
Θέµατα Αλγορίθµων
Αλγόριθµοι και Εφαρµογές στον Πραγµατικό Κόσµο

Μεταπτυχιακό Μάθηµα

4η Εβδοµάδα: Βέλτιστες ∆ιαδροµές & σε Χρονοεξαρτώµενα ∆ίκτυα

Σπύρος Κοντογιάννης

kontog@cse.uoi.gr

Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Πανεπιστήµιο Ιωαννίνων

Τετάρτη, 15-22 Μαρτίου 2017

Shortest PathsShortest Paths

... a fundamental problem in Computer Science... a fundamental problem in Computer Science

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [2 / 97]

Shortest Paths Problem

Statement

INPUT:
I Directed graph G = (V , E).

I Arc costs (distance, travel-time, fuel

consumption, etc.): ∀uv ∈ E, c[uv] ≥ 0.

I Origin-destination pair: (o, d) ∈ V × V .

I Po,d : Set of od-paths in G.

I Additive path costs: c[p] =
∑

e∈p c[e].

OUTPUT: π∗ ∈ arg maxπ∈Po,d { c[p] }

GOAL: Route planning in road networks.

I V is the set of road junctions.

I E is the set of uninterrupted road segments.

F Sparse netwrok: |E | ∈ O(|V |).

o

d

F HUGE size: |V | = tens of millions of nodes.

I Arc costs usually represent travel-times.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [3 / 97]

Shortest Paths Problem

Statement

INPUT:
I Directed graph G = (V , E).

I Arc costs (distance, travel-time, fuel

consumption, etc.): ∀uv ∈ E, c[uv] ≥ 0.

I Origin-destination pair: (o, d) ∈ V × V .

I Po,d : Set of od-paths in G.

I Additive path costs: c[p] =
∑

e∈p c[e].

OUTPUT: π∗ ∈ arg maxπ∈Po,d { c[p] }

GOAL: Route planning in road networks.

I V is the set of road junctions.

I E is the set of uninterrupted road segments.

F Sparse netwrok: |E | ∈ O(|V |).

o

d

F HUGE size: |V | = tens of millions of nodes.

I Arc costs usually represent travel-times.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [3 / 97]

Shortest Paths Problem

Statement

INPUT:
I Directed graph G = (V , E).

I Arc costs (distance, travel-time, fuel

consumption, etc.): ∀uv ∈ E, c[uv] ≥ 0.

I Origin-destination pair: (o, d) ∈ V × V .

I Po,d : Set of od-paths in G.

I Additive path costs: c[p] =
∑

e∈p c[e].

OUTPUT: π∗ ∈ arg maxπ∈Po,d { c[p] }

GOAL: Route planning in road networks.

I V is the set of road junctions.

I E is the set of uninterrupted road segments.

F Sparse netwrok: |E | ∈ O(|V |).

o

d

F HUGE size: |V | = tens of millions of nodes.

I Arc costs usually represent travel-times.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [3 / 97]

Shortest Paths Problem

Statement

INPUT:
I Directed graph G = (V , E).

I Arc costs (distance, travel-time, fuel

consumption, etc.): ∀uv ∈ E, c[uv] ≥ 0.

I Origin-destination pair: (o, d) ∈ V × V .

I Po,d : Set of od-paths in G.

I Additive path costs: c[p] =
∑

e∈p c[e].

OUTPUT: π∗ ∈ arg maxπ∈Po,d { c[p] }

GOAL: Route planning in road networks.

I V is the set of road junctions.

I E is the set of uninterrupted road segments.

F Sparse netwrok: |E | ∈ O(|V |).

o

d

F HUGE size: |V | = tens of millions of nodes.

I Arc costs usually represent travel-times.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [3 / 97]

Shortest Paths Problem

Statement

INPUT:
I Directed graph G = (V , E).

I Arc costs (distance, travel-time, fuel

consumption, etc.): ∀uv ∈ E, c[uv] ≥ 0.

I Origin-destination pair: (o, d) ∈ V × V .

I Po,d : Set of od-paths in G.

I Additive path costs: c[p] =
∑

e∈p c[e].

OUTPUT: π∗ ∈ arg maxπ∈Po,d { c[p] }

GOAL: Route planning in road networks.

I V is the set of road junctions.

I E is the set of uninterrupted road segments.

F Sparse netwrok: |E | ∈ O(|V |).

o

d

F HUGE size: |V | = tens of millions of nodes.

I Arc costs usually represent travel-times.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [3 / 97]

Shortest Paths Problem

Statement

INPUT:
I Directed graph G = (V , E).

I Arc costs (distance, travel-time, fuel

consumption, etc.): ∀uv ∈ E, c[uv] ≥ 0.

I Origin-destination pair: (o, d) ∈ V × V .

I Po,d : Set of od-paths in G.

I Additive path costs: c[p] =
∑

e∈p c[e].

OUTPUT: π∗ ∈ arg maxπ∈Po,d { c[p] }

GOAL: Route planning in road networks.

I V is the set of road junctions.

I E is the set of uninterrupted road segments.

F Sparse netwrok: |E | ∈ O(|V |).

o

d

F HUGE size: |V | = tens of millions of nodes.

I Arc costs usually represent travel-times.
S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [3 / 97]

Shortest Paths Problem

A Working Example

2

10 12

311

2

2

141

1
1

0

ΑΡΧΙΚΟΠΟΙΗΣΗ

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [4 / 97]

Shortest Paths Problem

A Working Example

2

10 12

3

2

141

1
1

0

ΕΞΟΔΟΣ

11

2

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [4 / 97]

Dijkstra’s Algorithm

Pseudocode

Dijkstra(G = (V , E), o ∈ V , d ∈ V , c : E → R≥0)

1. for all v ∈ V do D[v] = ∞;

2. D[o] = 0;

3. Q.Insert(o,D[o]); /∗ Q: priority queue ∗/

4. while !Q.IsEmpty() do

4.1. v = Q.ExtractMin(); /∗ v is the node with min tentative label ∗/

4.2. for all vw ∈ E(G) do /∗ scanning of node v ∗/

4.2.1. if D[w] > D[v] + c[vw]

4.2.2. then /∗ relaxation of arc vw ∗/

4.2.2.1. D[w] = D[v] + c[vw];

4.2.2.2. if w ∈ Q then Q.DecreaseKey(w ,D[w]);

4.2.2.3. else Q.Insert(w ,D[w]);

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [5 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

311

2

2

141

1
1

0

ΑΡΧΙΚΟΠΟΙΗΣΗ

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

311

2

2

141

1
1

0

ΒΗΜΑ 1

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

311

2

2

141

1
1

0

ΒΗΜΑ 2

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

311

2

2

141

1
1

0

ΒΗΜΑ 3

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

311

2

2

141

1
1

0

ΒΗΜΑ 4

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

311

2

2

141

1
1

0

ΒΗΜΑ 5

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

311

2

2

141

1
1

0

ΒΗΜΑ 6

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

311

2

2

141

1
1

0

ΒΗΜΑ 7

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

3

2

2

141

1
1

0

ΒΗΜΑ 8

11

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Execution Example

2

10 12

3

2

141

1
1

0

ΕΞΟΔΟΣ

11

2

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [6 / 97]

Dijkstra’s Algorithm

Analysis

Correctness
I Labels: Represent upper bounds on total costs (travel-times) from the origin

towards each destination.

I In each round the node v with minimum tentative label D[v] is chosen for

finalization of its label (not tentative anymore).

I Non-negative arc-costs⇒ The label D[v] to be finalized in each round is the

exact min-cost from o to v (cannot be further improved).

Time Complexity /∗ depends on the choice of the priority queue ∗/

I O(n) queue-insertion operations.

I O(n) queue-extract-minimum operations.

I O(m) queue-label correction operations (upon arc relaxations).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [7 / 97]

Dijkstra’s Algorithm

Analysis

Correctness
I Labels: Represent upper bounds on total costs (travel-times) from the origin

towards each destination.

I In each round the node v with minimum tentative label D[v] is chosen for

finalization of its label (not tentative anymore).

I Non-negative arc-costs⇒ The label D[v] to be finalized in each round is the

exact min-cost from o to v (cannot be further improved).

Time Complexity /∗ depends on the choice of the priority queue ∗/

I O(n) queue-insertion operations.

I O(n) queue-extract-minimum operations.

I O(m) queue-label correction operations (upon arc relaxations).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [7 / 97]

Dijkstra’s Algorithm

Data Structures for Priority Queue

Implementation of the priority queue with Fibonacci Heaps
I O(log(n)) elementary operations per extract-minimum operation.

I O(1) elementary operations per queue-insertion / queue-label correction

operation.

∴ O(m + n log(n)) elementary operations in total.

Implementation of priority queue with Binary Heaps
I O(log(n)) elementary operations per extract-minimum / insertion /

label-correction operation of the queue.

O(m log(n)) elementary operations in total.

Extremely simpler data structure than Fibonacci Heaps.

Usually faster in practice (for large-scale, real-world instances).

For road netwroks, m ∈ O(n).

Implementation of priority queue with k-ary Heaps
I Each internal node has k children.

I Fewer tree levels (than binary / fibonacci heaps), more nodes per level.

Better exploitation of data locality.

I Same time-complexity with Binary Heaps.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [8 / 97]

Dijkstra’s Algorithm

Data Structures for Priority Queue

Implementation of the priority queue with Fibonacci Heaps
I O(log(n)) elementary operations per extract-minimum operation.

I O(1) elementary operations per queue-insertion / queue-label correction

operation.

∴ O(m + n log(n)) elementary operations in total.

Implementation of priority queue with Binary Heaps
I O(log(n)) elementary operations per extract-minimum / insertion /

label-correction operation of the queue.

O(m log(n)) elementary operations in total.

Extremely simpler data structure than Fibonacci Heaps.

Usually faster in practice (for large-scale, real-world instances).

For road netwroks, m ∈ O(n).

Implementation of priority queue with k-ary Heaps
I Each internal node has k children.

I Fewer tree levels (than binary / fibonacci heaps), more nodes per level.

Better exploitation of data locality.

I Same time-complexity with Binary Heaps.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [8 / 97]

Dijkstra’s Algorithm

Data Structures for Priority Queue

Implementation of the priority queue with Fibonacci Heaps
I O(log(n)) elementary operations per extract-minimum operation.

I O(1) elementary operations per queue-insertion / queue-label correction

operation.

∴ O(m + n log(n)) elementary operations in total.

Implementation of priority queue with Binary Heaps
I O(log(n)) elementary operations per extract-minimum / insertion /

label-correction operation of the queue.

O(m log(n)) elementary operations in total.

Extremely simpler data structure than Fibonacci Heaps.

Usually faster in practice (for large-scale, real-world instances).

For road netwroks, m ∈ O(n).

Implementation of priority queue with k-ary Heaps
I Each internal node has k children.

I Fewer tree levels (than binary / fibonacci heaps), more nodes per level.

Better exploitation of data locality.

I Same time-complexity with Binary Heaps.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [8 / 97]

Dijkstra’s Algorithm

Experimental Evaluation with Various Heap Implementations

Execution of Dijkstra for Europe’s road netwrok, with respect to

arc-travel-times metric:

Data Structure Response to Queries (sec)

2-heap 12.38

4-heap 11.53

8-heap 11.52

Execution times on a 2.4GHz AMD Opteron, with 16GB RAM

[Microsoft Data Structures and Algorithms School (MIDAS), St. Petersburg (2010)]

Query times are for construction of a complete shortest-paths tree (SPT)

from the origin towards all reachable destinations.

Roughly half time for responding to random (o, d)-queries and interrupting

Dijkstra upon scanning the destination vertex d.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [9 / 97]

Why Algorithm Engineering?

