorithms, that will take into account previous local searches. The
information revealed from the local search forms a normal distribution around the most
recently found local minimum. This is a direct way to implement General Algorithm 2,
presented in introduction.

9.2 Global Optimization using Normal Distributions

Before we present our sampling methodology we must make clear that the proposed
algorithm can be used in addition to all sampled based global optimization algorithm
that employ local searches.

In the original methods a sample point z is selected using a uniform random distribu-
tion, and the global optimization strategy should decide whether or not to start a local
search from it. We propose the usage of multivariate normal distribution, centered at
local minima. More specifically after a local minimum y* is retrieved, we assign to it a
probability distribution function F' that is defined as:

1 1 1 Ty—1
F=— — 3@ = (z—p 9.1
GEAbIN (9.1)

where ;1 = mean value and ¥ = covariance matrix of the distribution. We used the normal
distribution to model the probability distribution, because it is parameterizable and has
strong local properties.
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Given N points x1, 29, ...xxy we can calculate the mean value p and the covariance

matrix X using:

po= B =Y 92)
S = B((X=p)( =) = 5 = ) — )" (9.3)

The algorithm for creating the proposed sampling distribution is given bellow:

Algorithm 9.24 Global optimization using sum of Normal Distributions

e Initialization:
From a uniform random starting point, apply the local optimization algorithm re-
trieve minimum y* and calculate p; and X; from Eq 9.2 and Eq 9.3 from the specific

minimum ¢ = 1.
e In every iteration:

1 Sampling: Get a uniformly random point x and select it for starting point if
for a random & € (0, 1) the inequality

& X maz,(F(z)) > F(x)

holds.

Nlocal

i=1
2 Update: For every local minimum that is retrieved update:
i The approximations p; >; from every minimum y;
ii The quantity p;, which counts how many times the i-th minimum is found.

iii The position of the minimum and its function value

3 Termination: Apply a termination criterion

9.3 Sampling

The sampling method chosen for a global optimization task is considered very important
for the overall performance. Their application ensures the coverage of all solution space
and hence the recovery of the global minimum. In the global optimization bibliography
several sampling methods have been proposed such as:
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1. Sampling from uniform distribution

2. Sampling from normal distribution (eg. Simulated Annealing)
3. Sampling from Quasi-Random uniform distributions

4. Importance Sampling

5. Rejection Sampling

In uniform distribution we can derive an analytic expression and hence for X, U,V &
U(0,1) we can have:

e Normal distribution 0(0,1): 0 = /—2In(U) cos(27V)

In(X)
A

e Exponential distribution with parameter A: ¥ = —

e [-distribution with parameters 1 and v: ¥ =1 — X/

Quasi-random distribution are created using sequential algorithms that take into ac-
count previously selected points and after an infinite number of iterations they approxi-
mate the uniform distribution. Some well known quasi-random sequences are the Halton
sequence, the Sobol sequence and the Nierderreiter sequence. These sequences posses an
important property (specially for low dimensioned problems) that they cover uniformly
the search space . This is depicted in Figure 9.1.

We can deduce from Figure 9.1 that uniform distribution leaves randomly “uncovered”
areas in the search domain, whereas the quasi-random distributions mange to cover the
search space uniformly.

Finally, rejection sampling is used to sample a point from complex distributions F'(x).
This technique uses an auxiliary function G(z) for which F(z) < MG(x) holds, where
M > 1. The rejection sampling algorithm is presented bellow:

Algorithm 9.25 Rejection Sampling

* Sample z from g(z) and u from U(0, 1)

* Check whether or not u < %.

o If this holds, accept x as a realization of f(z);

o if not, reject the value of  and repeat the sampling step.

Nlocal
In our methodology we set F(z Z

Z p ), g(z) = U(0,1) and M =

max,N(x). Alternatively one can perform the an inverse rejection sampling (if we do
not want to sample from the distribution F(z)) by reversing the inequality from the

second step, that is u >
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Figure 9.1: Sampled points in two dimensional search space quasi-random and uniform

sequences

Let us illustrate the main idea behind our sampling technique. Assume that in the
process of the global optimization algorithm we have retrieved 3 local minima and we have
just sampled x from a uniform distribution in [a,b]. For every local minimum we have
created a normal distribution N(z, u;, ;) according to Algorithm 9.24. Algorithm 9.24
selects a starting point = when & X maz(F(x)) > F(x) for £ € U(0,1). The sampling
algorithm is described in Algorihm 9.26.

In Figure 9.2we present three different normal distributions centered at three afore-
mentioned local minima and their weighted sum. At the sampled point z we compute the
value of the weighted sum of normals F' and we compare it to the global maximum value
of the weighted sum. The greatest the difference, the largest the probability to actually
allow x to become a starting point for local search. It can be easily deduced that if z is
sampled close to an already reached minimum, the probability to accept it would be very
small. In Figure 9.2 the probability to accept a starting point at x = —4 is almost one,
whereas to accept a starting point at = 0 is almost zero.
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Algorithm 9.26 Inverse Rejection Sampling

e repeat the following until a point is accepted

Get x from U([a, b]") where n is the problem’s dimension.

Sample z; from U(0,1)

— F+ 0, mazF « 0
— for every local minimum retrieved

* F(-F-F%N(]),NZ,ZZ)

x maxF < maxrF 4+ % N (. p13,5;)
Z]' Pj

— If & X maxF > F' then accept = as starting point

T
formal 1
Wormal 2

Probability Mormal 3 ——
to sample i

0,06

0,04

Figure 9.2: Selecting a sampled point

To continue the illustration of our sampling method, we now consider two-dimensional
examples, specifically the six-hump-back and the Rastrigin function.

In Figures 9.3 and 9.4 we used 200 uniformly random starting point to create the nor-
mal distributions around local minima. We then sampled 1000 points using the proposed
sampling methodology and uniform distribution. Figures 9.3(a) and 9.4(a) present the
selected points from our methodology whereas Figures 9.3(b) and 9.4(b) display points
from uniform distribution. We can notice that the proposed sum-of-normals distribution,

avoids starting points near the basin of attraction of an already recovered minimum, since
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(b) Six Hump uniform distribution

Figure 9.3: Sampling around a minimum in Six-Hump-Camel function using the proposed

and uniform distribution

the probability of not sampling a point near a local minimum is hight. Notice that even-
tually the sampled points from our distribution will fill up the space around local minima
and even reveal the shape of the regions of attraction.

9.4 Online Estimation of Normal Distribution parameters

The maximum likehood update for the parameters p; and X3; is performed during execution
of our sampling and minimization proposal. For every minimum we calculate and update

the following quantities:

® fi; = fli—1 + o(T; — pi1)

o ¥ =% 1+ aj(x; — pi)(x; — )T, where oy € (0,1), o = (0,0,...,0)7, 3 = al,
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(b) Rastrigin uniform distribution

Figure 9.4: Sampling around a minimum in Rastrigin function using the proposed and
uniform distribution

The covariance matrix ¥; is updated through Rank-1 updates (quantity o;(z; — ;) (z;—
ui)T). We can therefore use Cholesky decomposition ¥; = LZ-LiT and store factor L; (lower
triangular) for every minimum. In this way we achieve update in O(n?) time and not
in O(n®) if we used the original matrix ¥;. The determinant of ¥; can be calculated
straightforwardly by using the Cholesky factor as:

N
o det(X) =[] L
=1

Also Cholesky factors can be used for the calculation of the exponential part of the
distribution as follows:

e (=S M a—p) = (L @—p) (L7 —p)

where

LMNe—p=y=Ly=z—p
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. Hence all the expensive exponential calculation is reduced in solving a lower triangular
linear system.

The quantity «; can be regarded as learning factor for the normal distribution around
the minimum. It can be a constant small number or a variable quantity as same minimum
is found consecutively. In the second case one possible formulation could be:

o = —
Pi
where p; counts the times the :—th minimum is recovered. Following this strategy suggests
that, the position of the first sampled points, that lead to the i—th minimum, will play
the most important role in defining the shape of the normal distribution. In the case of
constant learning factor we chose a small value of order 107*. This constant however is
not suitable for every objective function.
Initialization of u; can be performed in two ways:

1. Initialize using the mean among the starting point and the minimum p = (24 —
x*)/2

2. Initialize using the minimum p = z*

Initialization of X; can be performed in two ways:

1. Initialize using identity matrix I, multiplied by a small quantity a;.

2. Initialize using the Hessian matrix (or an approximation) at the minimum. The Hes-
sian matrix at the minimum is returned by almost all gradient based minimization

algorithms.

In the first case we define the initial normal distribution to be concentrated near the
minimum, and subsequent starting points that lead to the same minimum will “stretch
it” accordingly. In the second case can achieve the best possible representation of the
minimum ’s region of attraction.

In conclusion the final distribution model we propose would be the weighted sum of

the normal distributions calculated on-line for every local minimum so far. The formula
will be:

M
F(z)= Z N (25 i, ) (9.4)
i=1
M .
with Zm =1and m; = ]\pj The quantities p; should sum up to unity, so that
; i=1Pi

=1
[ N(z)dz =1
In Figure 9.5 we present the progress of adjusting a normal distribution around a local
minimum, as it is recovered repeatedly by different starting points. After 12 updates of
the covariance Sigma;, and center p;
In Figure 9.6 we present contour plots for the final sum-of-normals distribution ob-
tained for several test function. We can see how the proposed distributions succeeds in

learning the region of attraction of local minima.
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(f) Region of attraction

Figure 9.5: On-line computation of g and ¥ for a minimum at z* = [4, 0]"

9.5 Sampling as termination criterion

The proposed sampling algorithm from the sum-of-normal distribution can be used as a
termination criterion. When all the minima will be recovered and all the search space will
be covered by normal distributions, then accepting a point using the rejection sampling
would be difficult. Recall that for £ € U(0,1) in order to accept a point = the inequality
¢ X max, F(z) > F(x) must hold. The natural assumption is that when all the minima
are recovered repeatedly F'(r) — max, F(x).

We propose two criteria for termination:

Count the rejections If the inequality £ x max, F/(x) > F(x) does not hold for k
consecutive random & € U(0, 1) values then STOP.

and additionally:

F(x)

Measure the ratio If the the ratio
max, F(z)

STOP

for any random x is close to 1, then

For the first criterion the number of failures must be counted each time the rejec-
tion sampling is applied, while in the second we only have to measure the ratio as it is
unavoidable reaches 1.
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(g) Holder test function (h) Levy No 3 test function
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(m) Rotating Quadratics test function (n) Tube test function

Figure 9.6: Distribution of standard test functions
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9.6 Experimental results

In this Section we will provide experimental verification of the effectiveness of the proposed
sampling method. All algorithms were implemented in ANSI C and tested on a Intel
Pentium 4 (2.8 GHZ) running Linux (Ubuntu 9.10) operating system. For the local
optimization part of the algorithm, Merlin Optimization environment was employed.

The measure in every experiment is the overall number of local searches needed to
retrieve a specific number of local minima. Our sampling technique is opposed to uniform
random sampling. The testing methodology is simple. Sample a starting point, perform
local search and count the minima retrieved so far. For the proposed sampling method-
ology, a number of M uniform samples where first drawn in order to create some initial
normal distributions. Every experiment was conducted 50 times using different random
seed and the mean value of local searches is presented.

We have conducted experiments using the following options:

1. Initialize X; to unity.

2. Initialize 3; to Hessian at the minimum.
and

1. Use constant learning rate o; = 1074,

2. Use decreasing learning rate.

All experiments performed using the Rinnoy-Kan termination criterion presented in
[]. In Tables 9.1-9.4 we present comparison of our sampling method to the uniform distri-
bution for 17 global optimization test functions. We count the number of local optimiza-
tions performed, since the local optimization method was the same in all experiments.
Columns with header Normal(N), mean that the first N points were sampled from the
uniform distribution and normal distributions are computed around minima. After the
first N samples, our sampling algorithm is employed to produce the subsequent starting
points.

It can be easily deduced from the results that the proposed methodology for sampling
exhibits better performance than the commonly used uniform sampling. In all results the
lowest number of local searches was achieved when the first N = 50 starting points were
sampled from the uniform distribution, and then the sum-of-normals distribution was
used. During this first “uniform” phase normal distributions were created and updated
around local minima.

