
Single Source Shortest Paths (SSSP)

Edge weights

Directed graph

Path 𝑝 = 𝑣0, 𝑣1, … , 𝑣𝑘 of minimum weight 𝑤(𝑝)

Shortest path from 𝑠 to 𝑣 :

where 𝑣0 = 𝑠, 𝑣𝑘 = 𝑣 and

SSSP problem

Compute a shortest path from source 𝑠 to all vertices 𝑣

𝑡

𝑠

𝑥

𝑧

3

7
3

4

5

6

4711

𝑑(𝑣) = distance (i.e., shortest path weight) from 𝑠 to 𝑣

𝑦

Single Source Shortest Paths (SSSP)

Edge weights

Directed graph

𝑡

𝑠

𝑥

𝑧

3

7
3

4

5

6

4711

Path 𝑝 = 𝑣0, 𝑣1, … , 𝑣𝑘 of minimum weight 𝑤(𝑝)

Shortest path from 𝑠 to 𝑣 :

where 𝑣0 = 𝑠, 𝑣𝑘 = 𝑣 and

SSSP problem

Compute a shortest path from source 𝑠 to all vertices 𝑣

𝑑(𝑡) = 3

𝑑(𝑦) = 4

𝑑(𝑥) = 8

𝑑(𝑦) = 10

𝑑(𝑣) = distance (i.e., shortest path weight) from 𝑠 to 𝑣

𝑦

Single Source Shortest Paths (SSSP)

Parent of a vertex

Shortest paths tree

Formed by the edges (𝑝(𝑣), 𝑣)

𝑝 𝑣 = vertex just before 𝑣 on the shortest path from 𝑠

𝑡

𝑠

𝑥

𝑧

3

7
3

4

5

6

4711

𝑝(𝑣)

𝑠 𝑣

𝑝(𝑠) = -

𝑝(𝑡) = 𝑠

𝑝(𝑥) = 𝑡

𝑝(𝑦) = 𝑡

𝑝(𝑧) = 𝑦 𝑦

Single Source Shortest Paths (SSSP)

Temporary distances

𝑑(𝑣) = upper bound for the weight of the shortest path from 𝑠 to 𝑣

Initialize

Edge relaxation

𝑝(𝑣) ← null, 𝑑(𝑣) ← ∞ for all 𝑣 ≠ 𝑠

𝑝(𝑠) ← null, 𝑑(𝑠) ← 0

relax(𝑢, 𝑣)

if 𝑑(𝑣) > 𝑑(𝑢) + 𝑤(𝑢, 𝑣)

then {

𝑑(𝑣) ← 𝑑(𝑢) + 𝑤(𝑢, 𝑣)

𝑝(𝑣) ← 𝑢

}

2

𝑑(𝑢) = 5

𝑢 𝑣

𝑑(𝑣) = 8

2

𝑑(𝑢) = 5

𝑢 𝑣

𝒅(𝒗) = 𝟕

2

𝑑(𝑢) = 5

𝑢 𝑣

𝑑(𝑣) = 6

2

𝑑(𝑢) = 5

𝑢 𝑣

𝑑(𝑣) = 6

Single Source Shortest Paths (SSSP)

Dijkstra’s Algorithm

Used when edge weights are non-negative

It maintains a set of vertices 𝑆 ⊆ 𝑉 for which a shortest path has been computed,

i.e., the value of 𝑑(𝑣) is the exact weight of the shortest path to 𝑣.

Each iteration selects a vertex 𝑢 ∈ 𝑉\S with minimum distance 𝑑(𝑢).

Then we set S ← 𝑆 ∪ 𝑢 and relax all edges (𝑢, 𝑤)

To find 𝑢 with min𝑑(𝑢): Use a priority queue 𝑄

with keys

Single Source Shortest Paths (SSSP)

Dijkstra’s Algorithm

Initialization

𝑝(𝑣) ← null, 𝑑(𝑣) ← ∞ for all 𝑣 ≠ 𝑠

𝑝(𝑠) ← null, 𝑑(𝑠) ← 0

insert all vertices 𝑣 into priority queue 𝑄 with key 𝑑(𝑣)

set 𝑆 ← ∅

Main Loop

while 𝑄 is not empty {

𝑢 ← Q. delMin()

𝑆 ← 𝑆 ∪ 𝑢

for all edges (𝑢, 𝑣) {

relax(𝑢, 𝑣)

}

}

Single Source Shortest Paths (SSSP)

Dijkstra’s Algorithm

Initialization

𝑝(𝑣) ← null, 𝑑(𝑣) ← ∞ for all 𝑣 ≠ 𝑠

𝑝(𝑠) ← null, 𝑑(𝑠) ← 0

insert all vertices 𝑣 into priority queue 𝑄 with key 𝑑(𝑣)

set 𝑆 ← ∅

Main Loop

while 𝑄 is not empty {

𝑢 ← Q. delMin()

𝑆 ← 𝑆 ∪ 𝑢

for all edges (𝑢, 𝑣) {

relax(𝑢, 𝑣)

}

}

priority queue 𝑄 running time

array O(𝑛2)

binary heap O(𝑚 log𝑛)

Fibonacci heap O(𝑚 + 𝑛 log𝑛)

Single Source Shortest Paths (SSSP) in Map-Reduce

➢ Not easy to parallelize Dijkstra’s algorithm

➢ Use an iterative approach instead

• The distance 𝑑(𝑣) from 𝑠 to 𝑣 is updated by the distances of all 𝑢 with

𝑢, 𝑣 ∈ 𝐸.

• Need to communicate both distances and adjacency lists.