Design

Exp
e

ri m
e

nt

I mplem e tn

A
na
ly
ze
Algorithmics

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [10 / 97]

Why Algorithm Engineering?

Design

Exp
e

ri m
e

nt

I mplem e tn

A
na
ly
ze Falsifiable
Hypotheses

Performance guarantees & algorithm dependability

Realistic
machine models

Real-world Data

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [10 / 97]

Challenge of ScaleChallenge of Scale

... shortest paths in large-scale road networks... shortest paths in large-scale road networks

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [11 / 97]

Algorithm Engineering

Shortest paths in road networks: A successful showcase (mostly) in static graphs...

Continent-sized road networks: Millions of intersections

Dijkstra: Responds within a few seconds.

Speedup Techniques: Shortest-Path heuristics, tailored especially for road

networks.

I Respond in less than a millisecond (or even a few microseconds).

Most Popular Speedup Techniques

Arc Flags [Lauther (2004), Köhler et al. (2006), Bauer & Delling (2008)]

A∗ with Landmarks [Goldberg & Harrelson (2005)]

Reach [Gutman (2004), Goldberg et al. (2006)]

Highway Hierarchies [Sanders & Schultes (2005)]

Contraction Hierarchies [Geisberger et al. (2008)]

Transit Node Routing [Bast et al. (2006)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [12 / 97]

Algorithm Engineering

Shortest paths in road networks: A successful showcase (mostly) in static graphs...

Continent-sized road networks: Millions of intersections

Dijkstra: Responds within a few seconds.

Speedup Techniques: Shortest-Path heuristics, tailored especially for road

networks.

I Respond in less than a millisecond (or even a few microseconds).

Most Popular Speedup Techniques

Arc Flags [Lauther (2004), Köhler et al. (2006), Bauer & Delling (2008)]

A∗ with Landmarks [Goldberg & Harrelson (2005)]

Reach [Gutman (2004), Goldberg et al. (2006)]

Highway Hierarchies [Sanders & Schultes (2005)]

Contraction Hierarchies [Geisberger et al. (2008)]

Transit Node Routing [Bast et al. (2006)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [12 / 97]

Algorithm Engineering

Shortest paths in road networks: A successful showcase (mostly) in static graphs...

Continent-sized road networks: Millions of intersections

Dijkstra: Responds within a few seconds.

Speedup Techniques: Shortest-Path heuristics, tailored especially for road

networks.

I Respond in less than a millisecond (or even a few microseconds).

Most Popular Speedup Techniques

Arc Flags [Lauther (2004), Köhler et al. (2006), Bauer & Delling (2008)]

A∗ with Landmarks [Goldberg & Harrelson (2005)]

Reach [Gutman (2004), Goldberg et al. (2006)]

Highway Hierarchies [Sanders & Schultes (2005)]

Contraction Hierarchies [Geisberger et al. (2008)]

Transit Node Routing [Bast et al. (2006)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [12 / 97]

Algorithm Engineering

Shortest paths in road networks: A successful showcase (mostly) in static graphs...

Continent-sized road networks: Millions of intersections

Dijkstra: Responds within a few seconds.

Speedup Techniques: Shortest-Path heuristics, tailored especially for road

networks.

I Respond in less than a millisecond (or even a few microseconds).

Most Popular Speedup Techniques

Arc Flags [Lauther (2004), Köhler et al. (2006), Bauer & Delling (2008)]

A∗ with Landmarks [Goldberg & Harrelson (2005)]

Reach [Gutman (2004), Goldberg et al. (2006)]

Highway Hierarchies [Sanders & Schultes (2005)]

Contraction Hierarchies [Geisberger et al. (2008)]

Transit Node Routing [Bast et al. (2006)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [12 / 97]

Distance Oracles

Another success story in static graphs...

Distance Oracles: Create (offline) data structures that require reasonable space

requirements and allow answering in real-time to arbitrary queries

efficiently, with provable approximation guarantees (stretch).

Trivial solution (I): Preprocess by executing and storing APSP.

O(n2) size.

O(1) query time.

1−stretch.

Trivial solution (II): No preprocessing, respond to queries by running

Dijkstra.

O(n + m) size.

O(m + n log(n)) query time.

1−stretch.

Provide smooth tradeoffs among space / query time / stretch!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [13 / 97]

Distance Oracles

Another success story in static graphs...

Distance Oracles: Create (offline) data structures that require reasonable space

requirements and allow answering in real-time to arbitrary queries

efficiently, with provable approximation guarantees (stretch).

Trivial solution (I): Preprocess by executing and storing APSP.

O(n2) size.

O(1) query time.

1−stretch.

Trivial solution (II): No preprocessing, respond to queries by running

Dijkstra.

O(n + m) size.

O(m + n log(n)) query time.

1−stretch.

Provide smooth tradeoffs among space / query time / stretch!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [13 / 97]

Distance Oracles

Another success story in static graphs...

Distance Oracles: Create (offline) data structures that require reasonable space

requirements and allow answering in real-time to arbitrary queries

efficiently, with provable approximation guarantees (stretch).

Trivial solution (I): Preprocess by executing and storing APSP.

O(n2) size.

O(1) query time.

1−stretch.

Trivial solution (II): No preprocessing, respond to queries by running

Dijkstra.

O(n + m) size.

O(m + n log(n)) query time.

1−stretch.

Provide smooth tradeoffs among space / query time / stretch!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [13 / 97]

Distance Oracles

Another success story in static graphs...

Distance Oracles: Create (offline) data structures that require reasonable space

requirements and allow answering in real-time to arbitrary queries

efficiently, with provable approximation guarantees (stretch).

Trivial solution (I): Preprocess by executing and storing APSP.

O(n2) size.

O(1) query time.

1−stretch.

Trivial solution (II): No preprocessing, respond to queries by running

Dijkstra.

O(n + m) size.

O(m + n log(n)) query time.

1−stretch.

Provide smooth tradeoffs among space / query time / stretch!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [13 / 97]

Distance Oracles

Theoretical bounds for static graphs...

Reference Setting Stretch Query Space

[TZ05]

weighted graph 2k − 1, k ≥

2

O(k) O
(
kn1+1/k

)
[WN13]

weighted graph 2k − 1, k ≥

2

O(log(k)) O
(
kn1+1/k

)
[Che13]

weighted graph 2k − 1, k ≥

2

O(1) O
(
kn1+1/k

)
[AG13]

sparse weighted

graph

1 + ε o(n) o(n2)

[Kle02]

[Tho04]

planar weighted

digraph

1 + ε O(ε−1) O
(

n log(n)
ε

)
[MN06] metric O(k) O(1) O

(
kn1+1/k

)
[BGKRL11]

Doubling metric,

dynamic

1 + ε O(1) ε−O(ddim)n

+2O(ddim log(ddim))n

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [14 / 97]

Speedup Techniques / Distance Oracles

Goal...

Dijkstra visits all nodes closer to o than d.

Unnecessary computations towards (eventually) irrelevant

directions.

Too many shortest path requests in networks that change

very slowly (or, not at all) over time.

Exploit preprocessing: Compute offline selected distance

summaries that will later allow, in real-time, responses to

arbitrary shortest path requests.

Assessment Criteria of Speedup Techniques / Distance

Oracles:

I Preprocessing time / space.

I Query (response) time to arbitrary requests.

I Stretch (approximation guarantee).

o

d

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [15 / 97]

Speedup Techniques / Distance Oracles

Goal...

Dijkstra visits all nodes closer to o than d.

Unnecessary computations towards (eventually)

irrelevant directions.

Too many shortest path requests in networks that change

very slowly (or, not at all) over time.

Exploit preprocessing: Compute offline selected distance

summaries that will later allow, in real-time, responses to

arbitrary shortest path requests.

Assessment Criteria of Speedup Techniques / Distance

Oracles:

I Preprocessing time / space.

I Query (response) time to arbitrary requests.

I Stretch (approximation guarantee).

o

d

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [15 / 97]

Speedup Techniques / Distance Oracles

Goal...

Dijkstra visits all nodes closer to o than d.

Unnecessary computations towards (eventually)

irrelevant directions.

Too many shortest path requests in networks that

change very slowly (or, not at all) over time.

Exploit preprocessing: Compute offline selected distance

summaries that will later allow, in real-time, responses to

arbitrary shortest path requests.

Assessment Criteria of Speedup Techniques / Distance

Oracles:

I Preprocessing time / space.

I Query (response) time to arbitrary requests.

I Stretch (approximation guarantee).

o

d

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [15 / 97]

Speedup Techniques / Distance Oracles

Goal...

Dijkstra visits all nodes closer to o than d.

Unnecessary computations towards (eventually)

irrelevant directions.

Too many shortest path requests in networks that

change very slowly (or, not at all) over time.

Exploit preprocessing: Compute offline selected

distance summaries that will later allow, in real-time,

responses to arbitrary shortest path requests.

Assessment Criteria of Speedup Techniques / Distance

Oracles:

I Preprocessing time / space.

I Query (response) time to arbitrary requests.

I Stretch (approximation guarantee).

o

d

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [15 / 97]

Speedup Techniques / Distance Oracles

Goal...

Dijkstra visits all nodes closer to o than d.

Unnecessary computations towards (eventually)

irrelevant directions.

Too many shortest path requests in networks that

change very slowly (or, not at all) over time.

Exploit preprocessing: Compute offline selected

distance summaries that will later allow, in real-time,

responses to arbitrary shortest path requests.

Assessment Criteria of Speedup Techniques / Distance

Oracles:

I Preprocessing time / space.

I Query (response) time to arbitrary requests.

I Stretch (approximation guarantee).

o

d

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [15 / 97]

Speedup Techniques / Distance Oracles

Generic idea...

1 Metric-independent preprocessing: Pick a small subset of crucial
vertices in the graph, possibly ignoring the metric. E.g.:

I Consider (small) sets of boundary vertices in a partition of the graph into

roughly equal-sized cells.

I Randomly select landmark vertices.

I Consider nearest access points (hubs) per vertex.

I ...

2 Metric-dependent preprocessing: Equip the network with selective

distance summaries, e.g., boundary-to-boundary, hub-to-cell,

landmark-to-all distances, etc.

3 Query Algorithm: Respond fast to queries, based on the (possibly

metric-independent) preprocessing and/or the precomputed

metric-dependent distance summaries.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [16 / 97]

Speedup Techniques / Distance Oracles

Generic idea...

1 Metric-independent preprocessing: Pick a small subset of crucial
vertices in the graph, possibly ignoring the metric. E.g.:

I Consider (small) sets of boundary vertices in a partition of the graph into

roughly equal-sized cells.

I Randomly select landmark vertices.

I Consider nearest access points (hubs) per vertex.

I ...

2 Metric-dependent preprocessing: Equip the network with selective

distance summaries, e.g., boundary-to-boundary, hub-to-cell,

landmark-to-all distances, etc.

3 Query Algorithm: Respond fast to queries, based on the (possibly

metric-independent) preprocessing and/or the precomputed

metric-dependent distance summaries.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [16 / 97]

Speedup Techniques / Distance Oracles

Generic idea...

1 Metric-independent preprocessing: Pick a small subset of crucial
vertices in the graph, possibly ignoring the metric. E.g.:

I Consider (small) sets of boundary vertices in a partition of the graph into

roughly equal-sized cells.

I Randomly select landmark vertices.

I Consider nearest access points (hubs) per vertex.

I ...

2 Metric-dependent preprocessing: Equip the network with selective

distance summaries, e.g., boundary-to-boundary, hub-to-cell,

landmark-to-all distances, etc.

3 Query Algorithm: Respond fast to queries, based on the (possibly

metric-independent) preprocessing and/or the precomputed

metric-dependent distance summaries.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [16 / 97]

Speedup Techniques / Distance Oracles

Generic idea...