Judging from Table 9.3 our methodology achieves best performance when variable
learning rate is used and the Hessian matrix is used to initialize ¥;. A comparison of
all possible parameter configuration using N = 50 initial uniform samples is displayed in
Table 9.5.
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Table 9.1: Results using 3; = 107*I and constant learning rate

Function (nom)

Sampling method

Uniform | Normal(5) | Normal(10) | Normal(50) | Normal(100)

ackley (49) 2502 2387 2353 2337 2571
giunta (36) 1371 1275 1198 1174 1243
guilin (25) 9612 3868 3300 3273 3685
levy3 (130) 17163 15799 14922 14748 11026
rast (121) 14886 16227 15751 15579 15688
griew (123) 15378 14925 14585 14392 14584
levy5 (130) 12944 11998 11666 11648 12499
rotquad (59) 12091 11696 11588 11571 12738
holder (180) 2000 2035 1970 1965 2044
bird (25) 667 263 254 253 259

piccioni (37) 1446 1536 1433 1420 1479
shekel (10) 123 112 107 106 107

m0 (152) 4805 3746 3664 3657 3978
dejong (64) 4098 3308 3189 3093 3174
lager (64) 4227 5737 5291 5271 9599
tube (45) 2118 1736 1706 1701 1756
liang (99) 9811 10591 10172 10098 10955
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Table 9.2: Results using 3; = 107*I and variable learning rate

Function (nom)

Sampling method

Uniform | Normal(5) | Normal(10) | Normal(50) | Normal(100)

ackley (49) 2502 2559 2443 2414 2599
giunta (36) 1371 1229 1220 1189 1192
guilin (25) 9612 9255 8457 8429 8779
levy3 (130) 17163 18704 17843 17709 18150
rast (121) 14886 11300 10914 14551 11161
griew (123) 15378 14199 13068 13003 13811
levy5 (130) 12944 11814 11743 11677 12191
rotquad (59) 12091 13122 12725 12622 13063
holder (180) 2000 915 746 734 895

bird (25) 667 925 412 398 407

piccioni (37) 1446 1453 1373 1363 1398
shekel (10) 123 119 131 128 134

m0 (152) 4805 2277 5130 5108 5190
dejong (64) 4098 2157 2079 2022 2183
lager (64) 4227 4230 4150 4139 4451
tube (45) 2118 2057 2056 2047 2164
liang (99) 9811 8337 8015 7887 9062
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Table 9.3: Results using X equal to the Hessian and constant learning rate

Function (nom)

Sampling method

Uniform | Normal(5) | Normal(10) | Normal(50) | Normal(100)

ackley (49) 2502 2488 2447 2390 2512
giunta (36) 1371 1478 1396 1385 1455
guilin (25) 9612 8182 8015 7929 8341
levy3 (130) 17163 17578 16192 16099 16851
rast (121) 14886 15794 14038 14883 14002
griew (123) 15378 14184 13322 14139 13690
levy5 (130) 12944 11737 11574 11525 12515
rotquad (59) 12091 11172 11622 11582 10073
holder (180) 2000 1997 1962 1950 2139
bird (25) 667 296 992 287 663

piccioni (37) 1446 1486 1268 1262 1285
shekel (10) 123 111 121 104 131

m0 (152) 4805 3847 3483 3461 3608
dejong (64) 4098 2637 2607 2597 2826
lager (64) 1227 4117 1022 3991 4265
tube (45) 2118 2159 2107 2104 2151
liang (99) 9811 9407 8766 8708 9509
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Table 9.4: Results using X equal to the Hessian and variable learning rate

Function (nom)

Sampling method

Uniform | Normal(5) | Normal(10) | Normal(50) | Normal(100)

ackley (49) 2502 1978 1811 1782 1790
giunta (36) 1371 1215 1073 1056 1104
guilin (25) 9612 2975 5281 5170 6212
levy3 (130) 17163 14618 14531 14434 16043
rast (121) 14886 15275 14782 14455 15081
griew (123) 15378 13925 12962 12793 13278
levy5 (130) 12944 11874 11501 10895 11073
rotquad (59) 12091 12604 12525 12412 13167
holder (180) 2000 1842 1803 1801 1856
bird (25) 667 712 671 670 716

piccioni (37) 1446 1341 1176 1136 1147
shekel (10) 123 132 126 109 115

m0 (152) 4805 4639 4593 4560 5009
dejong (64) 4098 4231 4014 3995 4332
lager (64) 4227 3581 3331 3324 3592
tube (45) 2118 1668 1534 1506 1586
liang (99) 9811 9557 9483 9162 9527
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Table 9.5: Comparison of Normal(50) for all possible configurations

Function (nom)

Parameter Configuration (Normal(50))

Const. + Unity | Var. + Unity | Const. + Hess. | Var. 4+ Hess.

ackley (49) 2337 2414 2390 1782
giunta (36) 1174 1189 1385 1056
guilin (25) 3273 8429 7929 5170
levy3 (130) 14748 17709 16099 14434
rast (121) 15579 14551 14883 14455
griew (123) 14392 13003 14139 12793
levyb (130) 11648 11677 11525 10895
rotquad (59) 11571 12622 11582 12412
holder (180) 1965 734 1950 1801

bird (25) 553 398 587 670

piccioni (37) 1420 1363 1262 1136
shekel (10) 106 128 104 109

m0 (152) 3657 5108 3461 4560
dejong (64) 3093 2022 2597 3995
lager (64) 5271 4139 3991 3324
tube (45) 1701 2047 2104 1506
liang (99) 10098 7887 8708 9162
Sum 102586 100264 104696 99260
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9.7 Conclusive remarks

We have presented a new methodology for sampling random points for the our stochas-
tic two-phase optimization algorithm. The new sampling method is based on normal
distribution and it is created “on-line” during the global optimization process.
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CHAPTER 10

A SPECTRAL CLUSTERING APPROACH FOR
RECOVERING MULTIPLE MINIMA

10.1 Introduction

Clustering methods is a class of global optimization methods, which as an important part
include a cluster analysis technique. The motivation for exploring clustering methods is
based on the following:

a) It is possible to obtain a sample of points in A consisting of concentration of points
g
in the neighborhood of local minimizers of .

(b) The points in the sample can be clustered giving clusters identifying the neighbor-
hoods of local minimizers and thus permitting local optimization methods to be
applied.

(c) The procedure (a)-(b) can be implemented efficiently enough to compete with other
methods proposed for global optimization.

If the procedure employing the steps (a) and (b) is successful, then starting a single local
optimization from each cluster would determine the local minima and thus also the global
minimum. Step (a) consists of a sampling step and a grouping step. The sampling can
either be deterministic, using a grid, or random. The main idea is to cover the whole A
in some uniform manner.

For grouping points around minima two strategies have been used. The first is based on
the idea that retaining only points with relatively low function values these points would
form groups around some of the local minima [6, 150]. The second strategy is to push
each point towards a local minimum by performing a few steps of a local minimizer[150].
This latter technique with its double effect of removing high value points and creating low
value points is then expected to produce groups around all local minima detected during
the sampling phase. The clustering methods in the first published compared
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Most of the algorithms presented can be put into the form of the following general
algorithm. In this Chapter we describe our approach on recognizing the group of sampled

Algorithm 10.27 General Clustering Algorithm

GA1 Sample points in the region of interest:The goal for this step is to explore the whole
region of interest in order to find a point leading to the global minimum. In accor-
dance with this, all the methods use uniform sampling, and in one method (Torn)
also stratified sampling may be used.

GA2 Concentrate the sample to obtain groups around the local minima:The goal for this
step is to concentrate the points around the local minima so that they can be
recognized by a clustering algorithm. Two pure strategies and some combinations
of these are used.

(a) Retain a predefined portion of the lowest points.
(b) Displace the points by some steps of a local minimizer.
GA3 Recognize these groups by the aid of a clustering method: The goal for this step is

to identify points bound for a certain minimum. Qur work proposes an alternative
method for this step.

GA4 If a stopping condition is met, stop.

GAb5 Transform, sample for the next iteration, go to step 2.

points into clusters (S3). We also address the problem of concentrating the initial sampled
points to obtain the groups around local minima. We propose the Spectral Clustering
technique for grouping start points into clusters.

10.2 Clustering techniques

Clustering is normally applied to a given distribution of N objects, in our case points in
R?, with normally d = n. We assume that these points represent regions of attraction
of local minima. The task of the clustering procedure is to recognize the regions of
attraction by forming clusters corresponding to these regions. A central problem when
applying cluster analysis techniques is the problem to choose the proper distance function
D(-, 0'Q), i.e., a function that defines the distance between any two given points. One
possible distance function to use is the usual Euclidean distance. The results obtained
with this distance function is sensitive to the scaling of the coordinates and if used the
optimization problem variables should therefore be scaled so that the contribution from
each variable to the distance is proportional to its importance in separating the points.
We will not further discuss this problem here and if nothing else is said it will be assumed
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that the Euclidean distance will be used as the distance function. A second important
problem in cluster analysis is to fix some threshold distances to determine if a point is near
enough to be included into a particular cluster. The choice of such thresholds will highly
affect the number of resulting clusters. If chosen too small each point would form its own
cluster and if chosen too large a single cluster containing all points could be obtained.
We will comment on the choice of thresholds in connection with the detailed description
of proposed global optimization methods.

The context in which clustering is used here makes it possible to perform auxiliary
computations if needed to make the right decision in the clustering process. The function
values corresponding to the points are available and contains important information. It
is possible check if the direction of the gradient in a point points towards a cluster center.
By using a local optimizer a point may be moved towards its cluster center. It is also
possible to compute the function value in points between some given points, a possibility
that can be important for correct classification.

Methods for cluster analysis may be divided into hierarchical and non-hierarchical
(partitional methods [Anderberg 1973; Dubes and Jain 1980]. A hierarchical clustering is
a nested sequence of groupings, whereas a partitional clustering is a particular partitioning
of the objects.

10.2.1 Hierarchical Clustering

Hierarchical clustering can either be agglomerative or divisive. In agglomerative clustering
clusters are hierarchically merged two and two starting with one point in each cluster.
In divisive clustering the clusters are hierarchically divided, each into two new clusters
starting with a single cluster containing all points.

Single Linkage

The simplest of all agglomerative hierarchical clustering techniques is single linkage clus-
tering. In this technique the next two clusters to be merged are those for which the
distance between the nearest points (one point belonging to one cluster and the other to
the other) is the smallest. When this distance becomes larger than the threshold distance
the procedure is stopped. By considering other measures of similarity between clusters
other hierarchical methods are obtained. Starting with each point in a separate cluster
the points at distances less than the threshold distance are linked. A cluster is recognized
as a set of points linked together.

Density Linkage

Density linkage refers to a class of clustering methods using nonparametric probability
density estimates [SAS 1985]. It consists of two steps:

1. A new dissimilarity measure Dx based on density estimates and adjacencies is com-
puted.
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2. Single linkage is performed using D*.

The k—th nearest neighbor method [Wong and Lane 1983| uses k—th nearest neighbor
density estimates. Let dj(x;) be the k—th nearest neighbor distance of x; and D be the
Euclidean distance function. Then

dk(mi);dk(m]‘), If D(x;, x;) < di(z;) or dig(x;)
00 otherwise

Based on empirical data a possible choice for 7 is 2 log2 N for N ranging from 50 to 500
points.

10.2.2 Partitional Clustering

Most of the partitional clustering techniques grow clusters starting from so called seed
points.

Growing Clusters from Seed Points

One way of creating clusters, given a set of points, is to use a seed point to initiate a
cluster and add nearby points as long as they are near enough. This is sometimes applied
recursively so that each added point also becomes a seed point. The cluster is closed when
no new point can be added.

It is obvious that a seed point ideally should be a point in the center of the underlying
cluster. In cluster analysis such a seed point is normally not directly available.

In global optimization the transformed sample can be expected to contain points
located around the local minima, with the minimizer somewhere in the middle of each
cluster. This means that the minimizer should be a good seed point to use when forming
a cluster. For each cluster one can therefore single out a point, the one with the lowest
function value (i.e. an estimate of the corresponding local minimizer) which can be used
as a seed point for the cluster. This means that in the global optimization setting natural
seed points are easily recognizable by utilizing the function values corresponding to the

given points.

Mode-seeking Algorithms

Another clustering method used for global optimization is the mode-seeking technique. In
this the points to be clustered x1, x5, ...,z y are used to estimate a point density function
1. The idea is to identify local maxima or modes in the density function and use them as
cluster centers. The number of nodes in the estimate of the density function indicates the
number of clusters present in the data. The clustering procedure is finished by assigning
each point z;,72 = 1,..., N to its closest center.

The mode-seeking algorithms need a large ratio of sample size to dimensionality for
accurately estimating the density function. For large N these algorithms are not feasible,
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owing to the amount of computation needed to estimate the density function [Dubes and
Jain 1980).

10.3 Clustering in Global Optimization

In this section, the clustering methods proposed for global optimization are described
essentially as they are presented by the authors in the papers referenced.

10.3.1 Existing Algorithms
The Algorithm of Becker and Lago

This was the first work, where a clustering technique comes to aid a global optimization
algorithm. The steps of the algorithm are presented in Algorithm 10.28:

Algorithm 10.28 Clustering 1: Becker and Lago Algorithm

S1 Sample points: Perform simple random search (random sampling) over the entire
region A, giving Nx* trial points.

S2 Reduce sample: Retain a predetermined number M of points with the lowest values
of f (These are expected to form clusters about the minima of f in A).

S3 Cluster: Group the retained points into clusters by a mode-seeking algorithm.

S4 Sort clusters: Rate the clusters according to the lowest function value in each cluster,
the best cluster being the one with the lowest f.

S5 Construct subregions: Construct subregions A;, Ao, ... containing all of the retained
points of each cluster.

S6 Treat subregions: Treat each subregion as in steps 1 — 5 starting with the best
cluster, then taking the second best cluster and so on.