𝑦
𝑥

𝑣

𝑤(𝑥, 𝑣)

𝑧

𝑤(𝑦, 𝑣)

𝑤(𝑧, 𝑣)

𝑑(𝑣) ← min 𝑑 𝑢 + 𝑤 𝑢, 𝑣 | (𝑢, 𝑣) ∈ 𝐸

Single Source Shortest Paths (SSSP) in Map-Reduce

Mapper: emits distances and graph structure

𝑦
𝑥

𝑣

𝑤(𝑥, 𝑣)

𝑧

𝑤(𝑦, 𝑣)

𝑤(𝑧, 𝑣)

𝑑(𝑣) ← min 𝑑 𝑢 + 𝑤 𝑢, 𝑣 | (𝑢, 𝑣) ∈ 𝐸

Reducer: updates distances and emits graph structure

𝑎

𝑏𝑣

𝑐

𝑑 𝑣 + 𝑤(𝑣, 𝑎)

𝑑 𝑣 + 𝑤(𝑣, 𝑏)

𝑑 𝑣 + 𝑤(𝑣, 𝑐)

Single Source Shortest Paths (SSSP) in Map-Reduce

➢ Not easy to parallelize Dijkstra’s algorithm

➢ Use an iterative approach instead

• The distance 𝑑(𝑣) from 𝑠 to 𝑣 is updated by the distances of all 𝑢 with

𝑢, 𝑣 ∈ 𝐸.

• Need to communicate both distances and adjacency lists.

• Repeat round until all distances are fixed.

• Number of rounds = 𝑛 − 1 in the worst case.

• If all weights are equal then we compute the Breadth-First Search

(BFS) tree. Number of rounds = graph diameter.

BFS in Map-Reduce

Single Source Shortest Paths (SSSP) in Map-Reduce

Remarks on Map-Reduce SSSP algorithm

• Essentially a brute-force algorithm.

• Performs many unnecessary computations.

• No global data structure.

PageRank in Map-Reduce

Recall the formula for the PageRank 𝑅(𝑢) of a webpage 𝑢

𝑅 𝑢 = 𝑐 ෍

𝑣∈𝐵𝑢

𝑅(𝑣)

𝑁𝑣
+ (1 − 𝑐)𝐸𝑢

𝐵𝑢 = set of pages that point to 𝑢

𝐹𝑢 = set of pages that 𝑢 points to

𝐹𝑢 = 𝑁𝑢 = number of links from 𝑢

𝐸𝑢 = probabilities over web pages

𝐸𝑢 and 𝑐 are user designed parameters

PageRank in Map-Reduce

Iterative computation

start with seed values 𝑅0(𝑣)
for each page 𝑣

each page 𝑣 receives credit

from the pages in 𝐵𝑣
and computes 𝑅𝑖+1(𝑣)

each page 𝑣 distributes credit

to the pages in 𝐹𝑣

PageRank in Map-Reduce

Algorithms and Complexity in MapReduce (and related models)

Sorting, Searching, and Simulation in the MapReduce Framework

M. T. Goodrich, N. Sitchinava, and Q. Zhang

ISAAC 2011

Fast Greedy Algorithms in MapReduce and Streaming

R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani

SPAA 2013

On the Computational Complexity of MapReduce

B. Fish, J. Kun, A. D. Lelkes, L. Reyzin, and G. Turan

DISC 2015

L. G. Valiant, A Bridging Model for Parallel Computation,

Communications of the ACM, 1990

Computational model of parallel computation

BSP is a parallel programming model based on Synchronizer Automata.

The model consists of:

• Set of processor-memory pairs.

• Communications network that delivers messages in a point-to-point

manner.

• Mechanism for the efficient barrier synchronization for all or a subset of

the processes.

• No special combining, replicating, or broadcasting facilities.

BSP model

• Vertical Structure

Supersteps:

– Local computation

– Process Communication

– Barrier Synchronization

• Horizontal Structure

– Concurrency among a fixed
number of virtual processors.

– Processes do not have a
particular order.

– Locality plays no role in the
placement of processes on
processors.

Virtual Processors

Local

Computation

Global

Communication

Barrier

Synchronization

Implementation: BSPlib

BSP model

Simulation on MapReduce:

1. Create a tuple for each memory cell and processor.

2. Map each message to the destination processor label.

3. Reduce by performing one step of a processor, outputting the messages

for next round.

Theorem [Goodrich et al.]: Given a BSP algorithm 𝐴 that runs in 𝑇 supersteps

with a total memory size 𝑁 using 𝑃 ≤ 𝑁 processors, we can simulate 𝐴 using O(𝑇)

rounds and message complexity O(𝑇𝑁) in the memory-bound MapReduce

framework with reducer memory size bounded by𝑁/𝑃.

MapReduce simulation of a BSP program

Simulation on MapReduce:

1. Create a tuple for each memory cell and processor.

2. Map each message to the destination processor label.

3. Reduce by performing one step of a processor, outputting the messages

for next round.

Theorem [Goodrich et al.]: Given a BSP algorithm 𝐴 that runs in 𝑇 supersteps

with a total memory size 𝑁 using 𝑃 ≤ 𝑁 processors, we can simulate 𝐴 using O(𝑇)

rounds and message complexity O(𝑇𝑁) in the memory-bound MapReduce

framework with reducer memory size bounded by𝑁/𝑃.

A corollary of the above:

Given the optimal BSP algorithm of [Goodrich, 99], we can sort 𝑁 values in the

MapReduce framework in 𝑂(𝑘) rounds and 𝑂(𝑘𝑁) message complexity.

MapReduce simulation of a BSP program

Algorithms and Complexity in MapReduce (and related models)

Theorem [Fish et al.] : Any problem requiring sublogarithmic space, 𝑜(log𝑛),

can be solved in MapReduce in two rounds.

The proof is constructive: Given a problem that classically takes less than

logarithmic space, there is an automatic algorithm to implement it in

MapReduce