1 Metric-independent preprocessing: Pick a small subset of crucial
vertices in the graph, possibly ignoring the metric. E.g.:

I Consider (small) sets of boundary vertices in a partition of the graph into

roughly equal-sized cells.

I Randomly select landmark vertices.

I Consider nearest access points (hubs) per vertex.

I ...

2 Metric-dependent preprocessing: Equip the network with selective

distance summaries, e.g., boundary-to-boundary, hub-to-cell,

landmark-to-all distances, etc.

3 Query Algorithm: Respond fast to queries, based on the (possibly

metric-independent) preprocessing and/or the precomputed

metric-dependent distance summaries.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [16 / 97]

Speedup Techniques / Distance Oracles

Performance...

Extremely successful theme in static graphs.

I In theory (oracles):

F PRE-Space: Subquadratic (sometimes quasi-linear).

F QUE-Time: Constant / sublinear in graph size.

F Stretch: Small (sometimes PTAS).

I In practice (speedups):

F PRE-Space: A few GBs (sometimes less than 1 GB).

F QUE-Time: Milliseconds (sometimes microseconds).

F Stretch: Exact distances (in most cases).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [17 / 97]

Time DependentTime Dependent

Shortest PathShortest Path

... a more realistic but also more involved problem... a more realistic but also more involved problem

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [18 / 97]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter γ ∈ [0, 1] in

a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion. /∗

Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to

periodic maintenance, saving consumption of resources, etc), for

predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with departure-time
from tail which is treated as a real-valued variable (functions with

continuous domain, but not necessarily continuous range).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [19 / 97]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter γ ∈ [0, 1] in

a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion. /∗

Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to

periodic maintenance, saving consumption of resources, etc), for

predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with departure-time
from tail which is treated as a real-valued variable (functions with

continuous domain, but not necessarily continuous range).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [19 / 97]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter γ ∈ [0, 1] in

a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion. /∗

Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to

periodic maintenance, saving consumption of resources, etc), for

predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with departure-time
from tail which is treated as a real-valued variable (functions with

continuous domain, but not necessarily continuous range).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [19 / 97]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter γ ∈ [0, 1] in

a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion. /∗

Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to

periodic maintenance, saving consumption of resources, etc), for

predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with departure-time
from tail which is treated as a real-valued variable (functions with

continuous domain, but not necessarily continuous range).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [19 / 97]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter γ ∈ [0, 1] in

a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion. /∗

Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to

periodic maintenance, saving consumption of resources, etc), for

predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with departure-time
from tail which is treated as a real-valued variable (functions with

continuous domain, but not necessarily continuous range).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [19 / 97]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter γ ∈ [0, 1] in

a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion. /∗

Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to

periodic maintenance, saving consumption of resources, etc), for

predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with departure-time
from tail which is treated as a real-valued variable (functions with

continuous domain, but not necessarily continuous range).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [19 / 97]

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A2 shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [20 / 97]

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

0.9

0.1

0.3

2.1

2

1

0

0.1

0.4

1.3

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)? Eg: to = 0

to = 1

Q2 What if you are not sure about the departure time?

A2 shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [20 / 97]

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

8.1

2.1

9.3

5.1

3

1

1

3.1

4

8.2

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)? Eg:

to = 0

to = 1

Q2 What if you are not sure about the departure time?

A2 shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [20 / 97]

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A2 shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [20 / 97]

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A2 shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [20 / 97]

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A2 shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [20 / 97]

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given

departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A2 shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [20 / 97]

TDSP :: EXAMPLE 2 ...waiting at nodes...

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q3 Would waiting-at-nodes be worth it?

A3 NO, since arrival-time functions are non-decreasing functions of

departure-time from origin.

Q4 Would waiting-at-nodes be worth it in this case?

A4 YES, because arrival-time function is decreasing in x : Wait until time 1 and

then traverse od, if already present at o at time to < 1. Otherwise, traverse

od immediately.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [21 / 97]

TDSP :: EXAMPLE 2 ...waiting at nodes...

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q3 Would waiting-at-nodes be worth it?

A3 NO, since arrival-time functions are non-decreasing functions of

departure-time from origin.

Q4 Would waiting-at-nodes be worth it in this case?

A4 YES, because arrival-time function is decreasing in x : Wait until time 1 and

then traverse od, if already present at o at time to < 1. Otherwise, traverse

od immediately.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [21 / 97]

TDSP :: EXAMPLE 2 ...waiting at nodes...

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

Q3 Would waiting-at-nodes be worth it?

A3 NO, since arrival-time functions are non-decreasing functions of

departure-time from origin.

Q4 Would waiting-at-nodes be worth it in this case?

A4 YES, because arrival-time function is decreasing in x : Wait until time 1 and

then traverse od, if already present at o at time to < 1. Otherwise, traverse

od immediately.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [21 / 97]

TDSP :: EXAMPLE 2 ...waiting at nodes...

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 Would waiting-at-nodes be worth it?

A3 NO, since arrival-time functions are non-decreasing functions of

departure-time from origin.

Q4 Would waiting-at-nodes be worth it in this case?

A4 YES, because arrival-time function is decreasing in x : Wait until time 1 and

then traverse od, if already present at o at time to < 1. Otherwise, traverse

od immediately.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [21 / 97]

Waiting Policies

Unrestricted Waiting (UW) Unlimited waiting is allowed at every node along an

od-path.

Origin Waiting (OW) Unlimited waiting is only allowed at the origin node of

each od-path.

Forbidden Waiting (FW) No waiting is allowed at any node of each od-path.

Depending on the waiting policy, the scheduler has to decide not

only for an optimal connecting path (that assures the earliest arrival

at the destination), but also for the appropriate optimal waiting times

at the nodes along this path.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [22 / 97]

TDSP :: EXAMPLE 3forbidden waiting times....

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q5 What if waiting-at-nodes is forbidden?

A5 An infinite, non-simple TD shortest od-path with finite delay.

o d

δ 3 − δ

o u o d

δ 1+δ
2

3+δ
4

3 − 3+δ
4
> 2

o u o u o d

δ 1+δ
2

3+δ
4

7+δ
8

15+δ
16

3 − 15+δ
16

> 2

o u o presence at o after k ↑ ∞ visits of u d

δ 1+δ
2

3+δ
4

limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaranteed
for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [23 / 97]

TDSP :: EXAMPLE 3forbidden waiting times....

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q5 What if waiting-at-nodes is forbidden?

A5 An infinite, non-simple TD shortest od-path with finite delay.

o d

δ 3 − δ

o u o d

δ 1+δ
2

3+δ
4

3 − 3+δ
4
> 2

o u o u o d

δ 1+δ
2

3+δ
4

7+δ
8

15+δ
16

3 − 15+δ
16

> 2

o u o presence at o after k ↑ ∞ visits of u d

δ 1+δ
2

3+δ
4

limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaranteed
for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [23 / 97]

TDSP :: EXAMPLE 3forbidden waiting times....

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q5 What if waiting-at-nodes is forbidden?

A5 An infinite, non-simple TD shortest od-path with finite delay.

o d

δ 3 − δ

o u o d

δ 1+δ
2

3+δ
4

3 − 3+δ
4
> 2

o u o u o d

δ 1+δ
2

3+δ
4

7+δ
8

15+δ
16

3 − 15+δ
16

> 2

o u o presence at o after k ↑ ∞ visits of u d

δ 1+δ
2

3+δ
4

limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaranteed
for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [23 / 97]

TDSP :: EXAMPLE 3forbidden waiting times....

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q5 What if waiting-at-nodes is forbidden?

A5 An infinite, non-simple TD shortest od-path with finite delay.

o d

δ 3 − δ

o u o d

δ 1+δ
2

3+δ
4

3 − 3+δ
4
> 2

o u o u o d

δ 1+δ
2

3+δ
4

7+δ
8

15+δ
16

3 − 15+δ
16

> 2

o u o presence at o after k ↑ ∞ visits of u d

δ 1+δ
2

3+δ
4

limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaranteed
for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [23 / 97]

TDSP :: EXAMPLE 3forbidden waiting times....

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q5 What if waiting-at-nodes is forbidden?

A5 An infinite, non-simple TD shortest od-path with finite delay.

o d

δ 3 − δ

o u o d

δ 1+δ
2

3+δ
4

3 − 3+δ
4
> 2

o u o u o d

δ 1+δ
2

3+δ
4

7+δ
8

15+δ
16

3 − 15+δ
16

> 2

o u o presence at o after k ↑ ∞ visits of u d

δ 1+δ
2

3+δ
4

limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaranteed
for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [23 / 97]

Inexistence of Optimal Waiting Times

Q Do optimal waiting times at nodes always exist?

A Unfortunately NOT! Bad Example:

D[uv](tu) =

{
100, tu ≤ 10,
1, tu > 10

Arr[uv](tu) =

{
tu + 100, tu ≤ 10,
tu + 1, tu > 10

2 4 6 8 10 12

75

100

125

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y/
ar

ri
va

l

26

50

25

Arc-Arrival Arr[uv]
Arc-Delay D[uv]

I Reason: Pathological discontinuity of the delay / arrival-time function.

I Solution: Optimal waiting times always exist for continuous functions, and

for (possibly discontinuous) pwl functions for which

if limt↓tu D[uv](t) < limt↑tu D[uv](t)
then D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at nodes always

exist and are polynomial-time computable.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [24 / 97]

Inexistence of Optimal Waiting Times

Q Do optimal waiting times at nodes always exist?

A Unfortunately NOT! Bad Example:

D[uv](tu) =

{
100, tu ≤ 10,
1, tu > 10

Arr[uv](tu) =

{
tu + 100, tu ≤ 10,
tu + 1, tu > 10

2 4 6 8 10 12

75

100

125

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y/
ar

ri
va

l

26

50

25

Arc-Arrival Arr[uv]
Arc-Delay D[uv]

I Reason: Pathological discontinuity of the delay / arrival-time function.

I Solution: Optimal waiting times always exist for continuous functions, and

for (possibly discontinuous) pwl functions for which

if limt↓tu D[uv](t) < limt↑tu D[uv](t)
then D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at nodes always

exist and are polynomial-time computable.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [24 / 97]

Inexistence of Optimal Waiting Times

Q Do optimal waiting times at nodes always exist?

A Unfortunately NOT! Bad Example:

D[uv](tu) =

{
100, tu ≤ 10,
1, tu > 10

Arr[uv](tu) =

{
tu + 100, tu ≤ 10,
tu + 1, tu > 10

2 4 6 8 10 12

75

100

125

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y/
ar

ri
va

l

26

50

25

Arc-Arrival Arr[uv]
Arc-Delay D[uv]

I Reason: Pathological discontinuity of the delay / arrival-time function.

I Solution: Optimal waiting times always exist for continuous functions, and

for (possibly discontinuous) pwl functions for which

if limt↓tu D[uv](t) < limt↑tu D[uv](t)
then D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at nodes always

exist and are polynomial-time computable.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [24 / 97]

Inexistence of Optimal Waiting Times

Q Do optimal waiting times at nodes always exist?

A Unfortunately NOT! Bad Example:

D[uv](tu) =

{
100, tu ≤ 10,
1, tu > 10

Arr[uv](tu) =

{
tu + 100, tu ≤ 10,
tu + 1, tu > 10

2 4 6 8 10 12

75

100

125

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y/
ar

ri
va

l

26

50

25

Arc-Arrival Arr[uv]
Arc-Delay D[uv]

I Reason: Pathological discontinuity of the delay / arrival-time function.

I Solution: Optimal waiting times always exist for continuous functions, and

for (possibly discontinuous) pwl functions for which

if limt↓tu D[uv](t) < limt↑tu D[uv](t)
then D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at nodes always

exist and are polynomial-time computable.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [24 / 97]

Inexistence of Optimal Waiting Times

Q Do optimal waiting times at nodes always exist?