Clustering algorithm A mode-seeking technique with an nonparametric density func-
tion is used. The cluster centers are determined in the following way. Let r; be the
average distance for nearest neighbor and r5 be the average distance between the points
1, To.., 2 to be clustered. Take x; and locate the hyperspheres of radii r; and ry cen-
tered at x1. If x4,k = 2,..., M lies within the r; hypersphere it is averaged with z;.
This average becomes the centre of the cluster. If x; lies between the two hyperspheres
it is returned. If x; lies outside the ro hypersphere, then two more hyperspheres of radii
r1 and ry are located with x, as the center. This gives a number of cluster centra. The
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remaining points are then assigned to the clusters according to some nearest neighbo r
rule.

Torn’s Algorithm The main steps of Torn’ s algorithm are given in Algorithm 10.29.

Algorithm 10.29 Clustering 2: Torn’s Algorithm

S1 Sample points: Sample N points in A.
S2 Concentrate: Concentrate the points about the minima.
S3 Cluster Identify the resulting clusters by a clustering analysis technique.

S4 Test for stop: If a stopping condition (e.g. only one point left in each cluster, or
the same number of clusters in two consecutive clusterings) is met, go to step 6.

S5 Reduce sample Rate the clusters and the points in a cluster according to the lowest
f value. Retain every m’th point in each cluster. Go to step 2.

S6 Find local minima: Determine the minima starting from the best point in each
cluster.

Concentrating Points Two approaches were tried:
(a) retain a predefined number of points with the lowest f
(b) for each point perform a number of steps of a local optimizer.

Based on the outcomes of some experiments, method (b) was deemed more successful in
concentrating the points and method (a) was not further considered.

Clustering Algorithm A cluster is grown about a seed point by adding all unclustered
points lying in successively larger hyperspheres centred at the current seed point, as long
as the point density in the volume between the successive hyperspheres remains greater
than the average density in the region of reference. The radii of the successively larger
hyperspheres are determined so that a single point between successive hyperspheres is
enough to guarantee this limiting density. Natural seed points are used. The region of
reference S € R"™ is the region spanned by the points, and its volume V' is given by:

V= ﬁ4\/)\_z~
i=1

where \; < Ay < ...\, are the roots of equation (C' — AI) = 0 where C is the covariance
and I is the identity matrix. The quantity d is either n or n+ 1, with f(z) as the n+ 1-th

149



coordinate. The value of n’ < d, determined by the clustering algorithm, may disclose
that the minima are contained in a lower space (R ,n’ < d) which in some cases can be
valuable information about the problem.

Spircu’s Algorithm

The main steps of this algorithm are presented in Algorithm 10.30:

Algorithm 10.30 Clustering 3: Spircu’s Algorithm

S1 Sample points: Generate Nx* points, uniformly distributed in A.

S2 Concentrate, reduce sample: Transform the sample by performing some steps of a
local optimizer from these points and by retaining a fraction v of the best points
(v = .25) S3.

S3 Find modes: Estimate the density function ¢ determined by 21, ..., z)s and calculate
the modes mq,...,mg If K =1, go to step 5, otherwise go to step 4.

S4 Reduce points, generate new points: Generate N’ = (NoK)/2 points, uniformly
distributed in A. Modify Nx = K + N’ and take as the current sample the modes
plus the new points. Continue with step 2.

S5 Find local minimum: Perform a final local optimization starting from m;.

Clustering The clustering method used is a mode-seeking technique. The explicit den-
sity function is statistically estimated as sum of M so called d-generating sequences. It
is pointed out that this gives a consistent, asymptotically normal, unbiased estimate of
®. The modes are determined by starting a local algorithm for the estimated density
function from each point z;,2 = 1,... M. In Spircu’s method only the modes are used and
no assignment of points to the cluster centers or modes is performed.

The Algorithm of Boender et al

In their paper [Boender et al 1982], the authors describe their method as a stochastic
method involving a combination of sampling, clustering and local search, terminating
with a range of confidence intervals on the value of the global minimum.

Clustering algorithm Two methods were developed. Both methods use local infor-
mation about the objective function (the Hessian in the corresponding local minimum)
and rely on properties of the sampling distribution. The first method is a refinement of
the clustering idea of Torn. Instead of using successively larger hyper spheres the succes-
sively larger sets are approximations of the level sets around a seed point (local minimum)
giving ellipsoids.
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Algorithm 10.31 Clustering 4: Boender et al Algorithm

B1 Initialize: Choose values for Nx and . xx is the set of local minima found so far
and X is the set of sample points leading to a minimum z* € X .

B2 Sample points: Draw Nx points and add them to the sample.

B3 Reduce, concentrate sample: Construct the transformed sample by taking the frac-
tion v lowest points of the current sample and by performing a steepest descent step
from each of these points.

B4 Cluster: Apply a clustering procedure to the transformed sample. The elements of
Xk are first chosen as seed points followed by the elements of X ™). If all points of
the transformed sample can be assigned to a cluster, go to step 6.

B5 Find local minimum, cluster: Among the points not yet clustered, let ™) be the
point with the lowest function value. Apply the local search procedure to z™) to
find a local minimum x*. If % ¢ Xx, add z* to X* and choose it as the next seed
point. If zx € Xx, add ™ to X and choose ) as the next seed point. Repeat
step 5 until all points have been assigned to a cluster. If a new point has been added
to X, go to step 2.

B6 Stop: Determine y*, the smallest local minimum value found, and stop.

The second method is a partitional application of the single linkage method where
unclustered points z are added to a cluster, initiated by a seed point either in X* or X®

as long as the distance
/ NT * n11/2
D(z,2") = [(z — 2") H(z7)(z — )]

to the nearest neighbor z’ in the cluster is less than a threshold distance r. The threshold
distance is computed using an approximation of the probability distribution of the nearest
neighbour statistic within a set of uniformly distributed points, giving

_ [P +n/2)[H (2])[?u(A)

r= s (1 — /=1

,where 7 corresponds to the probability of type 1 error. In preliminary experiments this
method was found to be more accurate than density clustering and was therefore chosen.
A further check is made before a point is added to a cluster, it is checked that the negative
gradient points in the direction of x*, or, if the seed point is a member of X that the
gradient points in the same direction as in the seed point. This modification proved very
useful for detecting close minima.
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The Algorithm of Betro and Rotondi

A Bayesian nonparametric approach to global optimization is presented in [Betro and
Rotondi 1984]. The aim of the algorithm is to quickly and inexpensively find an im-
provement of the best sampled value hopefully sufficient to decide that, on the bases of
estimating the probability P(F(f) < ¢|F = f), that the required accuracy u{L;} < e has
been achieved, rather than to identify all relevant regions of attraction of local minima.

Algorithm 10.32 Clustering 5: Betro and Rotondi Algorithm

BR1 Initialization: Choose values for Nx, M, fy a guess for fx,a and e. X is the set
of local minima found so far and X; the set of starting points for these minima.
Initially these sets are empty.

BR2 Initial sampling estimate f*, test for stop: Sample M points. Start a local search
from best point in sample obtaining f. Set N = 0. If P <F(f) < ¢€|lF = f) >

then accept f* as the final estimate and stop.

BR3 Sample points, reduce sample: Sample Nx points in A. Retain the yNx best. Set
N = N + Nx.

BR4 Cluster: A cluster is formed taking as seed point the best point z;, in the sample.
Possibly existing subclusters within this cluster are identified. The best point within
each cluster is retained as a possible starting point for a local search, together with
the radius of the cluster.

BR5 Find local minimum?: Compare the information retained from the present clustering
with information gathered during previous stages. If it seems possible that the region
of attraction of a new local minimum has been identified start a local search from
xp and adjust X+ and X, accordingly.

BR6 Test for stop If P(Fi(f) < €lyr,...,yn, F = f) > a then accept fx as the final
estimate and stop, otherwise go to step 3.

The Algorithm of Timmer

The algorithm of Boender et al has been modified by Timmer [Timmer 1984]. Timmer
considered several clustering methods. Based on experiments, a method, miilfi level single
linkage, was deemed most accurate.

The Algorithm of Rotondi

Rotondi’s clustering technique is based on the concept of the k-th nearest neighbour
[Rotondi 1978]. In order for the problem to be solvable in a finite number of steps, it is
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Algorithm 10.33 Clustering 6: Timmer’s Algorithm

T1 Initialize: Choose values for Nx, v and 0. Xx* is the set of local minima found so
far.

T2 Sample, reduce sample Draw Nx* points at random and transform the sample by
taking the fraction v lowest points of these Nx* points. Set k = vNx.

T3 Find local minimum: Start a local optimizer from each new point z; except if there
is a sample point z; with f(z;) < f(z;) and ||z;0x;]| < r,. Add new stationary
points encountered during the local search to Xx.

T4 Test for stop: If the expected number of minima w exceeds the number of different
minima found w by less than 0.5 stop, else sample a new point, set £ = k£ 4+ 1 and
go to step 3.

assumed that there exists a positive constant ¢, such that the distance between any two
local minima exceeds e¢. The algorithm is presented in Algorithm 10.34.

Clustering Algorithm Natural seed points are used to initiate clusters. The critical
distances 7,7 = [,..., k are determined based on k-th nearest neighbour statistics for

5)'71—“)1/”, where (3;1_4 is the (1 — a)-quantile of

uniformly sampled points giving rj = (
the beta distribution Be(j, Noj) and N is the sample size. The type I error under the

null-hypotesis Hy is approximately equal to o for the choice of r;.

10.4 A new Clustering Approach for Global Optimization

We mentioned already that clustering methods have proved very successful in tackling the
global optimization problem. One reason is that they make it possible to very efficiently
combine global and local search.

Motivated by the strong theoretical and practical properties of the general clustering
method for global optimization we present a new technique for creating clusters around
minima. Our approach address the clustering problem of sampled points around minima

using components form:

1. Spectral clustering a promising alternative that has recently emerged in a number
of fields, that works in the eigenspace of a matrix derived from the points to be
clustered,

2. Global k-Means a hierarchical clustering technique that address the problem directly
at the input space.

153



Algorithm 10.34 Clustering 7: Rotondi’s Algorithm

R1 Sample, reduce sample: Sample Nx points uniformly in A and add them to the
N sampled points (initially N = 0), take the YN ones with the smallest function
values.

R2 Choose seed: If all reduced sample points have been clustered, go to step 5. Else
choose as seed point and possible "father” the best remaining point.

R3 Grow cluster about seed: Build successively larger hyperspheres S;: with radii r;, 7 =
l,...,k around the "father” as long as the hypersphere contains at least one new
reduced sample point having larger function value than the ”father” (Function value
test). Let the last such hypersphere be S7, Assign all unclustered points in Sy, passing
the function value test to the cluster (and call them ”sons”). Complete the cluster
by letting each ”son” in turn become the ”father” and repeat the procedure until
each "son” has become "father”, then go to step 2.

R4 Merge clusters Let x; be a point rejected by the Function Value Test in cluster
C,, which becomes a seed point for a new cluster C,. If an element x5 of C, is
within distance 2r; of z; and the middle point z of the segment (x1, z5) is such that
f(z2) < f(2) < f(x1) then the clusters C, and C}, merge.

R5 Find local minimum: A local search from the seed point of a new cluster is started
only if (a) the number of points in the cluster is at least two, and (b) no local search
has been started from points in the cluster.

R6 Test for stop: If in two cycles no new minimum is found stop, otherwise go to step
1.

These two powerful clustering tools are employed for the first time in the global opti-
mization framework. We prefer Spectral Clustering analysis for two reasons. Firstly, it
is based on pairwise affinities between points, which in standard clustering applications
are calculated using Euclidean distances. However in the optimization framework both
function and gradient values at points are available. We will show that this extra infor-
mation can be essential in associating or disassociating concentrated points. The second
reason is that using a simple eigenvalue analysis we can calculate a surprisingly accurate
estimate for the number of clusters.

On the other hand the Global k-means algorithm, although an expensive procedure, is
classified among the best clustering techniques in the bibliography. Moreover, it can be
straightforwardly modified to take into account affinity information from spectral cluster-
ing analysis. More specifically global k-means algorithm is based on successively applying
the simple k-means algorithms which, in turn, is based on Euclidean distance between
points and the introduction of new points that represent the cluster (means). Instead of
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the Euclidian distance one can use the pairwise affinities between the concentrated sam-
pled points, and instead of new points one can define an existing point as representative
for a cluster (medoids). We attempt to get the most out of these two methodologies

combining them using:

e Function and/or gradient information in addition to Euclidean distance between

points

e Global k-means variation that operates on these affinities and uses existing repre-
sentatives, namely global k-medoids.

Recall the general clustering algorithm presented in Algorithm 10.27. Following the
same general scheme we present a first sketch of our clustering algorithm

Algorithm 10.35 The proposed method — Outline

S1 Sample points in the region of interest: For this step we use two alternatives:

(a) Uniform random sampling

(b) Quasi—uniform sampling (Halton sequence)

S2 Concentrate the sample to obtain groups around the local minima: We prefer Torn’s
alternative to concentrate the sample around minima, by displacing it using a frac-
tion of the negative gradient or few steps of a local optimizer.

S3 Recognize these groups by the aid of a clustering method: In general out clustering
method consists on two main steps (which will be thoroughly analyzed later):

(a) Estimate the number of clusters k& formed by the concentrated sampled points

(b) Apply global k-means (or a proposed variation) seeking k clusters.

S4 Stopping condition: Any stopping criterion from the bibliography can be used.

10.4.1 Step 1: Sampling methodology

In order to explore the whole region of interest, we chose to apply uniform sampling.
However by using quasi-random sequence of number (like Halton sequence) we witnessed
an improvement especially in low dimensional problems. Quasi-random sequences are
sequences of n-tuples that fills n-dimensional space more uniformly than uncorrelated
random points. The nature of quasi-random sequences, offers a better coverage for the
search space because they are constructed so that their discrepancy would be low. The
application of quasi—random sequence enables our methodology to retrieve the same num-
ber of local minima by sampling less points than uniform random sequence. This becomes
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Figure 10.1: Sampling 500 points

more obvious for low dimensional problems. In Figure 10.1 we illustrate the difference
between sampling 500 points using a Halton sequence and a uniform number generator.
Notice, the “clusters” formed by the 500 uniform random numbers.

10.4.2 Step 2: Concentrate samples around minima

For the concentration step we use two alternatives. The first, and more straightforward,
is to allow each sampled point to move for a fraction of the negative gradient direction.

x5 < x5 — aV f(xy)

This give rise to a very important parameter a which controls the step that will be taken
in this direction. One cannot find a unique value for a that would produce reasonable
concentration for every objective function, and this parameter affects greatly the final
outcome. On the other hand one can utilize a local optimization method and apply it
for a few iterations for every sample point. The main defect for this approach is that
local optimizers also produce “jumps” at the search space, meaning that a starting point
may converge to a local minimizer far away, that does not belong to the same region
of attraction. This problem is handled by a local-local optimization algorithm that is
presented in the next chapter of this thesis. In Figure 10.2 we illustrate an example of
poor choice of a parameter opposed to an example of good choice of a. We also present
the application of a local search from each sample point'.

10.4.3 Step 3: Clustering

We are now ready to present the basic contribution of our work in the clustering global
optimization framework. In order to solve the clustering around minima phase, we utilize

spectral information of the concentrated sample with the Global k-means algorithm (and

IThe same overall cost
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Figure 10.2: Sampling 200 points, concentrating using a step on negative gradient

its median modification). The clustering procedure is rather straightforward and we can
distinguish two phases:

C1 Estimate the number of clusters £ formed by the concentrated sampled points.
C2 Apply global k-means (or a proposed variation) seeking k clusters.

In the first phase the main computational task is to calculate the eigenvalues off a sym-
metric association matrix based (a) on the positions of the reduced sample and (b) on the
information we provide to associate/disassociate two samples. By analyzing the eigen-
values we can derive an extremely accurate approximation of the number of clusters
(hopefully the number of minima). We can also use this association matrix as an input
for the second phase. The second phase is essentially the Global k-means algorithm in
his original form, utilizing Euclidean distances, and with one modification, operating on
association matrix.

In the next paragraphs we will analyze the basic components of out clustering ap-
proach.

Spectral estimation of the number of clusters — The eigengap

Spectral clustering is a recently emerged clustering technique that has its origins in spec-
tral graph partitioning. We will present the basic algorithm as it was presented in [Ng,

157



Jordan| although we only use the first three steps in our method. In these steps we
present the calculation of the association (from now on similarity) matrix. A short listing
of the estimation of the number of cluster algorithm using spectral information, is shown
in Algorithm 10.36. The estimated number of cluster using the eigengap heuristic has

Algorithm 10.36 Spectral Clustering
Input: A set of points X = z1,2s,...,0n,2; € R?

A small number o
Output: The estimated number of clusters k.

1. Form the affinity matrix A € RV*Y defined by A;; = exp(—||z; —x;||*/20?) if i # j,
and A“ =0

2. Define D to be the diagonal matrix whose (i, i)-element is the sum of A’s i-th row,
and construct the matrix L = D~Y/24D~1/2

3. Calculate and sort decreasingly the eigenvalues of L. Let e, es,...,eyx be the sorted

eigenvalues.
4. Calculate the differences 6; = e;.1 —e;,1=1,...,N — 1.

5. Find the maximum eigengap: k = argmazy=1,. n-19;

its origins in graph theory and especially in graph partitioning theory. There are several
justifications for this procedure. The first one is based on perturbation theory, where
we observe that in the ideal case of k£ completely disconnected clusters, the eigenvalue 0
has multiplicity %k, and then there is a gap to the (k + 1)-th eigenvalue \;y; > 0. Other
explanations can be given by spectral graph theory. Here, many geometric invariants
of the graph can be expressed or bounded with the help of the first eigenvalues of the
graph Laplacian. In particular, the sizes of cuts are closely related to the size of the first
eigenvalues.

In Figure 10.3 we present a simple application of the eigengap heuristic. The orig-
inal clustering problem is presented in Figure 10.3(a), where we can clearly distinguish
three clusters. After calculating the matrix L and its eigenvalues we obtain the plot of
Figure 10.3(b) that shows the eigenvalues in decreasing order as well as their differences.

Calculation of o

One of the most important parameters for the calculation of the affinity matrix is the
denominator ¢ in expression exp(—||z; — z;]|*/20%). An inappropriate choice for this
parameter may affect the ability to distinguish clusters and hence determine their number
k. In essence this quantity identifies a distance threshold that separates clusters, hence
controlling the width of the neighborhoods. Small values of o dictate that cluster points
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Figure 10.3: Number of cluster estimation using spectral information, on a simple example

must be closer together than large values. Essentially, the value of o defines the magnitude
of scaling the input data. Consider the example in Figure 10.4 where the same data set
is presented with two different scales (zoom levels). In Figure 10.4(a) the cluster inside
the dashed rectangle is obvious. On the other hand, in Figure 10.4(b) we draw the same
cluster using different scaling. In this way we can visualize the way the parameter o
affects the clustering algorithm.

In order to automatically select an appropriate value for o we calculate the distances
for every data point to it’s k-nearest neighbors. We then average these k distance for every
point to obtain the mean distance from it’s k-snearest neighbors. Finally, we average the
mean distance over all data points and obtain the o. The algorithm for ¢ calculation is
shown in Algorithm 10.37.

From the Algorithm 10.37 we introduce the value of Inei as the basic parameter of
our clustering approach. The final value of ¢ depends solely on the quantity Inei. In
Figure 10.5 we present 200 sampled points well concentrated around the local minima
of Ackley’s function. We have applied our clustering method (Algorithm 10.35) on this
example for Ine: = 2, 3,4, 5, and study the impact of this parameter on the final clustering

159



0.8 PY
L e © ®
0.75 PY Y
°
07 @ [
° 'S i
065 ® °o®
®e
06f Py
°
05 ‘ ‘ ‘ ‘ ‘
0.25 0.3 0.35 0.4 0.45 0.5
(a) Normal scale (b) Zoom-in one cluster

Figure 10.4: A sample dataset

Algorithm 10.37 The calculation of o

Input: D: NxN matrix containing the distance between sampled points, N: Sample size,

Inei: Number of neighbors for the calculation of o
Output: o

1. For i=1 to N do
For j=1=1 to N do

dis(j) = D;,
End For
diSgops < sort(dis)
Inei

E dzssort
I net

End For
N

1 .
o= N;m(z)

outcome. Notice that, out main interest here is the ability to obtain the number of clusters
by just examining the eigenvalues of the affinity matrix. Since the clusters are well
separated and many starting-sampled points have reached each minimum (approximately
8 points per local minimum), all choices of Inei lead to reasonable estimates to the number
of clusters (and hence minima). Choosing Inei = 2 results in 44 clusters (Figure 10.6),
where with Inei = 3 the number of predicted clusters is reduced to 30(Figure 10.7).
Averaging among the 4-th and 5-th nearest neighbors though, produces the correct number
of clusters which is 25 (Figures 10.8 and 10.9). It is obvious that when the clusters are
properly distinguished, and a modest number of sampled points are concentrated around
each minimum, choices Iner = 4 and Inet = 5 produce the best results.

On the other hand, we have studied the case that the sampled points are not well
concentrated around local minima. This case is shown in Figure 10.10. In this setting we
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have slightly transformed the initial sample, so the clusters are not yet formed. In this
case choosing I'net = 2 or Inei = 3 lead to an exact estimation of the number of clusters
(Figures 10.11, 10.12), where averaging for 4 and above nearest neighbors concludes to
the poor choice of one cluster (Figures 10.13, 10.14). We can expect that kind of behavior,
due to the almost uniform distribution of the sampled points.

As a rule of thumb we state that when we have an a-priory knowledge for the ratio of
the sampled points to number of local minima, we can use it to define a proper value for
Inei. In most cases though a value of 3 seems adequate.

N N

= 1 05

=

Figure 10.5: Ackley’s function 200 starting points well concentrated around minima
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Figure 10.6: Using 2 neighbors for affinity matrix (k = 44)

Including gradient information

Clustering points around possible minima of a multimodal function, provides a signifi-
cant source for information: the objective function itself. By this we mean that we do
not just identify groups of points in n-dimensional Euclidean space, but we seek rela-
tionships between sample points, that eventually will lead to the same local minimum.
Both the function values and the gradient vectors can assist in an attempt to associate
or disassociate sample points in addition to their Euclidean distance.
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Figure 10.7: Using 3 neighbors for affinity matrix (k = 30)
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Figure 10.8: Using 4 neighbors for affinity matrix (k = 25)
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Figure 10.9: Using 5 neighbors for affinity matrix (k = 25)

Consider a local minimum and the corresponding region of attraction. Also consider
two points inside the region of attraction and near the specific minimum. Their negative
gradient directions, will point to that minimum and by following it they will both approach
the local minimum. On the other hand consider two that points belong to different regions
of attraction but their Euclidean distance is small. In this case their negative gradient
directions will draw that points apart, each one near the corresponding minimum. This
is depicted in Figure 10.15, where the points z; and x, belong to the same region of
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Figure 10.10: Ackley’s function 200 starting points. Slightly transformed sample
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Figure 10.11: Using 2 neighbors for affinity matrix (k = 25)
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Figure 10.12: Using 3 neighbors for affinity matrix (k = 25)

attraction, and their negative gradient directions (green arrows), drive them near the
same minimum. This is not the case considering the pairs x; with y; and o with yo. It
is clear from the figure that following the negative gradient, will lead them to different
minima.

The idea is simple: Two points are associated if following the negative gradient, reduces
their distance.

Consider two transformed points x1 and z2. For each point, perform an infinitesimal
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Figure 10.13: Using 4 neighbors for affinity matrix (k = 1)
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Figure 10.14: Using 5 neighbors for affinity matrix (k = 1)

Figure 10.15: Example of gradient association criterion

step along the negative gradient direction and obtain y; + 21 — eV f(z1) and yy <«
xy — €V f(xg). If the distance |lya — y1]| < ||za — 21|| then points z; and x5 tend to
approximate each other by following the negative gradient direction. On the other hand,
if ||y2 —y1|| > ||z2 — z1|| then a small step along the negative gradient dissociates the two
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Figure 10.17: A plot of pairwise affinities between samples using Ackley’s function

Global k-means Algorithm

Global k-means algorithm [?] is an incremental approach to clustering that dynamically
adds one cluster center at a time through a deterministic global search procedure con-
sisting of N (with N being the size of the data set) executions of the k-means algorithm

from suitable initial positions. Global k-means attempts to find the global minimum of
the clustering error metric.

N M
E(my,ma,...,my) = ZZI(% € Ci)llz; — mk||2a (10.2)



‘‘‘‘‘‘‘‘‘‘

E3

Figure 10.18: Sorted eigenvalues of the affinity matrix and the corresponding eigengap,
without gradient information

wwwwwwwww

h, . . . . . . . . A
i = = r = = o = = 73

Figure 10.19: Sorted eigenvalues of the affinity matrix and the corresponding eigengap
using the gradient information

Figure 10.20: Gradient vector plot of the concentrated sampled points

where I(Cond) = 1 if Cond is true and X = z1,29,...,2y,2; € R? is the data set
that is going to be partitioned into M disjoint clusters C1,Cy,...,Cy; with centers
my, Mo, ..., My respectively.

More specifically, to solve a clustering problem with M clusters the method proceeds
as follows. The method starts with one cluster (k = 1) and find its optimal position
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which corresponds to the centroid of the data set X. In order to solve the problem with
two clusters (kK = 2) N executions of the k-means algorithm are performed from the
following initial positions of the cluster centers: the first cluster center is always placed at
the optimal position for the problem with & = 1, while the second center at execution n
is placed at the position of the data point x,(n = 1,..., N). The best solution obtained
after the N executions of the k-means algorithm is considered as the solution for the
clustering problem with k& = 2.

In general, once the solution for the (k —1)- clustering problem is found, the algorithm
attempts to find the solution of the k-clustering problem by performing N runs of the
k-means algorithm with %k clusters where each run n starts from the initial state (mj(k —
1),... ,m’(kk_l)(k —1),x,)% The best solution obtained from the N runs is considered as
the solution (mj(k),...,mj(k)) of the k-clustering problem. By proceeding in the above
fashion a solution with M clusters is finally obtained having also found solutions for all
k-clustering problems with £ < M.

Global k-means algorithm main advantage is that is independent of any parameter
initialization. Also it is stated by its authors that is ezperimentally optimal, in a sense
that is equivalent to numerous random restarts of k-means.