A Unfortunately NOT! Bad Example:

D[uv](tu) =

{
100, tu ≤ 10,
1, tu > 10

Arr[uv](tu) =

{
tu + 100, tu ≤ 10,
tu + 1, tu > 10

2 4 6 8 10 12

75

100

125

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y/
ar

ri
v a

l

26

50

25

Arc-Arrival Arr[uv]
Arc-Delay D[uv]

I Reason: Pathological discontinuity of the delay / arrival-time function.

I Solution: Optimal waiting times always exist for continuous functions, and

for (possibly discontinuous) pwl functions for which

if limt↓tu D[uv](t) < limt↑tu D[uv](t)
then D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at nodes always

exist and are polynomial-time computable.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [24 / 97]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions are at

least equal to (greater than) −1.

Equivalently: Arc-arrival functions are

non-decreasing (aka no-overtaking property).
D[uv](tu)

v
= Arr[uv](tu)

= tu +
D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferrable to wait for some period at the

tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately available)

(slower) local train.

FIFO arc delay example Non-FIFO arc delay example

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [25 / 97]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions are at

least equal to (greater than) −1.

Equivalently: Arc-arrival functions are

non-decreasing (aka no-overtaking property).
D[uv](tu)

v
= Arr[uv](tu)

= tu +
D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferrable to wait for some period at the

tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately available)

(slower) local train.

FIFO arc delay example Non-FIFO arc delay example

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [25 / 97]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions are at

least equal to (greater than) −1.

Equivalently: Arc-arrival functions are

non-decreasing (aka no-overtaking property).
D[uv](tu)

v
= Arr[uv](tu)

= tu +
D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferrable to wait for some period at the

tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately available)

(slower) local train.

2x – 5

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

(-8/13)x + 173/13

2+x

0

departure tu from tail[uv]

ar
c

de
la

y

26

FIFO arc delay example

Non-FIFO arc delay example

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [25 / 97]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions are at

least equal to (greater than) −1.

Equivalently: Arc-arrival functions are

non-decreasing (aka no-overtaking property).
D[uv](tu)

v
= Arr[uv](tu)

= tu +
D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferrable to wait for some period at the

tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately available)

(slower) local train.

2x – 5

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

(-8/13)x + 173/13

2+x

0

departure tu from tail[uv]

ar
c

de
la

y

26

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

FIFO arc delay example Non-FIFO arc delay example

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [25 / 97]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in order to

compute the optimal waiting times in the original Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [26 / 97]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in order to

compute the optimal waiting times in the original Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [26 / 97]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in order to

compute the optimal waiting times in the original Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [26 / 97]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in order to

compute the optimal waiting times in the original Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [26 / 97]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in order to

compute the optimal waiting times in the original Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [26 / 97]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in order to

compute the optimal waiting times in the original Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [26 / 97]

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths

INPUT:

Directed graph G = (V ,A) with succinctly
represented arc-travel-time functions

(D[a])a∈A. (Arr[a] = ID + D[a])a∈A.

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

DEFINITIONS:
Path arrival / travel-time functions: ∀p = (a1, . . . , ak) ∈ Po,d ,

Arr[p] = Arr[ak] ◦ · · · ◦ Arr[a1] (composition of the involved arc-arrivals).

D[p] = Arr[p] − ID.

Earliest-arrival / Shortest-travel-time functions:

Arr[o, d] = minp∈Po,d

{
Arr[p]

}
, D[o, d] = Arr[o, d] − ID.

GOAL1: For departure-time to from o, determine td = Arr[o, d](to).

GOAL2: Provide a succinct representation of Arr[o, d] (or D[o, d]).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [27 / 97]

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths

INPUT:

Directed graph G = (V ,A) with succinctly
represented arc-travel-time functions

(D[a])a∈A. (Arr[a] = ID + D[a])a∈A.

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

DEFINITIONS:
Path arrival / travel-time functions: ∀p = (a1, . . . , ak) ∈ Po,d ,

Arr[p] = Arr[ak] ◦ · · · ◦ Arr[a1] (composition of the involved arc-arrivals).

D[p] = Arr[p] − ID.

Earliest-arrival / Shortest-travel-time functions:

Arr[o, d] = minp∈Po,d

{
Arr[p]

}
, D[o, d] = Arr[o, d] − ID.

GOAL1: For departure-time to from o, determine td = Arr[o, d](to).

GOAL2: Provide a succinct representation of Arr[o, d] (or D[o, d]).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [27 / 97]

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths

INPUT:

Directed graph G = (V ,A) with succinctly
represented arc-travel-time functions

(D[a])a∈A. (Arr[a] = ID + D[a])a∈A.

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

DEFINITIONS:
Path arrival / travel-time functions: ∀p = (a1, . . . , ak) ∈ Po,d ,

Arr[p] = Arr[ak] ◦ · · · ◦ Arr[a1] (composition of the involved arc-arrivals).

D[p] = Arr[p] − ID.

Earliest-arrival / Shortest-travel-time functions:

Arr[o, d] = minp∈Po,d

{
Arr[p]

}
, D[o, d] = Arr[o, d] − ID.

GOAL1: For departure-time to from o, determine td = Arr[o, d](to).

GOAL2: Provide a succinct representation of Arr[o, d] (or D[o, d]).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [27 / 97]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)! Possessing the entire

distance function D[o, d] allows for easy answers (e.g., via look-ups) in

several queries for varying departure times, or even finding the minimum

travel / ealriest-arrival time within a window of possible departure times.

2 Need to respond efficiently (theory: in sublinear time; practice: in

micro/milliseconds) to arbitrary queries in large-scale nets, for arbitrary

departure-times and od−pairs.

Preprocess (offline) towards GOAL2 (succinct representations of selected

D[o, d] functions) in order to support real-time responses to queries of

GOAL1.

Preprocessing of distance summaries (as in static case) requires to

precompute functions instead of scalars.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [28 / 97]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)! Possessing the entire

distance function D[o, d] allows for easy answers (e.g., via look-ups) in

several queries for varying departure times, or even finding the minimum

travel / ealriest-arrival time within a window of possible departure times.

2 Need to respond efficiently (theory: in sublinear time; practice: in

micro/milliseconds) to arbitrary queries in large-scale nets, for arbitrary

departure-times and od−pairs.

Preprocess (offline) towards GOAL2 (succinct representations of selected

D[o, d] functions) in order to support real-time responses to queries of

GOAL1.

Preprocessing of distance summaries (as in static case) requires to

precompute functions instead of scalars.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [28 / 97]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)! Possessing the entire

distance function D[o, d] allows for easy answers (e.g., via look-ups) in

several queries for varying departure times, or even finding the minimum

travel / ealriest-arrival time within a window of possible departure times.

2 Need to respond efficiently (theory: in sublinear time; practice: in

micro/milliseconds) to arbitrary queries in large-scale nets, for arbitrary

departure-times and od−pairs.

Preprocess (offline) towards GOAL2 (succinct representations of selected

D[o, d] functions) in order to support real-time responses to queries of

GOAL1.

Preprocessing of distance summaries (as in static case) requires to

precompute functions instead of scalars.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [28 / 97]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)! Possessing the entire

distance function D[o, d] allows for easy answers (e.g., via look-ups) in

several queries for varying departure times, or even finding the minimum

travel / ealriest-arrival time within a window of possible departure times.

2 Need to respond efficiently (theory: in sublinear time; practice: in

micro/milliseconds) to arbitrary queries in large-scale nets, for arbitrary

departure-times and od−pairs.

Preprocess (offline) towards GOAL2 (succinct representations of selected

D[o, d] functions) in order to support real-time responses to queries of

GOAL1.

Preprocessing of distance summaries (as in static case) requires to

precompute functions instead of scalars.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [28 / 97]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW networks

(given that optimal waiting times exist). The same applies for FIFO networks.

[OR (1990)] Prefix-subpath optimality does NOT hold in non-FIFO+FW
networks (cf. EXAMPLE of Slide 7).

[OR (1990)] If arc-delay functions are continuous, or piecewise continuous

with negative discontinuities1, then the solution (path+waiting policy) in

non-FIFO+UW network induces a solution in non-FIFO+OW network using

the same path and appropriate waiting time only at the origin.

[KZ (2014)] In strict-FIFO networks, (general) subpath optimality holds also in

the time-dependent case.

[FHS (2011)] In (strict) FIFO networks, Arr[o, d] is non-decreasing (increasing).

1This means that: ∀tu ,D[uv](tu) ≥ limt↓tu D[uv](t))

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [29 / 97]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW networks

(given that optimal waiting times exist). The same applies for FIFO networks.

[OR (1990)] Prefix-subpath optimality does NOT hold in non-FIFO+FW
networks (cf. EXAMPLE of Slide 7).

[OR (1990)] If arc-delay functions are continuous, or piecewise continuous

with negative discontinuities1, then the solution (path+waiting policy) in

non-FIFO+UW network induces a solution in non-FIFO+OW network using

the same path and appropriate waiting time only at the origin.

[KZ (2014)] In strict-FIFO networks, (general) subpath optimality holds also in

the time-dependent case.

[FHS (2011)] In (strict) FIFO networks, Arr[o, d] is non-decreasing (increasing).

1This means that: ∀tu ,D[uv](tu) ≥ limt↓tu D[uv](t))

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [29 / 97]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW networks

(given that optimal waiting times exist). The same applies for FIFO networks.

[OR (1990)] Prefix-subpath optimality does NOT hold in non-FIFO+FW
networks (cf. EXAMPLE of Slide 7).

[OR (1990)] If arc-delay functions are continuous, or piecewise continuous

with negative discontinuities1, then the solution (path+waiting policy) in

non-FIFO+UW network induces a solution in non-FIFO+OW network using

the same path and appropriate waiting time only at the origin.

[KZ (2014)] In strict-FIFO networks, (general) subpath optimality holds also in

the time-dependent case.

[FHS (2011)] In (strict) FIFO networks, Arr[o, d] is non-decreasing (increasing).

1This means that: ∀tu ,D[uv](tu) ≥ limt↓tu D[uv](t))
S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [29 / 97]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW networks

(given that optimal waiting times exist). The same applies for FIFO networks.

[OR (1990)] Prefix-subpath optimality does NOT hold in non-FIFO+FW
networks (cf. EXAMPLE of Slide 7).

[OR (1990)] If arc-delay functions are continuous, or piecewise continuous

with negative discontinuities1, then the solution (path+waiting policy) in

non-FIFO+UW network induces a solution in non-FIFO+OW network using

the same path and appropriate waiting time only at the origin.

[KZ (2014)] In strict-FIFO networks, (general) subpath optimality holds also in

the time-dependent case.

[FHS (2011)] In (strict) FIFO networks, Arr[o, d] is non-decreasing (increasing).

1This means that: ∀tu ,D[uv](tu) ≥ limt↓tu D[uv](t))
S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [29 / 97]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW networks

(given that optimal waiting times exist). The same applies for FIFO networks.

[OR (1990)] Prefix-subpath optimality does NOT hold in non-FIFO+FW
networks (cf. EXAMPLE of Slide 7).

[OR (1990)] If arc-delay functions are continuous, or piecewise continuous

with negative discontinuities1, then the solution (path+waiting policy) in

non-FIFO+UW network induces a solution in non-FIFO+OW network using

the same path and appropriate waiting time only at the origin.

[KZ (2014)] In strict-FIFO networks, (general) subpath optimality holds also in

the time-dependent case.

[FHS (2011)] In (strict) FIFO networks, Arr[o, d] is non-decreasing (increasing).