10.5 The proposed algorithm

The proposed algorithm is presented in a complete form in Algorithm 10.38. The user
must set the switches that define the sample strategy, the concentrating method, whether
or not to use gradient information.

2m;‘(k:) is the j-the center computed when the k—clustering problem is solved
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Algorithm 10.38 Proposed clustering algorithm

Input:  f: Minimizing function, z/, zu: Problem’s bounds, N: Sample size,
Isampl: Defines sample strategy,
Ired: Switches between the concentrating method,
Tuseg: Use gradient information,
Iclust: Switches between global kmeans/kmedoids,
Inei: Number of neighbors to calculate o

S1: If Isampl = 1 Then { Sample N starting points }
X <« Uniform(N, xl, zu)
Else
X <« Halton(N, zl, xu)
End If

S2: If Ired = 1 Then { Concentrate sample points }
For i=1 to N
X (i) « Local(X (i), iter)
End For
Else
For i=1 to N
For k=1 to iter
X (i) = X(i) —aVf(X(2))
End For
End For
End If

S3: A « Affinity(X, Tuseg, Inei)
le1, ..., e,] < Eigenvalues(A)
Sort [eq, ..., e,]| in decreasing order and calculate maximum eigengap at k
If Iclust = 1 Then { Apply global k-means/medoids }
[M, Dis] < Gkmeans(X, k)
Else
M <+ Gkmedoids(A, k)
End If
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Algorithm 10.39 Algorithm A ffinity

Input:  f: Minimizing function, X: Sampled points, N: Sample size,
luseg: Use gradient information
Inei: Number of neighbors for the calculation of o

Output: A: Affinity matrix

S1: For i=1 to N do
For j=1=i to N do
Dij = [Xi — Xjlla
End For
End For

S2: For i=1 to N do
For j=1=1 to N do
dis(j) = Dy
End For

diSsort < sort(dis)
1 Iney

] d sor k
m(i) < Ineikz:; 1Ssort(K)
End For

1 N
g = m;m@)
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10.6

Figure 10.22: An illustration of our approach for Ackley’s test function
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(e) Apply global k-means using k = 32 (f) Apply global k-medoids using k =
32

Implementation and numerical experiments

We have implemented our clustering approach along with the overall global optimiza-
tion framework in Matlab. We used the Global K-means algorithm implementation from
http://lear.inrialpes.fr/“verbeek/code/ and modified the source code to imple-

ment the medoid modification.
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Figure 10.23: An illustration of our approach for random quadratics test function
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(¢) Apply global k-means using k =5 (d) Estimated k using gradient infor-
mation (k = 32)

(e) Apply global k-means using k = 10 (f) Apply global k-medoids using k =
10
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CHAPTER 11

A LOCAL SEARCH WITH “STRICTLY”
MONOTONIC DESCENT AND ITS APPLICATION
IN GLOBAL OPTIMIZATION

11.1 Introduction

Stochastic methods based on multistart, that employ a clustering scheme to separate
different regions of attractions have proven to be quite successful. The research in this
direction was pioneered by Rinnoy Kan and its group in a series of articles eg.[]. Various
authors followed up this line, see for example Torn and Viitanen, Schoen and Locatelli,
Aliand Storey and a host of methods and software implementations have appeared in the
literature. A common feature of these methods is the use of a local search (LS), i.e. a
procedure for locating a local minimum. The characteristics of this procedure play an
important role as far as the performance and the effectiveness of the global method is
concerned. If by z* = L(x) we denote that a local search started at point z, will end up
finding the local minimizer x*, then the region of attraction of a minimizer £* may be
defined as the set A(L,z*) = {x;,2* = L(x;)} and depends in addition to the position of
the minimum z*, on the LS procedure.

If * and y* are distinct local minima A(L,x) N A(L,y) # O provided that the local
search is deterministic. Stochastic LS procedures create overlapping regions of attraction
a fact that in the framework is rather undesirable. Also regions of attraction may be
contiguous or not. Evidently a non—contiguous region can not be described by a single
cluster, and hence the existence of such regions may influence the performance of the
method negatively. So a proper LF for clustering should be such that the regions of
attraction that it creates are contiguous. Vrahatis et al have provided a tool for visualizing
the regions of attraction. An interesting fact is that all of the most successful LS search
create disjoint regions. Hence a LS with contiguous regions of attraction would be very
useful for clustering methods.
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Find all z; € S C R" that satisfy:
xf =argmin f(z), S;=SnN{z|lz—z]|| <e} (11.1)

TES;
S is considered to be a bounded domain of finite measure and € a positive infinitesimally
small number. This problem appears frequently as a subproblem in a variety of scientific
applications. Local search procedures play important role in most of the robust global
optimization algorithms.

11.2 Motivation towards a new local search

In their seminal paper Kan and Timmer [133] introduced two local searches mostly for
theoretical reasons. The first one was called strictly local search that generates sequences
of points x; and descent directions p; such that

Tpy1 = 2 +agpy (||pr]| = 1,0, > 0) (11.2)

which converges to a stationary point and moreover

fxr + Bpr) < flz + apy) (11.3)

for all £ and all o, 3. In order to derive a more tractable local search, since strictly
local search cannot be verified computationally, they defined an e-descent procedure that
satisfy (11.2) and moreover

Flag +iepy) < flan + (0 — Depy) (z —1,2,... [%}) (11.4)

The authors use this e-descent procedure in order to prove that this local search when
started from a point inside the proper level set that contains the minimum should always
converge to that minimum (see Theorem 6 in [133]). When the authors present their
computational results in [134] they apply a local search with practically far behavior
from the e-descent procedure. However to our knowledge this is the only reference in the
bibliography that reveals the need (theoritical) to define a strictly descent local search
algorithm.

In the spirit of [133], we present a special local search which we are going to call
Infinitesimal gradient descent and is equivalent to the e-descent procedure.

We indent to use Algorithm 11.40 as a model local search with specific properties, in
conjuction with a common local search that combines quasi-Newton updates (specifically
BFGS) with a simple backtracking local search. For demonstration we will use the well
known Ackley’s function [] inside the bounds [—1.5,1.5]? where nine minima exist. We
have chosen uniformly random some starting points inside [—1.5,1.5]* and performed
local searched using infinitesimal gradient descent and the common BFGS-backtracking
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Algorithm 11.40 Infinitesimal gradient descent
Let z;, the current iterate and € > 0 a small number:

1. Set Pk = —Vf(l‘k)
2. Set X1 = ) + €pg

3. If termination criteria are met stop else goto 1.

scheme. In Figures 1(c) and 1(d) we present contour drawing of Ackley function where
the starting points are connected with a blue line to the ending points (minima). It is
obvious from Figure 1(c), were the infinitesimal gradient descent was applied, that all
local searches ended up to the minimum in the same basin, whereas in Figure 1(d) we
can clearly see jumps from one basin to another. Also the fraction of starting points
that resulted in the minimum of the same basin, to the total number of minima is in
direct correspondence to the relative size of the basin itself when infinitesimal local search
is applied. Another observation is that the mean distance from starting points to the
minimum, which is shown in Figures 1(c), 1(d) using red cycles is also is also proportional
to the relative size of the basin of the specific minimum. Hence, we can easily deduce that
the application of a strictly local search, allows a better “topographical” mapping of the
underlying function.

Another advantage of a strictly local search is displayed in Figures 1(e), 1(f). In these
figures we attempt a cartography of the regions of attraction using the aforementioned lo-
cal search procedures. It is clear that the strictly local search produces contiguous regions
of attractions which approximate very closely the basins of attraction of the corresponding
minima, whereas common local search result in discontiguous regions of attraction.

In order to illustrate the significance of a strictly local search in a global framework
consider the case where for each local minimum we create a gaussian function that de-
scribes the region of attraction. Let xy, xo, ..., z,, the starting points that a local search
L maps to a minimum z*. Then the gaussian can be defined as:

1 1

N("L‘; K, E) = (27’[’)"/2 |Z

exp(—0.5 (z — p)"' Sz — p));

o

where ¥ = 23" (z; — 2*)T(z; — 2*) and p = L, We have performed different local
m 1= m

searches from random initial points, recorder the minima obtained and constructed the

gaussians per minimum. In Figure 11.2 we present plots of these gaussians for different

local searches: (i) classical BFGS, (ii) steepest descent with very small step, (iii) the

proposed methodology.
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(p) Steepest descent + Infinitesimal (q) BFGS + Armijo backtracking
step

(r) Steepest descent + Infinitesimal (s) BFGS + Armijo backtracking
step

Figure 11.1: Regions of attraction

11.3 Description of the new local search

The local search presented in this work belongs to the line search framework. The choice
of the search direction will be determined be the algorithm used (gradient descent, New-
ton, Quasi-Newton) and it is not discussed here. It is the line search part that produces
sufficient descent for the local search that has to be modified in order ti match the re-
quirements imposed in previous section. In this section we will present the necessary
modification of the line search step, so that the overall local search algorithm (regardless
the search direction selection) will lead to the “nearest minimum?”.

176



(a) BFGS + Armijo back- (b) Infinitesimal gradient de- (c) Proposed local search
tracking scent,

Figure 11.2: Contour plot of the gaussians around minima

11.3.1 Original idea

Suppose that s is a descent direction at z, i.e. sTVf(z) < 0. We want to minimize
f(xz 4+ As) with respect to A, in such a way that the minimum is the same with the one
that would be found via a steepest descent with infinitesimal step. In addition we do not
want to take infinitesimal steps, since convergence will be deteriorated and of course we
want to avoid large steps, since otherwise distant local minima may be recovered. The

Armijo condition:

flz+As) < f(z)+ pAsT V()
bounds the step from above, and guarantees sufficient descent. We will not use the Wolfe
condition to bound the step from below since this bound may force a too high lower
bound. Instead make a grid on the permissible values of A as follows:

-1 min(1, max(1, |z])
=1

Ai

)

5]

where v is the number of allowed values of A, and p > 1. Both v, u are set by the user.

Typical values are v = 10, u = 1.8. The min(1, _max|(51|,|z\)

typical size. This choice guarantees that finite steps are taken, and preference is given to

art is to adjust to the problem’s
p ] p

the area close to z. This is illustrated in Figure 11.3, where on the left side we see the
points along the direction without the scaling factor and on the left side the scaling factor
is applied. It is obvious from observing the figures that

The first A\; that meets the Armijo condition may be taken. Alternatively, more steps
satisfying Armijo may be taken, as long as no increase in the function’s value is observed.
It is implicitly assumed that this line-search will be used in conjunction with a Newton
type of method, where A = 1 is a useful choice. The grid suggested above for A takes on

as the n' value min(1, W) which guarantees that A < 1. If Armijo condition is not
satisfied for all 7 = 1, ..., v then we scale the maximum step to f;;—ill min(1, %), and

repeat the process. Keeping in mind the above analysis a first algorithm is presented in
Algorithm 11.42.

Figure 11.4 illustrates the behavior of Algorithm 11.42 in two cases. In the first case
the desired minimum is missed. We also present the line search at the first iterate.

177



15F >~

0.5
-~
of
-0.5
05 0 0s 1 15
X X
(a) No scaling factor: Contour (b) With scaling factor: Contour
-60 . . . . ~70 — .
/\/_/ éﬁ
651 J P
65 /\/ sl r—— |
l o
N e _80
-75} <7
-80 -85
-85
-90
-90
“es|
-95
-100 . . . . -100
0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2

(¢) No scaling factor: Along search direction  (d) With scaling factor: Along search direction

Figure 11.3: The significance of scaling factor min(1, %)

178



Algorithm 11.41 New local search: Version 1

Input:
x: Current iterate
f: Function to be minimized
d: Descent direction from the outer Newton—like local search
p: Armijo rule parameter
v > 0: Method’s parameters
Output:
2’ Next iterate, o: Line search step , fc: Function calls

1. Initialize:
scale < 1, fc <+ 0, term < false
2. Main Step:

while term=true do
for i=1, v do
\; < scale - l’jy—:ll - min <1, —maxf‘l(iHIH))>
if f(x+ \Nid) < f(z) + pXi - dEV f(x) then { Bellow p line }
if f(x + Nd) > f(z + N\i_1d) then { No improvement }
o — N1
2+ x+ad
term <— true, break
end if
else { Above p line }
a4— A1
' +—x+ad
term < true, break
end if
fe+— fe+1
end

scale < scalef::,—:ll - min <1, W)

end
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Figure 11.4: Illustrative behavior of Version 1

11.3.2 Including gradient information

In the case off differentiable objective function, gradient information can be used to stop
the forward looking line search even though the function values are decreasing. Gradient
information provide the necessary conditions to stop even in the bad case presented in
Figure 11.4.

The idea is simple and is illustrated in Figure 11.5. Compare the dot product of the
search direction to the starting point with the dot product of the search direction to every
trial point on the line. The intuition is that if a trial point overpass a local minimum
the gradient vector will still point to its direction. In Figure 11.5 the 7-th trial point is
the first trial point that the dot product of its gradient to the search direction is positive
(first red line). All trial points before that have negative corresponding dot product (green
lines). In this way even though a decrease in function value is achieved, the algorithm is
stopped from considering further points.