1This means that: ∀tu ,D[uv](tu) ≥ limt↓tu D[uv](t))
S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [29 / 97]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):

I TD variants of Dĳkstra and Bellman-Ford algorithms work correctly in FIFO
networks, and in non-FIFO+UW networks. Time complexity slightly worse

(when updating arc labels, some arc-delay functions are evaluated).

I TD variants of Dĳkstra and Bellman-Ford algorithms do NOT work

correctly in non-FIFO+FW networks. Determining existence of a finite-hop

solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [OR (1990)] Propose a TD-variant of Bellman-Ford, for non-FIFO+UW
networks.

Complexity is polynomial in the number of ‘‘elementary’’ functional operations.

i.e., (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so ‘‘elementary’’ operations after all (see next slides)!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [30 / 97]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):

I TD variants of Dĳkstra and Bellman-Ford algorithms work correctly in FIFO
networks, and in non-FIFO+UW networks. Time complexity slightly worse

(when updating arc labels, some arc-delay functions are evaluated).

I TD variants of Dĳkstra and Bellman-Ford algorithms do NOT work

correctly in non-FIFO+FW networks. Determining existence of a finite-hop

solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [OR (1990)] Propose a TD-variant of Bellman-Ford, for non-FIFO+UW
networks.

Complexity is polynomial in the number of ‘‘elementary’’ functional operations.

i.e., (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so ‘‘elementary’’ operations after all (see next slides)!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [30 / 97]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):

I TD variants of Dĳkstra and Bellman-Ford algorithms work correctly in FIFO
networks, and in non-FIFO+UW networks. Time complexity slightly worse

(when updating arc labels, some arc-delay functions are evaluated).

I TD variants of Dĳkstra and Bellman-Ford algorithms do NOT work

correctly in non-FIFO+FW networks. Determining existence of a finite-hop

solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [OR (1990)] Propose a TD-variant of Bellman-Ford, for non-FIFO+UW
networks.

Complexity is polynomial in the number of ‘‘elementary’’ functional operations.

i.e., (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so ‘‘elementary’’ operations after all (see next slides)!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [30 / 97]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):

I TD variants of Dĳkstra and Bellman-Ford algorithms work correctly in FIFO
networks, and in non-FIFO+UW networks. Time complexity slightly worse

(when updating arc labels, some arc-delay functions are evaluated).

I TD variants of Dĳkstra and Bellman-Ford algorithms do NOT work

correctly in non-FIFO+FW networks. Determining existence of a finite-hop

solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [OR (1990)] Propose a TD-variant of Bellman-Ford, for non-FIFO+UW
networks.

Complexity is polynomial in the number of ‘‘elementary’’ functional

operations. i.e., (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so ‘‘elementary’’ operations after all (see next slides)!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [30 / 97]

Algorithms for TDSPAlgorithms for TDSP
... in FIFO, continuous, pwl instances... in FIFO, continuous, pwl instances

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [31 / 97]

Input/Output DataInput/Output Data

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [32 / 97]

PWL Arc Delays

Forward Description (as function of departure times from origin)

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Reverse Description (as function of arrival times at destination)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [33 / 97]

PWL Arc Delays

Forward Description (as function of departure times from origin)

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Reverse Description (as function of arrival times at destination)

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

arrival tv at head[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48 50-2-4

ooo

ooo
0

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [33 / 97]

How to Store/Access PWL Arc Delays

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Exploit periodicity and piecewise-linearity:

∀tu ∈ R,
−→
D [uv](tu) =



4

3
tu + 1, 0 ≤ tumod T ≤ 3

5, 3 ≤ tumod T ≤ 5

2tu − 5, 5 ≤ tumod T ≤ 7

− 8

13
tu + 173

13
, 7 ≤ tumod T ≤ 20

1, 20 ≤ tumod T ≤ 24

Representation: Array of (slope-constant-dep.time UB) triples

(dep.time-delay) pairs

equipped with advanced (binary/predecessor) search capabilities.(
4

3
, 1, 3

)
(0, 5, 5) (2,−5, 7)

(
− 8

13
, 173

13
, 20

)
(0, 1, 24)

(0, 1) (3, 5) (5, 5) (7, 9) (20, 1)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [34 / 97]

How to Store/Access PWL Arc Delays

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Exploit periodicity and piecewise-linearity:

∀tu ∈ R,
−→
D [uv](tu) =



4

3
tu + 1, 0 ≤ tumod T ≤ 3

5, 3 ≤ tumod T ≤ 5

2tu − 5, 5 ≤ tumod T ≤ 7

− 8

13
tu + 173

13
, 7 ≤ tumod T ≤ 20

1, 20 ≤ tumod T ≤ 24

Representation: Array of

(slope-constant-dep.time UB) triples

(dep.time-delay) pairs
equipped with advanced (binary/predecessor) search capabilities.

(
4

3
, 1, 3

)
(0, 5, 5) (2,−5, 7)

(
− 8

13
, 173

13
, 20

)
(0, 1, 24)

(0, 1) (3, 5) (5, 5) (7, 9) (20, 1)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [34 / 97]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b′e from head[e] at which D[e]
changes slope (assume K ∈ O(m) PBs in total).

Primitive Image (PI): Latest departure-time be from origin o s.t.

earliest-arrival-time b′e = Arr[o, tail(e)](be) coincides with a breakpoint for

D[e].

Minimization Breakpoint (MB): Departure-time bv from origin o s.t. Arr[o, v]
changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival function

Arr[o, d].

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [35 / 97]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b′e from head[e] at which D[e]
changes slope (assume K ∈ O(m) PBs in total).

Primitive Image (PI): Latest departure-time be from origin o s.t.

earliest-arrival-time b′e = Arr[o, tail(e)](be) coincides with a breakpoint for

D[e].

Minimization Breakpoint (MB): Departure-time bv from origin o s.t. Arr[o, v]
changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival function

Arr[o, d].

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [35 / 97]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b′e from head[e] at which D[e]
changes slope (assume K ∈ O(m) PBs in total).

Primitive Image (PI): Latest departure-time be from origin o s.t.

earliest-arrival-time b′e = Arr[o, tail(e)](be) coincides with a breakpoint for

D[e].

Minimization Breakpoint (MB): Departure-time bv from origin o s.t. Arr[o, v]
changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival function

Arr[o, d].

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [35 / 97]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b′e from head[e] at which D[e]
changes slope (assume K ∈ O(m) PBs in total).

Primitive Image (PI): Latest departure-time be from origin o s.t.

earliest-arrival-time b′e = Arr[o, tail(e)](be) coincides with a breakpoint for

D[e].

Minimization Breakpoint (MB): Departure-time bv from origin o s.t. Arr[o, v]
changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival function

Arr[o, d].
S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [35 / 97]

Known Issues wrt Representations

Same representation both for arc-arrival (or delay) functions and

earliest-arrival (or shortest-travel-time) functions.

I Convenient for handling artificial arcs (representing shortest-travel-time

functions) in overlay abstractions of the road network.

Too many (worst case: nΘ(log(n))) breakpoints to store Arr[o, d] (or D[o, d]),
even for linear arc-delays and very sparse graphs.

We need only O
(

1

ε · log
(

Dmax[o,d]
Dmin[o,d]

))
breakpoints for a (1 + ε) upper

approximation D[o, d] of D[o, d], for the case of continuous,

piecewise-linear arc-delays.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [36 / 97]

Known Issues wrt Representations

Same representation both for arc-arrival (or delay) functions and

earliest-arrival (or shortest-travel-time) functions.

I Convenient for handling artificial arcs (representing shortest-travel-time

functions) in overlay abstractions of the road network.

Too many (worst case: nΘ(log(n))) breakpoints to store Arr[o, d] (or D[o, d]),
even for linear arc-delays and very sparse graphs.

We need only O
(

1

ε · log
(

Dmax[o,d]
Dmin[o,d]

))
breakpoints for a (1 + ε) upper

approximation D[o, d] of D[o, d], for the case of continuous,

piecewise-linear arc-delays.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [36 / 97]

Known Issues wrt Representations

Same representation both for arc-arrival (or delay) functions and

earliest-arrival (or shortest-travel-time) functions.

I Convenient for handling artificial arcs (representing shortest-travel-time

functions) in overlay abstractions of the road network.

Too many (worst case: nΘ(log(n))) breakpoints to store Arr[o, d] (or D[o, d]),
even for linear arc-delays and very sparse graphs.

We need only O
(

1

ε · log
(

Dmax[o,d]
Dmin[o,d]

))
breakpoints for a (1 + ε) upper

approximation D[o, d] of D[o, d], for the case of continuous,

piecewise-linear arc-delays.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [36 / 97]

Complexity of TDSPComplexity of TDSP

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [37 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (I)

A Useful Observation (L2.1-2.2 in FHS11)

For any pair of monotone, pwl functions f and g, both their composition f ◦ g

and their minimum min{f , g} are also monotone, pwl functions.

Parametric Shortest Path (PSP): A Similar (but different) Problem

INPUT: G = (V ,A), o, d ∈ V . A linear length function

`[a](γ) = λ[a] · γ + µ[a] per edge a ∈ A (negative lengths are allowed).

DEFINITIONS:
I Path-length: ∀p ∈ G, L[p](γ) =

∑
a∈p `[a](γ).

I Min-length: ∀o, d ∈ V , L[o, d](γ) = minp∈Po,d
{L[p](γ)}.

GOAL1: Compute L[o, d] for a given value of γ.

GOAL2: Succinctly represent L[o, d] for all (real) values of γ.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [38 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (I)

A Useful Observation (L2.1-2.2 in FHS11)

For any pair of monotone, pwl functions f and g, both their composition f ◦ g

and their minimum min{f , g} are also monotone, pwl functions.

Parametric Shortest Path (PSP): A Similar (but different) Problem

INPUT: G = (V ,A), o, d ∈ V . A linear length function

`[a](γ) = λ[a] · γ + µ[a] per edge a ∈ A (negative lengths are allowed).

DEFINITIONS:
I Path-length: ∀p ∈ G, L[p](γ) =

∑
a∈p `[a](γ).

I Min-length: ∀o, d ∈ V , L[o, d](γ) = minp∈Po,d
{L[p](γ)}.

GOAL1: Compute L[o, d] for a given value of γ.

GOAL2: Succinctly represent L[o, d] for all (real) values of γ.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [38 / 97]

TDSP vs PSP?

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

TDSP: Arc-arrival composition along paths PSP: Arc-length addition along paths

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [39 / 97]

TDSP vs PSP?

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

L[oud](to) = 3to + 2.1

L[ovd](to) = 3to + 2.1
L[ouvd](to) = 7to + 0.2

L[ovud](to) = 2to + 5

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

TDSP: Arc-arrival composition along paths PSP: Arc-length addition along paths

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [39 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (II)

Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]

There exists (linear) PSP-instance with nΩ(log n) BPs in L[o, d].

Main Steps for TDSP Lower Bound:

1 Assure non-negativity of lengths in the PSP instance, in the departure-time
interval of interest.

2 Scale properly the PSP instance.

3 Consider the corresponding TDSP instance, with parameter γ handled as

departure time from the origin o.

4 Prove that L[o, d] (for PSP instance) and D[o, d] (for TDSP instance) have

(almost) the same number of BPs.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [40 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (II)

Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]

There exists (linear) PSP-instance with nΩ(log n) BPs in L[o, d].

Main Steps for TDSP Lower Bound:

1 Assure non-negativity of lengths in the PSP instance, in the departure-time
interval of interest.

2 Scale properly the PSP instance.

3 Consider the corresponding TDSP instance, with parameter γ handled as

departure time from the origin o.