The modification of the gradient criterion is shown in Algorithm 11.42.
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Algorithm 11.42 New local search: Version 2 with gradient information (Main Step)

1. Main Step:

while term=true do
for i=1, v do
A\ < scale - L‘;j - min (1, %)
if f(z+ \Nid) < f(z) + pA\; - d"V f(x) then { Bellow p line }
if f(z + \id) > f(x + A\i—1d) then { No improvement }
o N1

7 +—x+ad

term <— true, break

else { Bellow p line and improving }

end if
else { Above p line }
a4 N1
' +—x+ad
term < true, break
end if
fe fe+1
end
scale < scaleﬁi—:ll - min (1, %)

end
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Figure 11.5: Illustration of the gradient information

11.3.3 Accelerating: A way of choosing v

In the above analysis we chose a constant value for v. This value plays important role
regarding the efficiency of the line search. Keep in mind that the proposed algorithm
performs up to v function evaluation per iteration. The upper bound of v function calls
is reached when taking the full step. Experience from line search algorithms, especially of
the Newton class, suggest that when close to the minimum the line search usually takes
full steps.

In order to avoid the further computational cost, we devised another way of optimally
choosing the value of v. This estimation is based on the magnitude of the derivative at
the starting point of the local search and significantly reduces the value of v when close
to minimum. The requirement that large derivatives should correspond to small steps,

may be expressed as:
1

1 sV f(z)
Note that as s'Vf(z) — oo, h — 0 and that as s'Vf(z) = 0, h — 1 Then we may
demand that A\; = h, i.e.
w—1 max(1, |z|) 1
1 pr—
) T e

h

pr—1

from which we may determine n. In addition we must safeguard n so that n € [1,10], the
upper bound (10) being there for both numerical and reasons of efficiency.
All the above are displayed in Algorithm 11.43.

11.4 Experiments and comparison

In order to estimate the efficiency of the proposed line search both in terms of (a) quality of
the solution and (b) function calls, we conducted a plethora of experimental comparisons.
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Algorithm 11.43 New local search: Version 3 choosing v (Initialize)

1. Initialize:

scale < 1, fe<+ 0, gc+ 0

1
h < =V

. =l

sC < min (Lmax (1’ ||Vf(w)ll))

Vv , v+ |min (VI M)J
) o log(n)

v =max (|(/ —v) - >0t 4 ] 1)

2. Main Step:

11.4.1 Efficiency vs. Cost

First, we compared a classical backtracking algorithm to the proposed methodology, on
several test functions and random starting points. For all experiments BFGS update
was used to obtain the hessian approximation. The goal for each algorithm is to obtain,
from the same starting point, the same minimum that the infinitesimal gradient descent
would. We measure the starting points that lead to the correct minimum, and also the
total number of iterations (line search iterations) and the total number of function calls.

Table 11.1 holds the results for the Armijo type backtracking local search. Notice that
almost half of the starting points fail to lead to the correct minimum, by the application
of the local search. On the other hand it took 498111 total function evaluations to locate
these minima. In Table 11.2 we present the same results for the case of our proposed line
search methodology. We can see that the percentage of correct classified starting points,
is equal to 88.9%, much more improved than the previous case. The price we pay for
this performance is a total of 1294234 function calls which is more than double from the
Armijo case. We must comment here that the criterion for selecting starting v worked
very well since we expect almost ten times the cost of the Armijo case.

11.4.2 The proposed search in a global framework
Density Clustering

Typical Distance Clustering
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Table 11.1: Results for the armijo type backtracking line search

Armijo Type Local Search
Function Correct | Error | Iters. | Fun. Calls | % Success
Ackley 555 445 15704 24978 55,50%
Giunta 588 442 12013 15855 57,09%
Guillin 477 523 17764 29974 47,70%
Levy3 1285 715 20783 31624 64,25%
Rastrigin 599 401 9240 12822 59,90%
Griewank 695 305 10244 13422 69,50%
Bird 704 296 14104 19960 70,40%
Levyb 1272 728 21476 31377 63,60%
Rot. Quad 539 461 12001 18408 53,90%
Holder 597 403 12235 17430 59,70%
Liang 561 439 11671 18912 56,10%
Piccioni 726 274 24874 44702 72,60%
Shekel 145 155 3757 7493 48,33%
MO 717 1283 | 132739 142455 35,85%
Lager 581 419 11342 16537 58,10%
Tube 727 273 10034 13719 72,70%
Mich 178 322 11472 16222 35,60%
Dejong 301 199 18417 22221 60,20%
Sum / Ave. | 11247 | 8083 | 369870 498111 57.8%

Table 11.2: Results the proposed line search, v = 10, yp = 1.1

Proposed local Search n=10, m=1.1

Function Correct | Error | Tters. | Fun. Calls %

Ackley 878 122 12498 63081 87,80%
Giunta 905 95 10647 71457 90,50%
Guillin 891 109 11276 69199 89,10%
Levy3 1901 990 20619 145414 95,48%
Rastrigin 1000 0 9187 56269 100,00%
Griewank 996 4 9785 69632 99,60%
Bird 910 90 11907 76377 91,00%
Levyb 1811 189 20220 31377 90,55%
Rot. Quad 908 92 10884 68136 90,80%
Holder 993 7 11739 73539 99,30%
Liang 698 301 11660 78622 69,87%
Piccioni 996 4 8914 77807 99,60%
Shekel 246 54 3407 20818 82,00%
MO 1188 812 20659 132656 59,40%
Lager 884 116 11226 71135 88,40%
Tube 1000 0 9040 60031 100,00%
Mich 355 145 12706 56807 71,00%
Dejong 484 16 17469 71877 96,80%
Sum / Ave | 17044 | 3146 | 223843 1294234 88.90 %
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Table 11.3: Results the proposed line search, v = 20, = 1.1

Local Local Search n=20, m=1.1
Function | Correct | Error Iters. | Fun. Calls %
Ackley 763 237 11928 100858 76,30%
Giunta 911 89 9981 120457 91,10%
Guillin 992 8 10566 115394 | 99,20%
Levy3 1987 13 19312 205563 99,35%
Rastrigin 973 27 8567 94587 | 97,30%
Griewank 908 20 9288 116712 97,84%
Bird 915 85 11145 120009 91,50%
Levyb 1949 51 19064 203544 | 97,45%
Rot. Quad 911 89 10260 111870 91,10%
Holder 958 42 11092 121370 95,80%
Liang 914 85 10971 113345 91,49%
Piccioni 749 251 8991 108966 74,90%
Shekel 249 51 3170 32622 83,00%
MO 1683 317 | 20388 224573 84,15%
Lager 939 61 10651 109857 | 93,90%
Tube 1000 0 8565 102273 | 100,00%
Mich 382 118 12543 89934 76,40%
Dejong 472 28 17070 117007 | 94,40%
Sum / Ave 17655 | 1572 | 213552 2208941 90,8%
Table 11.4: Results the proposed line search, v = 30, = 1.1
Local Local Search n=30, m=1.1

Function Correct | Error | Tters. | Fun. Calls %
Ackley 733 267 13462 46754 73,30%
Giunta 910 90 9744 171806 91,00%
Guillin 1000 0 10261 162841 100,00%
Levy3 1982 18 18675 281502 99,10%
Rastrigin 973 27 8265 135661 97,30%
Griewank 980 20 9078 166388 98,00%
Bird 916 84 10802 167742 91,60%
Levyb 1953 47 18252 279071 97,65%
Rot. Quad 909 91 9943 158114 90,90%
Holder 957 43 10828 171573 95,70%
Liang 923 76 10634 150537 92,39%
Piccioni 265 735 8597 143226 26,50%
Shekel 249 o1 3066 45994 83,00%
MO 1692 308 19803 224573 84,60%
Lager 942 o8 10298 153491 94,20%
Tube 1000 0 8362 146565 100,00%
Mich 397 103 11092 258622 79,40%
Dejong 473 27 16717 162302 94,60%
Sum / Ave. 17254 2045 | 207879 3026762 88,92 %
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Table 11.5: Results the proposed line search, v = 10, = 1.3

Local Local Search n=10, m=1.3

Function Correct | Error | Iters. | Fun. Calls %

Ackley 874 126 11555 61583 87,40%
Giunta 912 95 12891 83760 90,57%
Guillin 896 109 10211 55838 89,15%
Levy3 1910 90 19882 139418 95,50%
Rastrigin 1000 9031 58571 100,00%
Griewank 998 2 9403 72245 99,80%
Bird 913 87 10782 78446 91,30%
Levyb 1811 189 19282 21956 90,55%
Rot. Quad 903 97 9964 69611 90,30%
Holder 995 5 10554 63490 99,50%
Liang 702 298 11782 87584 70,20%
Piccioni 997 3 9021 81703 99,70%
Shekel 250 50 3783 24281 83,33%
MO 1200 800 19826 132526 60,00%
Lager 901 99 10435 69524 90,10%
Tube 1000 0 8991 50724 100,00%
Mich 356 144 11282 55817 71,20%
Dejong 489 12 16822 53632 97,60%
Sum / Ave | 17107 | 2206 | 215497 | 1260710,6 | 89,23%

Table 11.6: Results from density clustering global optimization algorithm

Backtracking + Armijo Proposed Local Search
nloc nliter funcalls nloc nliter funcalls
Ackley 6206 84678 154830 5746 63368 345122
Giunta 2399 30741 46645 1818 21133 143252
Guillin Hills | 124908 | 2166570 | 3927158 | 111144 | 1269789 | 7909498
Levy3 23184 | 254416 | 459374 17628 188569 1362860
Rastrigin 34684 | 381181 | 659551 14600 141949 967831
Griewank 21428 | 240413 | 411082 16921 180315 1277663
Levyb 44963 | 520083 | 867921 52824 563539 3933380
Rotated 7206 91897 158144 6007 69330 444215
Holder 642 9382 17492 507 6996 42525
Bird 8780 139203 | 212122 8140 111726 734121
Piccioni 22619 | 481950 | 946957 13924 127377 1109969
Shekel 401 5335 13284 415 5268 36305
297420 | 4405849 | 7874560 | 249674 | 2749359 | 18306741
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Table 11.7: Results from typical distance clustering global optimization algorithm

Backtracking + Armijo

Proposed Local Search

nloc nliter funcalls nloc nliter funcalls

Ackley 1482 17721 105300 1253 11621 134148
Giunta 1754 22627 101070 1018 11597 114404
Guillin Hills | 7833 135865 246273 6712 116422 295439
Levy3 7550 76766 491131 5811 58747 687385
Rastrigin 8655 90680 635306 5807 52862 628857
Griewank 9254 94480 578331 7975 77468 903184
Levyb 8628 94510 648951 7255 73603 935423
Rotated 4046 52795 262429 3666 43508 418137
Holder 469 8547 39160 300 5324 46395
Bird 6928 109437 476559 7266 87867 907879
Piccioni 13208 287511 1230074 | 11839 106798 1525484
Shekel 490 6551 44156 357 4397 50250
DeJong 51333 | 1896462 | 4443491 6787 240666 1856475
Lagermann | 20697 234094 1103016 | 24797 | 281443 2453179
Tubel max 9664392 | 38755168 | max 8835538 | 84807362
Michalewicz | 420440 | 9803089 | 24960763 | 420901 | 1,1E+07 | 59374939

562767 | 22595527 | 74121178 | 511744 | 20790077 | 155138940
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CHAPTER 12

STOPPINC RULES

For a broad class of global optimization problems, it can never be verified in finite time that
the global optimum is identified with certainty. Therefore a need emerges for stopping
rules which decide if the expected benefit of further searching outweighs the required
computational effort.

Stopping rules have to decide for the path between the Scylla of computational effi-
ciency and the Charybdis of the completeness warranty. In other words their objective
is to collect the complete set of the existent local minima with the least computational
effort. The ideal case would be to stop the search as soon as all the minima have been
discovered. Since this is not possible, further searching is necessary to ensure that there
are no left—out minima, a fact that inevitably leads to a compromise. So the stopping
rules, depending on the specific problem at hand, negotiate either for efficiency or for a
degree of completeness.

Some of the desirable properties of stopping rules ([Boender, Rinnooy Kan and Ver-
cellis]) are:

1. Sample dependent: The actual objective function values and their location, or the
number of times that local optima are identified by a local search procedure, should
be taken into account by a decision rule to terminate a search.

2. Problem dependent: Maximal use should be made of available prior information.
This information may concern, for instance, the number of local optima and the
size of the regions of attraction, or the tail of the distribution of function values.

3. Method dependent: 1f some general algorithmic properties of the applied method are
known, these should be incorporated in the stopping rule.

4. Loss dependent: Stopping rules should take into account the seriousness of the cost
incurred if the search is terminated before the global optimum is identified.

5. Resource dependent: Evidently the computational effort should be kept as small as
possible.
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The above requirements can be met by postulating an appropriate probabilistic model of
the sampling information.

12.1 Stopping rule for multistart-like algorithms

The task of locating all the local minima of a continuous function inside a box-bounded
domain, is frequently required in several scientific as well as practical problems. We are
interested in stochastic methods based on Multistart, a brief review of which follows.