4 Prove that L[o, d] (for PSP instance) and D[o, d] (for TDSP instance) have

(almost) the same number of BPs.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [40 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (III)

1 Construct a layered-graph, in a path-length-preserving manner:

0 0 0

0 0 0

0 0 0

0 0 0

u4

v4

w4

z4

u3

v3

w3

z3

u2

v2

w2

z2

u1

v1

w1

z1

o du dvo

w

z

Assure non-negativity of arc-lengths in PSP: For the sequence

〈γ1, γ2, . . . , γN〉 of breakpoints (BPs) wrt L[o, d], shift arc lengths by

max{0,−Lmin}, Lmin = minγ∈[γ1,γN],a∈A(G){L[a](γ)} .

2 Scale arc-length functions in PSP by a proper positive constant µ.

3 For the TDSP resulting from the scaled PSP when considering γ as

departure time, prove that ∀j ∈ {1, . . . ,N − 1}, at ‘‘time’’ γ̄j ≡
γj+γj+1

2
both

instances return the same shortest od−path pj .

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [41 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (III)

1 Construct a layered-graph, in a path-length-preserving manner:

0 0 0

0 0 0

0 0 0

0 0 0

u4

v4

w4

z4

u3

v3

w3

z3

u2

v2

w2

z2

u1

v1

w1

z1

o du dvo

w

z

Assure non-negativity of arc-lengths in PSP: For the sequence

〈γ1, γ2, . . . , γN〉 of breakpoints (BPs) wrt L[o, d], shift arc lengths by

max{0,−Lmin}, Lmin = minγ∈[γ1,γN],a∈A(G){L[a](γ)} .

2 Scale arc-length functions in PSP by a proper positive constant µ.

3 For the TDSP resulting from the scaled PSP when considering γ as

departure time, prove that ∀j ∈ {1, . . . ,N − 1}, at ‘‘time’’ γ̄j ≡
γj+γj+1

2
both

instances return the same shortest od−path pj .

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [41 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (III)

1 Construct a layered-graph, in a path-length-preserving manner:

0 0 0

0 0 0

0 0 0

0 0 0

u4

v4

w4

z4

u3

v3

w3

z3

u2

v2

w2

z2

u1

v1

w1

z1

o du dvo

w

z

Assure non-negativity of arc-lengths in PSP: For the sequence

〈γ1, γ2, . . . , γN〉 of breakpoints (BPs) wrt L[o, d], shift arc lengths by

max{0,−Lmin}, Lmin = minγ∈[γ1,γN],a∈A(G){L[a](γ)} .

2 Scale arc-length functions in PSP by a proper positive constant µ.

3 For the TDSP resulting from the scaled PSP when considering γ as

departure time, prove that ∀j ∈ {1, . . . ,N − 1}, at ‘‘time’’ γ̄j ≡
γj+γj+1

2
both

instances return the same shortest od−path pj .

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [41 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (III)

1 Construct a layered-graph, in a path-length-preserving manner:

0 0 0

0 0 0

0 0 0

0 0 0

u4

v4

w4

z4

u3

v3

w3

z3

u2

v2

w2

z2

u1

v1

w1

z1

o du dvo

w

z

Assure non-negativity of arc-lengths in PSP: For the sequence

〈γ1, γ2, . . . , γN〉 of breakpoints (BPs) wrt L[o, d], shift arc lengths by

max{0,−Lmin}, Lmin = minγ∈[γ1,γN],a∈A(G){L[a](γ)} .

2 Scale arc-length functions in PSP by a proper positive constant µ.

3 For the TDSP resulting from the scaled PSP when considering γ as

departure time, prove that ∀j ∈ {1, . . . ,N − 1}, at ‘‘time’’ γ̄j ≡
γj+γj+1

2
both

instances return the same shortest od−path pj .

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [41 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (IV)

How it works: At given j ∈ {1, . . . ,N − 1}:

γ̄j =
γj+γj+1

2
, L̄j = L[pj](γ̄j) = L[o, d](γ̄j).

L′
j

= minq∈Ps,d−{pj }{L[q](γ̄j), ∆j = L′
j
− L̄j > 0.

∆min = minj∈[N−1] ∆j ε∗ = ∆min
2n

δ∗ = mina∈A:λ[a],0

{
∆min

2n|λ[a]|

}

Arc-delay perturbations: Small-enough so as not to affect optimality of pj

in PSP instance: ∀εa ∈ (0, ε∗],∑
a∈pj

`[a](γ̄j + εa) ≤ L̄j +
∆j

2
<

L̄j+L′
j

2
< L′

j
≤

∑
a∈q `[a](γ̄j), ∀q , pj

Departure-time perturbations: Small-enough so as to cause not too large

arc-delay perturbations: ∀a ∈ A, ∀δa ∈ (0, δ∗],

D[a](γ̄j + δa) = `[a](γ̄j + δa) ≤ `[a](γ̄j) + ε∗

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [42 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (IV)

How it works: At given j ∈ {1, . . . ,N − 1}:

γ̄j =
γj+γj+1

2
, L̄j = L[pj](γ̄j) = L[o, d](γ̄j).

L′
j

= minq∈Ps,d−{pj }{L[q](γ̄j), ∆j = L′
j
− L̄j > 0.

∆min = minj∈[N−1] ∆j ε∗ = ∆min
2n

δ∗ = mina∈A:λ[a],0

{
∆min

2n|λ[a]|

}
Arc-delay perturbations: Small-enough so as not to affect optimality of pj

in PSP instance: ∀εa ∈ (0, ε∗],∑
a∈pj

`[a](γ̄j + εa) ≤ L̄j +
∆j

2
<

L̄j+L′
j

2
< L′

j
≤

∑
a∈q `[a](γ̄j), ∀q , pj

Departure-time perturbations: Small-enough so as to cause not too large

arc-delay perturbations: ∀a ∈ A, ∀δa ∈ (0, δ∗],

D[a](γ̄j + δa) = `[a](γ̄j + δa) ≤ `[a](γ̄j) + ε∗

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [42 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (IV)

How it works: At given j ∈ {1, . . . ,N − 1}:

γ̄j =
γj+γj+1

2
, L̄j = L[pj](γ̄j) = L[o, d](γ̄j).

L′
j

= minq∈Ps,d−{pj }{L[q](γ̄j), ∆j = L′
j
− L̄j > 0.

∆min = minj∈[N−1] ∆j ε∗ = ∆min
2n

δ∗ = mina∈A:λ[a],0

{
∆min

2n|λ[a]|

}
Arc-delay perturbations: Small-enough so as not to affect optimality of pj

in PSP instance: ∀εa ∈ (0, ε∗],∑
a∈pj

`[a](γ̄j + εa) ≤ L̄j +
∆j

2
<

L̄j+L′
j

2
< L′

j
≤

∑
a∈q `[a](γ̄j), ∀q , pj

Departure-time perturbations: Small-enough so as to cause not too large

arc-delay perturbations: ∀a ∈ A, ∀δa ∈ (0, δ∗],

D[a](γ̄j + δa) = `[a](γ̄j + δa) ≤ `[a](γ̄j) + ε∗

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [42 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (V)

How it works (continued): At given j ∈ {1, . . . ,N − 1}:

Scale-invariance of time-perturbations: Scaling of all arc-delays by a

positive number µ > 0 does not affect at all the range of allowed

time-perturbations δ∗ = mina∈A:λ[a],0

{
∆min

2n|λ[a]|

}
.

TDSP-instance: Scale the PSP-instance by µ = δ∗

2(Lmax+∆min)
. Handle the

PSP-parameter γ as time.

Proper scaling guarantees sufficiently small departure-time perturbations:
Arr[pj](γ̄j) = γ̄j + D[pj](γ̄j) < γ̄j + δ∗.

∴ Small time-perturbations guarantee sufficiently small arc-delay
perturbations, and thus, optimality of pj :

D[pj](γ̄j) ≤ µ · L̄j + µ ·
(n−1)∆min

2n

< µ · L′
j
− µ

(n−1)∆min

2n
≤ D[q](γ̄j), ∀q , pj

QED

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [43 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (V)

How it works (continued): At given j ∈ {1, . . . ,N − 1}:

Scale-invariance of time-perturbations: Scaling of all arc-delays by a

positive number µ > 0 does not affect at all the range of allowed

time-perturbations δ∗ = mina∈A:λ[a],0

{
∆min

2n|λ[a]|

}
.

TDSP-instance: Scale the PSP-instance by µ = δ∗

2(Lmax+∆min)
. Handle the

PSP-parameter γ as time.

Proper scaling guarantees sufficiently small departure-time perturbations:
Arr[pj](γ̄j) = γ̄j + D[pj](γ̄j) < γ̄j + δ∗.

∴ Small time-perturbations guarantee sufficiently small arc-delay
perturbations, and thus, optimality of pj :

D[pj](γ̄j) ≤ µ · L̄j + µ ·
(n−1)∆min

2n

< µ · L′
j
− µ

(n−1)∆min

2n
≤ D[q](γ̄j), ∀q , pj

QED

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [43 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (V)

How it works (continued): At given j ∈ {1, . . . ,N − 1}:

Scale-invariance of time-perturbations: Scaling of all arc-delays by a

positive number µ > 0 does not affect at all the range of allowed

time-perturbations δ∗ = mina∈A:λ[a],0

{
∆min

2n|λ[a]|

}
.

TDSP-instance: Scale the PSP-instance by µ = δ∗

2(Lmax+∆min)
. Handle the

PSP-parameter γ as time.

Proper scaling guarantees sufficiently small departure-time perturbations:
Arr[pj](γ̄j) = γ̄j + D[pj](γ̄j) < γ̄j + δ∗.

∴ Small time-perturbations guarantee sufficiently small arc-delay
perturbations, and thus, optimality of pj :

D[pj](γ̄j) ≤ µ · L̄j + µ ·
(n−1)∆min

2n

< µ · L′
j
− µ

(n−1)∆min

2n
≤ D[q](γ̄j), ∀q , pj

QED

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [43 / 97]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (V)

How it works (continued): At given j ∈ {1, . . . ,N − 1}:

Scale-invariance of time-perturbations: Scaling of all arc-delays by a

positive number µ > 0 does not affect at all the range of allowed

time-perturbations δ∗ = mina∈A:λ[a],0

{
∆min

2n|λ[a]|

}
.

TDSP-instance: Scale the PSP-instance by µ = δ∗

2(Lmax+∆min)
. Handle the

PSP-parameter γ as time.

Proper scaling guarantees sufficiently small departure-time perturbations:
Arr[pj](γ̄j) = γ̄j + D[pj](γ̄j) < γ̄j + δ∗.

∴ Small time-perturbations guarantee sufficiently small arc-delay
perturbations, and thus, optimality of pj :

D[pj](γ̄j) ≤ µ · L̄j + µ ·
(n−1)∆min

2n

< µ · L′
j
− µ

(n−1)∆min

2n
≤ D[q](γ̄j), ∀q , pj

QED

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [43 / 97]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj < tj+1, Arr[o, d] forms a

concave chain.

EXPLANATION:
Any arc-delay is linear (no primitive breakpoints occur at edges), if the

departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear functions, thus

linear.

Arr[o, d] is the application of the min operator among linear functions,

thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [44 / 97]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj < tj+1, Arr[o, d] forms a

concave chain.

EXPLANATION:
Any arc-delay is linear (no primitive breakpoints occur at edges), if the

departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear functions, thus

linear.

Arr[o, d] is the application of the min operator among linear functions,

thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [44 / 97]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj < tj+1, Arr[o, d] forms a

concave chain.

EXPLANATION:
Any arc-delay is linear (no primitive breakpoints occur at edges), if the

departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear functions, thus

linear.

Arr[o, d] is the application of the min operator among linear functions,

thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [44 / 97]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj < tj+1, Arr[o, d] forms a

concave chain.

EXPLANATION:
Any arc-delay is linear (no primitive breakpoints occur at edges), if the

departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear functions, thus

linear.