The Multistart Algorithm
Step—0: Set 1 =0 and X* =
Step—1: Sample = at random from S

Step—2: Apply a deterministic local search procedure (LS) starting at x and concluding
at a local minimum x*.

Step—3: Check if a new minimum is discovered
If z* ¢ X* then

increment: 7 <17+ 1
set: o] = 2"

add: X* « X*U{z!}
Endif

Step—4: If a stopping rule applies, STOP

Step—5: Go to Step-1

Good stopping rules (Step-5)are important and should combine reliability and economy.
A reliable rule is one that stops only when all minima have been collected with certainty.
An economical rule is one that does not waste a large number of local searches to detect
that all minima have been found. Several stopping rules have been developed in the past,
most of them based on Bayesian considerations ([166, 12, 10, 14]) and they have been
successfully used in practical applications. A review analyzing the topic of stopping rules
is given in the book by Térn and Zilinskas ([149]). We refer also to Hart ([68]) noting
however that his stopping rules aim to terminate the search as soon as possible once
the global minimum is found and they are not designed for the retrieval of all the local
minima. In this chapter we present a new stopping rule based on an a-priori hypothesis
concerning local minima. This hypothesis render the stopping criterion most suitable for
stochastic clustering global optimization methods. It would be helpful at this point to
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state a few definitions and terms to be used in the rest of the article. Let w be the number
of minima of a given function, k£ be the number of local searches of a multistart-like (i.e.
clustering) algorithm and m be the number or recovered minima up to the k—th local
search.

12.2 Widely used Stopping Rules

If by w we denote the number of recovered local minima after having performed a number
of t local searches, then the estimate of the fraction of the uncovered space is given by
([166]):

w(w+1)
Plw) = ——=. 12.1
) = (12.1)
The corresponding rule is then:
Stop when P(w) < e (12.2)

¢ being a small positive number. Boender et al [12] showed that the estimated number of

local minima is given by:

w(t—1)
= 12.3
West, f—w—29 ( )
and the associated rule becomes:
1
Stop when wegt — w < 3 (12.4)

In another rule ([14]), the probability that all the local minima have been observed is

given by:
o (t—1—i
E—— 12.5
I () 29
leading to the rule:
S (t—1—i
St h — | > 12.6
opweng(t_l_i_i) T ( )

7 tends to 1 from below.

12.2.1 Recent Stopping rules [85]

Double-box stopping rule The covered portion of the search domain is a key element
in preventing wasteful applications of the local search procedure. A relative measure for
the region that has been covered is given by:

C:

() (12.7)

m(5S)

=1

where w is the number of the local minima discovered so far. The rule would then instruct
to stop further searching when C' — 1.
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The quantity ((Sl)) is not known and generally cannot be calculated, however asymp-

totically it can be approximated by the fraction f’, where L; is the number of points,
started from which, the local search led to the local minimum z}, and L = Y | L,
is the total number of sampled points (or equivalently, the total number of local search

applications). An approximation for C' may then be given by:

Z - (12.8)

- is by definition equal to 1, and as a consequence the covered

h

However the quantity Y | &
space can not be estimated by the above procedure. To circumvent this, a larger box S5
is constructed that contains S and such that m(Sy) = 2 x m(S). At every iteration, 1
point in S is collected, by sampling uniformly from S and rejecting points not contained
in S. Let the number of points that belong to Ag = Sy — 5 be denoted by Lj. The total
number of sampled points is then given by L = Lo+ Y., L; and the relative coverage
may be rewritten as:

oo ShmA)

(
m(A;)

iy asymptotically is approximated by %, leading to:

w Lz
2_: - (12.10)

After k iterations, let the accumulated number of points sampled from Sy be My,

m

Ms

(12.9)

m
=1

The quantity ™

| Z

k of which are contained in S. The quantity then: §, = k has an expectation value
<0 >p= g 1 21 1 0; that asymptotically, i.e. for large k, tends to ((52)) = %

The variance is given by 02(§) =< 6% >, — < § >2 and tends to zero as k — oco. This
is a smoother quantity than < 0 >;), and hence better suited for a termination criterion.
We permit iterating without finding new minima until o(8) < po?,,,(8), where o7,5:(5) is
the standard deviation at the iteration during which the most recent minimum was found,
and p € (0,1) is a parameter that controls the compromise between an exhaustive search
(p — 0) and a search optimized for speed (p — 1). The suggested value for general use is
p = 0.5. Hence the algorithm may be stated as :

1. Initially set o = 0.

2. Sample from S, until a point falls in .S as described above.

3. Calculate o2(§).

4. Apply an iteration of Multistart (i.e. steps 2 and 3).

5. If a new minimum is found, set: o = po?(§) and repeat from step 2.

6. STOP if 0%(§) < «, otherwise repeat from step 2.
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The Observables Stopping Rule This scheme is based on probabilistic estimates
for the number of times each of the minima is being rediscovered by the local search.
Let Li,Ls,---,L, be the number of local searches that ended—up to the local minima

*

xf,xd, -+, 2k (indexed in order of their appearance). Let m(A;), m(A4sz), - ,m(A,) be
the measures of the corresponding regions of attraction, and let m(S), be the measure
of the bounded domain S. z7 is discovered for the first time with one application of

the local search. Let ny be the number of the subsequent applications of the local search

procedure spent, until 23 is discovered for the first time. Similarly denote by ns, ng, - -+, ny
the incremental number of local search applications to discover x3,x},--- ,x},, i.e., x5 is
found after 1 + ny local searches, x; after 1 + ny + ng, etc. ng, ng,--- are counted during

the execution of the algorithm, i.e. they are observable quantities. Considering the above
and taking into account that we sample points using a uniform distribution, the expected
number ng) of local search applications that have ended—up to z’ at the time when the

" minimum is discovered for the first time, is given by:

m(AJ)
m(S)

Ly =% 4 (n, — 1) (12.11)
The apriori probability that a local search procedure starting from a point sampled at
random, concludes to the local minimum z% is given by the ratio m(A;)/m(S), while
the posteriori probability (observed frequency) is correspondingly given by L,/ > " | L;.
On the asymptotic limit the posteriori reaches the apriori probability, which implies
m(A;)/m(A;) = L;/L;, which in turn permits substituting in eq. (12.11) L, in place
of m(A;) leading to:

(12.12)

withn; =1, J<w—1and Lq(l,w) = 1. Now consider that after having found w minima,
an additional number of K local searches are performed without discovering any new
minima. We denote by ng)(K ) the expected number of times the J™ minimum is found
at that moment. One readily obtains:

Ly

£ = £ =)+ g
i=1""

(12.13)

with £5”(0) = L.
The quantity

w_ [ pw) ey 2
Es(w, K) = %Z (%) (12.14)

tends to zero asymptotically, hence a criterion based on the variance o%(E,) may be stated
as:
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Stop if 0%(Es) < pop,,.(Es)

where o7,,,(Fy) is the variance of Fy calculated at the time when the last minimum
was retrieved. The value of the parameter p has the same justification as in the Double
Box rule and the suggested value is again p = 0.5, although the user may choose to modify
it according to his needs.

The Expected Minimizers Stopping Rule This technique is based on estimating
the expected number of existing minima of the objective function in the specified domain.
The search stops when the number of recovered minima, matches this estimate. Note
that the estimate is updated iteratively as the algorithm proceeds. Let an denote the
probability that after m draws, [ minima have been discovered. Here by “draw” we mean
the application of a local search, initiated from a point sampled from the uniform distri-
bution. Let also 7, denote the probability that with a single draw the minimum located

A
m(As) The P! probability can

m(S)

at x), is found. This probability is apriori equal to 7, =

be recursively calculated by:

- (1 - liyr) P-4 (Z 7r,> L (12.15)

Note that P} =0, and P} = 1. Also P, = 0if [ > m, P =0, ¥m > 1. The rational for
the derivation of eq. (12.15) is as follows. The probability that at the m' draw | minima
are recovered, is connected with the probabilities at the level of the (m — 1) draw, that
either / — 1 minima are found (and the I*" is found at the next, i.e. the m'™, draw) or [
minima are found (and no new minimum is found at the m'h draw). The quantity 22:1 e
is the probability that one of the [ minima is found in a single draw, likewise the quantity
11— Zi: m; is the probability that none of the [ — 1 minima is found in a single draw.
Combining these observations the recursion above is readily verified. Since P! denote
probabilities they ought obey the closure:

> plL=1. (12.16)
=1

To prove the above let us define the quantity s; = 22:1 m;. Perform a summation over [
on both sides of eq. (12.15) and obtain:

ipl ZPl ! Zsl_len__lleislen_l (12.17)
=1 =1

=1

Note that since P _; = 0 and P™ ; = 0 the last two sums in eq. (12.17) cancel, and

m—1

hence we get: > ", P! = l"ill P! . This step can be repeated to show that

m—1 m—k

m 1
PL=> P ,=..=>P =) P=P=1
=1

=1 =1 =1
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The expected number of minima after m draws is then given by:
m
<L>y=> 1P}
=1

and its variance by:
m m 2
0*(L)m = I’P) - (Z za;) (12.18)
=1 =1

The quantities 7; are unknown apriori and need to be estimated. Naturally the estimation
will improve as the number of draws grows. A plausible estimate me) for approximating
m; after m draws, may be given by:

— = (12.19)

where Lgm) is the number of times the minimizer z; is found after m draws. Hence eq.

(12.15) is modified and reads:

-1 !
Pl = (1 = Zw§m‘1’) PLt + (Z w}m‘”> P, (12.20)
i=1 i=1
The expectation < L >,, tends to w asymptotically. Hence a criterion based on the
variance 0%(L),,, that asymptotically tends to zero, may be proper. Consequently, the
rule may be stated as:
Stop if 0°(L) < po*(L)iast,
where again 02(L);q is the variance at the time when the last minimum was found
and the parameter p is used in the same manner as before. The suggested value for p is
again p = 0.5.

12.3 Proposed stopping rule idea

Suppose that one can calculate theoretically the relation between the number of recovered
minima m and the number of local searches k for a problem that has w distinct local
minima. Suppose that this is a relation of the sort

N=N®(w), N—wask— oo (12.21)

Imagine now that one applies multistart-based algorithm and plots the number of recov-
ered minima versus the number of local searches.

One then at the ko-th local search, may compare the experimental curve with the
theoretical one and find which w is the one that produces the best match. If this is
possible then at ko-th local search we will now the number of expected local minima and
hence a very efficient stopping rule may emerge.
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12.3.1 Setting up the problem

Initially we will consider the multistart process. Then the results will generalize with
any multistart-like global optimization algorithm. A point is sampled from a uniform
distribution and a local search follows that concludes to a local minimum. We model this
problem of trying to collect all the local minima inside e region with the following one:

Consider a box containing w different balls. The balls are numbered sequentially
1,2,3,...,w. We pick a ball at random examine its number, and we put it back in
the boxz. This is one iteration'. If the ball number has not been drawn previously we

update the distinct ball count m, otherwise we don’t.

This problem is direct analogy to our original one. Suppose that at iteration k, the
probability that m balls (minima) are found is denoted by pﬁ,’?. Then the expected
number of distinct balls is given by:

k
< N>®H=3"; R R o B (12.22)

)
=1

Naturally pgk) depends on w (the number of balls) and hence so will < N >®).
The rule to estimate the expected number of balls then would be

k1
; (k) _ pr(R))? *
ngnkz]; (N — NIY — w (12.23)
=Ko

(k)

i

It remains to find a way to calculate p

()

i

12.3.2 Calculation of probabilities p

We will now switch to the original global optimization problem and try to develop a
(k

recursion for the calculation of p, ). The most obvious relation would be:

k k k
" = ap” + B (12.24)
The above translates as: The probability that at the (k + 1)—th local search ¢ minima
are recovered is related to

e the probability that in the previous iteration (k—th), ¢ minima were already re-
covered and in the (k + 1)—th no new minimum is found (this is with probability
a),

e the probability that in the k—th iteration (i — 1) minima were found and in the
(k + 1)—th iteration one more minimum (new) is found (with probability ).

!Local search in global optimization framework
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The task of calculating pgk)

and . The most simple and straightforward way is to make the following assumption.

is now reduced to the task of defining the probabilities

The probability of locating a local minimum, among the w distinct ones, by applying

1

a local search is p = .

or in more simple words
All minima are retrieved (by applying a local search) with uniform probability.

The above assumption although it seems irrational in the multistart framework, it
makes sense in the concept of stochastic clustering algorithms were we (optimally) aim
to perform one local search per minimum.

Using then the uniform assumption we derive the following probabilities:

12.3.3 An illustration of the criterion

We will present a simple run of the multistart algorithm involving our stopping criterion
to show how the expected number of minima found coincides to the real number of distinct
minima found. We use the Ackley’a function with 121 minima for this illustration. The
expected number of minima found is calculated every n.punr = 100 iterations. Every nepunk
iterations, we calculate the mean square error of the real number of distinct minima found
at the i-th iteration vs. the expected number of minima. That is

iter

1 . . 2
_ () < _n®
dyse = iter ;0 (< N > Nfound)

The iterations are shown in Table 12.1:

An illustration of the above is shown in Figure 12.1. Real number of minima is
plotted using the continuous line and the expected number of minima using the dotted
line. Observe that at the 800-th an 900-th iteration the two curves begin to fit perfectly.