Arr[o, d] is the application of the min operator among linear functions,

thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [44 / 97]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj < tj+1, Arr[o, d] forms a

concave chain.

EXPLANATION:
Any arc-delay is linear (no primitive breakpoints occur at edges), if the

departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear functions, thus

linear.

Arr[o, d] is the application of the min operator among linear functions,

thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

0

(-1+p1)*X

v3v2 ds vn-1vn-2

0

(-1+p2)*X

0

(-1+pn-2)*X

0

(-1+pn-1)*X

ooo

ooo

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [44 / 97]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (II)

OBSERVATION II: (L4.2 in FHS11)

|BP(Arrpwl[o, d])| ≤ K · |BP(Arrlin[o, d])|.

Lemma 4.3 (FHS11)

|BP(Arrlin[o, d])| ≤
(2n+1)1+log c

2
in a layered

graph with c layers of n nodes each.

THM4.4 (FHS11)

|BP(Arrlin[o, d])| = nO(log n) in any graph G and pair of nodes o, d ∈ V(G).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [45 / 97]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (II)

OBSERVATION II: (L4.2 in FHS11)

|BP(Arrpwl[o, d])| ≤ K · |BP(Arrlin[o, d])|.

Lemma 4.3 (FHS11)

|BP(Arrlin[o, d])| ≤
(2n+1)1+log c

2
in a layered

graph with c layers of n nodes each.

THM4.4 (FHS11)

|BP(Arrlin[o, d])| = nO(log n) in any graph G and pair of nodes o, d ∈ V(G).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [45 / 97]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (II)

OBSERVATION II: (L4.2 in FHS11)

|BP(Arrpwl[o, d])| ≤ K · |BP(Arrlin[o, d])|.

Lemma 4.3 (FHS11)

|BP(Arrlin[o, d])| ≤
(2n+1)1+log c

2
in a layered

graph with c layers of n nodes each.

THM4.4 (FHS11)

|BP(Arrlin[o, d])| = nO(log n) in any graph G and pair of nodes o, d ∈ V(G).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [45 / 97]

(Exact) Output Sensitive Algorithm
for Earliest-Arrival Functions

(Exact) Output Sensitive Algorithm
for Earliest-Arrival Functions

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [46 / 97]

Why Do We Need the Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to have from/to

any origin/destination vertex.

2 We may need to compute exact distance summaries for special pairs of
vertices (eg, from/to hubs, all superhub-to-superhub connections, etc).

3 Interesting to discover whether the complexity of the earliest-arrival

functions is indeed so bad in real (e.g., road) networks.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [47 / 97]

Why Do We Need the Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to have from/to

any origin/destination vertex.

2 We may need to compute exact distance summaries for special pairs of
vertices (eg, from/to hubs, all superhub-to-superhub connections, etc).

3 Interesting to discover whether the complexity of the earliest-arrival

functions is indeed so bad in real (e.g., road) networks.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [47 / 97]

Why Do We Need the Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to have from/to

any origin/destination vertex.

2 We may need to compute exact distance summaries for special pairs of
vertices (eg, from/to hubs, all superhub-to-superhub connections, etc).

3 Interesting to discover whether the complexity of the earliest-arrival

functions is indeed so bad in real (e.g., road) networks.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [47 / 97]

Why Do We Need the Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to have from/to

any origin/destination vertex.

2 We may need to compute exact distance summaries for special pairs of
vertices (eg, from/to hubs, all superhub-to-superhub connections, etc).

3 Interesting to discover whether the complexity of the earliest-arrival

functions is indeed so bad in real (e.g., road) networks.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [47 / 97]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in the

graph is at most 2.

Given an arbitrary point in time (‘‘current time’’)

t0 ≥ 0 as departure time from origin o, compute a

TDSP tree.

Discover until when the TDSP tree is valid.

I ∀v ∈ V , two short alternatives when departing from

o at time t0: Earliest-arrival to each parent, plus

delay of corresponding incoming arc.

I Minimization (vertex) Certificate tfail [v]: Earliest departure time from o at

which the two alternatives of v become equivalent.

I Primitive (arc) Certificate tfail [e]: Primitive image of the next (ie, after t0)

breakpoint of the arc to come.

All (m + n) certificates temporarily stored in a priority queue.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [48 / 97]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in the

graph is at most 2.

Given an arbitrary point in time (‘‘current time’’)

t0 ≥ 0 as departure time from origin o, compute a

TDSP tree.

Discover until when the TDSP tree is valid.

I ∀v ∈ V , two short alternatives when departing from

o at time t0: Earliest-arrival to each parent, plus

delay of corresponding incoming arc.

0

0
0

x2

x3

x1

v

I Minimization (vertex) Certificate tfail [v]: Earliest departure time from o at

which the two alternatives of v become equivalent.

I Primitive (arc) Certificate tfail [e]: Primitive image of the next (ie, after t0)

breakpoint of the arc to come.

All (m + n) certificates temporarily stored in a priority queue.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [48 / 97]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in the

graph is at most 2.

Given an arbitrary point in time (‘‘current time’’)

t0 ≥ 0 as departure time from origin o, compute a

TDSP tree.

Discover until when the TDSP tree is valid.

I ∀v ∈ V , two short alternatives when departing from

o at time t0: Earliest-arrival to each parent, plus

delay of corresponding incoming arc.

0

0
0

x2

x3

x1

v

v2

v3

v1

o

v4

v5

v6

v7

v8

v9

v10

v11

v12

d

v13

I Minimization (vertex) Certificate tfail [v]: Earliest departure time from o at

which the two alternatives of v become equivalent.

I Primitive (arc) Certificate tfail [e]: Primitive image of the next (ie, after t0)

breakpoint of the arc to come.

All (m + n) certificates temporarily stored in a priority queue.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [48 / 97]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in the

graph is at most 2.

Given an arbitrary point in time (‘‘current time’’)

t0 ≥ 0 as departure time from origin o, compute a

TDSP tree.

Discover until when the TDSP tree is valid.

I ∀v ∈ V , two short alternatives when departing from

o at time t0: Earliest-arrival to each parent, plus

delay of corresponding incoming arc.

0

0
0

x2

x3

x1

v

v2

v3

v1

o

v4

v5

v6

v7

v8

v9

v10

v11

v12

d

v13

I Minimization (vertex) Certificate tfail [v]: Earliest departure time from o at

which the two alternatives of v become equivalent.

I Primitive (arc) Certificate tfail [e]: Primitive image of the next (ie, after t0)

breakpoint of the arc to come.

All (m + n) certificates temporarily stored in a priority queue.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [48 / 97]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in the

graph is at most 2.

Given an arbitrary point in time (‘‘current time’’)

t0 ≥ 0 as departure time from origin o, compute a

TDSP tree.

Discover until when the TDSP tree is valid.

I ∀v ∈ V , two short alternatives when departing from

o at time t0: Earliest-arrival to each parent, plus

delay of corresponding incoming arc.

0

0
0

x2

x3

x1

v

v2

v3

v1

o

v4

v5

v6

v7

v8

v9

v10

v11

v12

d

v13

I Minimization (vertex) Certificate tfail [v]: Earliest departure time from o at

which the two alternatives of v become equivalent.

I Primitive (arc) Certificate tfail [e]: Primitive image of the next (ie, after t0)

breakpoint of the arc to come.

All (m + n) certificates temporarily stored in a priority queue.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [48 / 97]

The Output-Sensitive Algorithm (II)

When current time t1 > t0 matches the earliest failure-time of a certificate in the

queue:

if minimization-certificate failure, at

node v ∈ V :

then (1) Update shortest ov−path

/∗ ONE-BIT change in combinatorial structure ∗/

(2) Update Arr[o, x] and tfail [x],
∀x ∈ Tv .

(3) Update tfail [e],
∀e ∈ E : x = tail[e] ∈ Tv .

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = A-v t + B-v

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α3t + β3

Arr[o,v](t=t1+ε) = Awt + Bw + D[wv](Awt + Bw) = A+vt + B+v

TDSPT
Subtree

Arr[o,x](t=t1-ε) = A-vt + B-v + D[vx](A-vt + B-v)

Arr[o,x](t=t1+ε) = A+vt + B+v + D[vx](A+vt + B+v)
TDSPT-EDGE
NON-TDSPT-EDGE

u

w

v x

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α-3t + β-3

Arr[o,v](t=t1+ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

TDSPT
Subtree

Arr[o,x](t=t1-ε) = Avt + Bv + D-[vx](Avt + Bv)

Arr[o,x](t=t1+ε) = Avt + Bv + D+[vx](Avt + Bv)

α+3t + β+3

TDSPT-EDGE
NON-TDSPT-EDGE

w

u

v x

else /∗ primitive-certificate failure, at arc e = vx ∈ E ∗/

(1) Update Arr[o, y] and tfail [y], ∀y ∈ Tx .

(2) Update tfail [e
′], ∀e′ ∈ E : tail[e′] ∈ Tx .

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [49 / 97]

The Output-Sensitive Algorithm (II)

When current time t1 > t0 matches the earliest failure-time of a certificate in the

queue:

if minimization-certificate failure, at

node v ∈ V :

then (1) Update shortest ov−path

/∗ ONE-BIT change in combinatorial structure ∗/

(2) Update Arr[o, x] and tfail [x],
∀x ∈ Tv .

(3) Update tfail [e],
∀e ∈ E : x = tail[e] ∈ Tv .

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = A-v t + B-v

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α3t + β3

Arr[o,v](t=t1+ε) = Awt + Bw + D[wv](Awt + Bw) = A+vt + B+v

TDSPT
Subtree

Arr[o,x](t=t1-ε) = A-vt + B-v + D[vx](A-vt + B-v)

Arr[o,x](t=t1+ε) = A+vt + B+v + D[vx](A+vt + B+v)
TDSPT-EDGE
NON-TDSPT-EDGE

u

w

v x

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α-3t + β-3

Arr[o,v](t=t1+ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

TDSPT
Subtree

Arr[o,x](t=t1-ε) = Avt + Bv + D-[vx](Avt + Bv)

Arr[o,x](t=t1+ε) = Avt + Bv + D+[vx](Avt + Bv)

α+3t + β+3

TDSPT-EDGE
NON-TDSPT-EDGE

w

u

v x

else /∗ primitive-certificate failure, at arc e = vx ∈ E ∗/

(1) Update Arr[o, y] and tfail [y], ∀y ∈ Tx .

(2) Update tfail [e
′], ∀e′ ∈ E : tail[e′] ∈ Tx .

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [49 / 97]

The Output-Sensitive Algorithm (III)

What to keep in memory:

I Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating the

parent).

I Advanced search structures, if number of BPs is large.

I Only temporarily store certificates in a priority queue.

Response-time per certificate failure at c ∈ V ∪ E :

I In the in-degrees-2 graph (or any constant-in-degree graph): O(|Ec | · log n).

Ec is the set of arcs whose tails are in Tc , or Thead[c]. Logarithmic factor is due

to priority-queue operations.
I In the original graph (in worst-case): O

(
m × log2

n
)
. Second logarithmic

factor is due to updates of tournament trees implementing the MIN operator

at a particular node, upon emergence of a single certificate failure.

Worst-case time-complexity of output-sensitive algorithm:

O
(
m × log2

n × (PRIMBPs + MINBPs)
)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [50 / 97]

The Output-Sensitive Algorithm (III)

What to keep in memory:

I Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating the

parent).

I Advanced search structures, if number of BPs is large.

I Only temporarily store certificates in a priority queue.

Response-time per certificate failure at c ∈ V ∪ E :

I In the in-degrees-2 graph (or any constant-in-degree graph): O(|Ec | · log n).