12.4 Experimental evaluation

In order to test the efficiency of our proposed stopping criterion we have test it against
three well established rules: Zielninksi’s rule presented in Equation 12.2, Rinnoy-Kan rule
in Equation 12.4 and Tsoulos-Lagaris double box rule.

All rules were implemented in Matlab and tested in a simple multistart framework. We
expect, better behavior when the proposed stopping rule would be included in a method
that tries to equalize the probabilities of finding a minimum such as Minfinder or Adapt.
The rules were tested using their default parameters,
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Table 12.1: The MSE of the expected number of minima vs. the real minima found and

its variance

Iteration | Minima Found MSE Variance
100 64 78.949828 | 205.044716
200 94 72.086818 | 3 6.688531
300 110 52.139962 | 9.248131
400 116 28.281410 | 2.063600
500 119 10.676961 | 0.443810
600 121 9.770836 | 0.095597
700 121 5.789973 | 0.018181
800 121 2.525016 | 0.003458
900 121 1.101163 | 0.000658

Figure 12.1: Illustration of the approximation of the expected number to the real number
of minima

0
0 20 40 60 80 100 0 50 100 150 200 0 50 100 150 200 250 300

(a) Iter 100 (b) Iter 200 (c) Iter 300

(d) Tter 400

(e) Tter 800 (f) Tter 900

The test-best consists of 18 highly multimodal test functions that are commonly used in
the bibliography. Each, experiment was conducted twenty times and the mean numbers of
local minima, of local searches and total function calls is reported. First order derivatives
are employed and are included in the total function call counter. The results are reported
in Table 12.2. It is clear from the results that for the function with uniformly distributed
minima of equal regions of attraction (Ackley, Rastrigin, Griewank, Tube, Holder, Piccioni
etc.) our stopping rule is superior, since it performs the minimum number of local searches.
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On the other hand, from the results of Rastrigin and Griewank, it is also obvious that
the proposed stopping rule depends solely on the distribution and the number of local
minima. Since the number of minima was almost equal for these functions and they are
distributed uniformly in the search space, our stopping rule reached exactly 1500 local
searches for both cases.
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CHAPTER 13

APPENDIX - TEST FUNCTIONS

13.1 Ackley’s test function ([1])

The number of existing minima in [—5, 5]% is 121.
f(!L‘) — _ae—b\/% o a:f . 6% T cos(cx;) ael
. af([l,‘) . o b Z; e_b\/ %Z?:l :L‘? + C Sin(cxi)€% Z?:l COS(Cmi)

i\r) = =
9ix) = =5 i "
n 1= 7

13.2 Bird’s test function ([104])

This function has 173 minima in [—50, 50]2.
Flay, zo) = sin(z1) e170@2)* L cog(zy) Mm@ 4 (2(1) — 2(2))?

0f (x)

gi(z) = o = cos(z1) e17@2)" _ 2005(25)(1 — sin(x1))cos(z)e @) 4 9(z) — ,)
X1
0 :
g2(x) = # = 2sin(z1)(1 — cos(xs))sin(xs)et =02 _ sin(a:g)e(l_'””(”'31))2 —2(zy — x2)
X2

13.3 Bohachevsky ’s test function ([15])

This function has 25 minima in [—10, 10]?

f(z1,m5) = 2% + 225 — 0.3 cos(3mxy) — 0.4 cos(dmas) + 0.7

0f(z) T
- 2 _9 il
g1(z) o, x1 + 10 sin(3 mxy)
_ Of(x) T .
g2(r) = Oy dxy + : sind Ty
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(g) Surface plot (h) Contour plot

Figure 13.1: Ackley’s test function

(a) Surface plot (b) Contour plot

Figure 13.2: Birds’s test function

(a) Surface plot (b) Contour plot

Figure 13.3: Bohachevsky’s test function
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13.4 Carrom table test function ([104])

This function has 169 minima in [—5, 5]?

(1 (w§+wg)0'5> 2
1 R
f(x1,20) = ~30 COST] COSTy €

>>

(
(«3+23)"" (1—
df(x) cosmycos’wy | ( o coszy e
= sinxy e +

gi\r) =
1(2) Oz 15 m a2l + 13

)2

df (x)  coswycos® ay

13.5 Giunta’s test function ([54])

This test function has 196 minima inside [—20, 20]%.

1 1
f(z1,25) = 0.6 +siny; + sin®y; + — sin 4y, + siny, + sin® yo + — sin 4y,

50
where y; = %xl — 1l and y, = 1—?@ -1
gi(z) = agif) = 1—(53 cosy; + %sin Y1 coSy1 + % cos 4y
g2(z) = agij) = 1—? cos g + % Sin 1, cos ya + 375 cos 41,
where y; = %xl — 1l and y, = 1—?@ -1

13.6 Griewank’s test function ([63])

This function has 529 minima inside [—100, 100]>.

f(x) = —fo — HCOS—Z. +1
200 =5 o Vi

_0f@) 2w L fm T a
gi(x) = o, —4000—1—\/28110(\/%) H .COS\/E

202

. (m%+m%)0.5 2 <1_
(x) = sinxs e ’ T2 e
92 =
Oy 15 T Ty \/ 27 + 23
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Figure 13.4: Carrom table test function
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Figure 13.5: Giunta’s test function
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(a) Surface plot (b) Contour plot

Figure 13.6: Griewanks’s test function
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13.7 Guillin Hills’s test function ([151])

This test function possesses 25 minima inside [0, 1]2,

ci(x; +9) . T
Z;xﬁﬁﬂ (1—m+§)

where ¢; =2, i=1,...,nand k = 5.
of (x) ¢ s
gl($) N 3:@ N €, + 10 i 1 —T; + i

i@ +9) win ( T )
(x; + 10)2 1—z+ 5

c¢i(z; +9) s < s )
COS | ———
i +10 (1 — g4 L) 11—+ 5

where ¢; =2, 1 =1,...,n and k = 5.

13.8 Holder test function ([104])

This function has 85 minima inside [—20, 20]2.

Wz

f(xy,29) = — cosxy cos zpe’

of (x) ) _Veites

91(96) = = SInx; COSTy el

+ Ccosxy COoSTo
Wm
of(x) VA

g2(x) = — coszy sinaxs el ™

+ CcosxT| COSTy ———

13.9 Langermanns’s test function ([122])

This test function has 270 minima inside [0, 7]%.

5
(x;) = Z cre’t cos A\
k=0
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(a) Surface plot (b) Contour plot

Figure 13.7: Guillin Hills test function
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Figure 13.8: Holder-like test function
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In current implementation a = (3,5,2,1,7)", ¢ = (1,2,5,2,3)"

k=0

5
2 _
gi(z) = axl Z < k(i — k) et cos \p — 2¢;m(x; — ag) e7F sin )\k)

n n

(i — ax)? 2
where o), = Z ———— and N\, = Zw(xz —ag)”.

Vi
i=1 =1

13.10 Levy’s 3rd test function ([88])

This test function has 527 minima inside [—10, 102

f(x1,20) = Z kcos((k—1)x; + k) chos ((k+ Das + k)

=
=
Il
Q
(g
&
Il
(]

—k(k — 1)sin ((k — D1 + k) Y kcos ((k + 1)az + k)

0z, k=1 k=1
0f (x) . .
2(z) = e = —k(k + 1) sin ((k + Daz + k) Y kcos((k — Va1 + k)
k=1 k=1

13.11 Levy’s 5th test function ([88])

This test function has 508 minima inside [—10, 10]>.

f(21,22) = frevys(21,22) + (21 + 1.42513) + (22 + 0.80032)

- Bf(:v) 8fLeuy3(-T)

— = = 719 1.4251
g1(x) o . +2(zq + 513)
o 8f(:13) . afLevy?)(x)
g2(z) = Froali o, + 2(z2 + 0.80032)

13.12 Liang’s test function [90]

This test function has 236 local minima inside [1, 4]%.

flo1,m9) = — (21sin(2025) + 25 5in(202,))” cosh (sin(10z )x;)
— (1 c08(2025) — 22 sin(1021))” cosh (cos(10z2)z2)
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(a) Surface plot (b) Contour plot

Figure 13.9: Lagermanns’s test function

(a) Surface plot (b) Contour plot

Figure 13.10: Levy’s No 3 test function

S e
(a) Surface plot (b) Contour plot

Figure 13.11: Levy’s No 5 test function
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= —2(x18in(20x2) + x2sin(20x71)) cosh(sin(10x1)x;) (sin(20z3) + 20z4 cos(20x1))

81‘1
— (@1 8in(20w2) + @2 sin(20x1))? sinh(sin (1021 )1 ) (10 cos(10z; )x1 + sin(10z1))
—  2(x1 cos(10x3) — 22 sin(10x1)) cosh(cos(20z2)x2)(cos(10z2) — 10x2 cos(10z3))
agix) = —2(z1sin(20x3) + 22 sin(20z1)) cosh(sin(10z1)x1) (202 cos(20z2) + sin(20z1))
2

—  2(zq cos(10xg) — 29 sin(10x7)) cosh(cos(20x)xs) (— 1021 sin(10z5) — sin(10x1))
— (@1 cos(10x3) — 29 sin(1021))? sinh(cos(2025) x5 ) (—20 sin (2022 )25 + cos(2025))

13.13 Piccioni’s test function ([94])

This test function has 28 minima inside [—5, 5]°.

n—1

f(@) = —10sin(rz1)* = Y (25 — 1)*(1 + 10sin(rz:41)) — (2, — 1)°

8;3(;1:) = —207 sin(mz ) cos(mzy) — 2(xq — 1)

aga(f) = —2(x; — 1)(1 + 10sin(rwi41)) — (w,1 — 1)*107 cos(wa;), i =2...n —2
aafT(x) = —(2p_1 — 1)?107 cos(mxy) — 2(z, — 1)

13.14 Rastrigin’s test function ([130])

This test function has 49 minima inside [—1, 1]2.

13.15

f(z)=10n+ Z (z7 — 10 cos(27z;))

i=1
gi(z) = 8£ix) = 8£ix) = 2x; + 207 sin(27x;)

Voglis’s Test Function

This test function has 61 minima inside [—25, 25]>.

80
1
f(x> = 040 <§xTQOx + ./L'Tdo) + ake_%wTQkCU‘f‘CL’Tdk
i=1
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(a) Surface plot (b) Contour plot

Figure 13.12: Liangs’s test function
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(a) Surface plot (b) Contour plot

Figure 13.13: Piccioni’s test function

2 2

(a) Surface plot (b) Contour plot

Figure 13.14: Rastrigin’s test function
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80

gi(x) = ofe) _ ag (Qox + do) + Z ar (—Qux + dy,) e~ 2" QurtaTd

:L‘.
¢ i=1

Function dimension n = 2, ), specific positive definite 222 matrices, d; 2-dimensional

vectors and «; appropriate scaling constants.

13.16 Schaffer’s Test Function ([104])

This test function has 95 minima inside [—3, 3]?.

sin(z? 4+ 23)* — 0.5

(14 0.001(z2 4 22))? + 0.1sin(1021) + 0.1sin(10z)
: 2 4 22

f(z1,22) = 0.5

 O0f(x) A sin(z{ + 23) cos(af +3) 0.004z, sin(xz? + x3)* — 0.5

9(@) = T T A T 00012 £ 000122 2 (1+ 0.00122 + 0.00122)?
ol(z) = 0f(x) _ 4z, sin(z? + x%);:os(mf + xf) — 0.004z, sin(x? +23:§)2 — 0.52
Oz (1+ 0.00122 + 0.00123)? (1+ 0.00122 + 0.00122)®

13.17 Shubert’s Test Function ([142])

This test function has 400 minima inside [—10, 102

fl)==>_> jsin((j + Da; + )

i) = 2 = 574 1) cost(G + Vi +)

13.18 MO Test Function ([142])

This test function has 66 minima inside [—5, 1]°.

. T .2—193— 1 LT o M 2—2923— T
f(:v)—sm(2.27rx1—|—2) 5 5 + sin( x2—|—2) 5 5
of@) _ ¢
) = 22— S (G 1) eos((G 4 1) )
1 J:1
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Figure 13.15: Voglis ’s test function
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Figure 13.16: Schaffer’s test function

(a) Surface plot (b) Contour plot

Figure 13.17: Shubert’s test function
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13.19 M3 Test Function ([142])

This test function has 26 minima inside [—2,2]?.

f(z) = — (235 — 4.523) 1109 — 4.7cos(3zy — 25(2 + 21)) sin(2.57 * 1) + (0.3 x 21)?

gi(w) = =5, = =2 + D eos((j + Dai + j)

—_

13.20 Siam Problem 4 Function ([143])

This test function has 600 minima inside [—1, 1]2.

f(z) = exp(sin(z1))-+sin(60 exp(xz))+sin(70 sin(xl))—f-sin(sin(SOajg))—sin(l()(xl—kxg))—kx% 1— x%;
i) = 5™ 5+ 1) cos( (5 + 1 +3)
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Figure 13.18: MO test function

(a) Surface plot (b) Contour plot

Figure 13.19: M3 test function
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Figure 13.20: Siam Problem 4 test function
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