Ec is the set of arcs whose tails are in Tc , or Thead[c]. Logarithmic factor is due

to priority-queue operations.
I In the original graph (in worst-case): O

(
m × log2

n
)
. Second logarithmic

factor is due to updates of tournament trees implementing the MIN operator

at a particular node, upon emergence of a single certificate failure.

Worst-case time-complexity of output-sensitive algorithm:

O
(
m × log2

n × (PRIMBPs + MINBPs)
)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [50 / 97]

The Output-Sensitive Algorithm (III)

What to keep in memory:

I Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating the

parent).

I Advanced search structures, if number of BPs is large.

I Only temporarily store certificates in a priority queue.

Response-time per certificate failure at c ∈ V ∪ E :

I In the in-degrees-2 graph (or any constant-in-degree graph): O(|Ec | · log n).

Ec is the set of arcs whose tails are in Tc , or Thead[c]. Logarithmic factor is due

to priority-queue operations.
I In the original graph (in worst-case): O

(
m × log2

n
)
. Second logarithmic

factor is due to updates of tournament trees implementing the MIN operator

at a particular node, upon emergence of a single certificate failure.

Worst-case time-complexity of output-sensitive algorithm:

O
(
m × log2

n × (PRIMBPs + MINBPs)
)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [50 / 97]

Poly-time Approximation AlgorithmsPoly-time Approximation Algorithms

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [51 / 97]

(1 + ε)−approximation of D[o, d] : Preliminaries

Why focus on shortest-travel-time (delays) functions, and not on

earliest-arrival-time functions?

Arc/Path Delay Reversal: Easy task!!!

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

arrival tv at head[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48 50-2-4

ooo

ooo
0

to =
←−
Arr[o, v](tv) = tv −

←−
D [o, v](tv): Latest-departure-time from o to v , as

a function of the arrival time tv at v .

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [52 / 97]

Approximating D[o, d] : Quality

Maximum Absolute Error: A crucial quantity both for the time-complexity

and for the space-complexity of the algorithm:

c d

D(c)

Dmax = D(d)

Λ- (d) (x-d) + D(d)

m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(a) Λ+(c) > Λ-(d) ≥ 0

c d

D(c)

D(d)

Dmax

Λ -(d) (x-d) + D(d)
m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(b) Λ+(c) > 0 > Λ-(d)

c d

Dmax = D(c)

D(d)

y(m)

Λ -(d) (x-d) + D(d)

m

Λ+(c) (x-c) + D(c)

(c) 0 ≥ Λ+(c) > Λ-(d)

Dm

Dm

Dm

LEMMA: Closed Form of Maximum Absolute Error [Kontogianis-Zaroliagis (2014)]

MAE(c, d) = (Λ+(c) − Λ−(d)) ·
(m−c)·(d−m)

L
≤

L·(Λ+(c)−Λ−(d))
4

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [53 / 97]

Approximating D[o, d] : Quality

Maximum Absolute Error: A crucial quantity both for the time-complexity

and for the space-complexity of the algorithm:

c d

D(c)

Dmax = D(d)

Λ- (d) (x-d) + D(d)

m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(a) Λ+(c) > Λ-(d) ≥ 0

c d

D(c)

D(d)

Dmax

Λ -(d) (x-d) + D(d)
m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(b) Λ+(c) > 0 > Λ-(d)

c d

Dmax = D(c)

D(d)

y(m)

Λ -(d) (x-d) + D(d)

m

Λ+(c) (x-c) + D(c)

(c) 0 ≥ Λ+(c) > Λ-(d)

Dm

Dm

Dm

LEMMA: Closed Form of Maximum Absolute Error [Kontogianis-Zaroliagis (2014)]

MAE(c, d) = (Λ+(c) − Λ−(d)) ·
(m−c)·(d−m)

L
≤

L·(Λ+(c)−Λ−(d))
4

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [53 / 97]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan would give a

space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d] before

approximating it. We must be based only on a few samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily determine, with

only 3 TD-Djikstra probes.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [54 / 97]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan would give a

space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d] before

approximating it. We must be based only on a few samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily determine, with

only 3 TD-Djikstra probes.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [54 / 97]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan would give a

space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d] before

approximating it. We must be based only on a few samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily determine, with

only 3 TD-Djikstra probes.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [54 / 97]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan would give a

space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d] before

approximating it. We must be based only on a few samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily determine, with

only 3 TD-Djikstra probes.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [54 / 97]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan would give a

space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d] before

approximating it. We must be based only on a few samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily determine, with

only 3 TD-Djikstra probes.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [54 / 97]

Approximating D[o, d]: Basic Idea (II)

t3t1

Dmin

t4 t5

(1+ε)Dmin

t0

(1+ε)2Dmin

(1+ε)3Dmin

(1+ε)4Dmin

Dmax

t6t2

Make the sampling so that ∀t ∈ [0, T], D[o, d](t) ≤ (1 + ε) · D[o, d](t).

Keep sampling always the fastest-growing axis wrt to D[o, d].

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [55 / 97]

One-To-One Approximation: PHASE-1

[Foschini-Hershberger-Suri (2011)]

while slope of D[o, d] ≥ 1 do

Bad Case for [Foschini-Hersberger-Suri (2011)] :[Kontogiannis-Zaroliagis (2013)] :

Forward Dijkstrat0

t1

t2

t0 + D[o,d](t0)

t0 + (1+ε)1/2 D[o,d](t0) = t1 + D[o,d](t1)Backward Dijkstra

t1 + (1+ε)1/2 D[o,d](t1) = t2 + D[o,d](t2)Backward Dijkstra

o
o
o

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [56 / 97]

One-To-One Approximation: PHASE-1

[Foschini-Hershberger-Suri (2011)]

while slope of D[o, d] ≥ 1 do

Bad Case for [Foschini-Hersberger-Suri (2011)] :

[Kontogiannis-Zaroliagis (2013)] :

D

(1+ε)D

(1+ε)2D

(1+ε)3D

(1+ε)4D

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [56 / 97]

One-To-One Approximation: PHASE-1

[Foschini-Hershberger-Suri (2011)]

while slope of D[o, d] ≥ 1 do

Bad Case for [Foschini-Hersberger-Suri (2011)] :

[Kontogiannis-Zaroliagis (2013)] :

Forward Dijkstrat0

t1,1

t0 + D[o,d](t0)

MAX{ tfail , t0 + (1+ε) D[o,d](t0) }Backward Dijkstra

t0 + (1+ε)k D[o,d](t0) = t1 + D[o,d](t1)Backward Dijkstra

o
o
o

t1,k+1 t0 + (1+ε)k+1 D[o,d](t0)Backward Dijkstra

t1 = t1,k

MaxAbsError < ε D[o,d](t0)

MaxAbsError < ε D[o,d](t0)

MaxAbsError > ε D[o,d](t0)

o
o
o

MAX{ tfail , t1 + (1+ε) D[o,d](t1) }Backward Dijkstrat2,1 MaxAbsError < ε D[o,d](t1)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [56 / 97]

One-To-One Approximation: PHASE-2

[Foschini-Hershberger-Suri (2011)]

Slope of D[o, d] ≤ 1:

repeat

Apply BISECTION to the remaining time-interval(s)

until desired approximation guarantee (wrt Max Absolute Error) is achieved.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [57 / 97]

One-To-All Approximaton via Bisection (I)

[Kontogiannis-Zaroliagis (2013)]

ASSUMPTION 1: Concavity of arc-delays. /∗ to be removed later ∗/

I Implies concavity of the unknown function D[o, d].

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of the (pwl)

arc-delay functions.

I Verified by TD-traffic data for road network of Berlin [TomTom (February 2013)]

that all arc-delay slopes are in [−0.5, 0.5].

I Slopes of shortest-travel-time function D[o, d] from [−Λmin,Λmax], for some

constants Λmax > 0, Λmin ∈ [0, 1).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [58 / 97]

One-To-All Approximaton via Bisection (I)

[Kontogiannis-Zaroliagis (2013)]

ASSUMPTION 1: Concavity of arc-delays. /∗ to be removed later ∗/

I Implies concavity of the unknown function D[o, d].

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of the (pwl)

arc-delay functions.

I Verified by TD-traffic data for road network of Berlin [TomTom (February 2013)]

that all arc-delay slopes are in [−0.5, 0.5].

I Slopes of shortest-travel-time function D[o, d] from [−Λmin,Λmax], for some

constants Λmax > 0, Λmin ∈ [0, 1).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [58 / 97]

One-To-All Approximaton via Bisection (II)

[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously

all distance values from o, at mid-points of time intervals, until required

approximation guarantee is achieved for each destination node.

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

t1t0

D1

D0

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [59 / 97]

One-To-All Approximaton via Bisection (II)

[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously

all distance values from o, at mid-points of time intervals, until required

approximation guarantee is achieved for each destination node.

Example of Bisection Execution : ORANGE = Upper Bound, YELLOW = Lower Bound

t1t0

D1

D0

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [59 / 97]

One-To-All Approximaton via Bisection (II)

[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously

all distance values from o, at mid-points of time intervals, until required

approximation guarantee is achieved for each destination node.

Example of Bisection Execution : Level-1 Recursion

t1t0

D1

D0

t2

D2

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [59 / 97]

One-To-All Approximaton via Bisection (II)

[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously

all distance values from o, at mid-points of time intervals, until required

approximation guarantee is achieved for each destination node.

Example of Bisection Execution : Level-2 Recursion

t1t0

D1

D0

t2

D2

t3

D3

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [59 / 97]

One-To-All Approximaton via Bisection (III)

[Kontogiannis-Zaroliagis (2013)]

Only under ASSUMPTION 2: For continuous, pwl arc-delays.

1 Call Reverse
TD-Dijkstra to project

each concavity-spoiling PB to a

PI of the origin o.

2 For each pair of consecutive PIs

at o, run Bisection for the

corresponding departure-times

interval.
departure time from u = tail[uv]

t1
ea

rl
ie

st
-a

rr
iv

al
 ti

m
es

 a
t v

 =
 h

ea
d[

uv
]

t2 t3 t4 t5 T0

3 Return the concatenation of approximate distance summaries.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [60 / 97]

Approximating D[o, d] : Space/Time Complexity

THEOREM: Space Complexity [KZ (2014)]

Let K ∗ be the total number of concavity-spoiling BPs among all the arc-delay

functions in the instance.

Space Complexity: For a given orign o ∈ V and all possible destinations

d ∈ V , the following complexity bounds hold for creating all the

approximation functions D[o, ?] = (D[o, d])d∈V :

1 O
(

K ∗

e log
(

Dmax[o,?](0,T)
Dmin[o,?](0,T)

))
2 In each interval of consecutive PIs,

|UBP[o, d]| ≤ 4 · (minimum #BPs for any (1 + ε)−approximation.

Time Complexity: The number of shortest-path probes executed for the

computation of the approximate distance functions is:

TDSP[o, d] ∈ O
(
log

(
T

ε·Dmin[o,d]

)
· K ∗

ε log
(

Dmax[o,?](0,T)
Dmin[o,?](0,T)

))

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [61 / 97]

Implementation Issues wrt One-To-All Bisection

One-To-All Bisection of [KZ (2014)] is a label-setting
approximation method that provably works space/time optimally (within

constant factors) wrt concave continuous pwl arc-delay functions.

Both One-To-One Approximation of [FHS (2011)] and One-To-All
Bisection of [KZ (2014)] suffer from linear dependence in the degree of

disconcavity (value of K ∗) in the TD Instance.

A novel one-to-all (again label-setting) approximation technique, called

the Trapezoidal method ([KWZ (2016)]) avoids entirely the dependence

of the required space from the network structure (and, of course, the

degree of disconcavity).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [62 / 97]

Implementation Issues wrt One-To-All Bisection

One-To-All Bisection of [KZ (2014)] is a label-setting
approximation method that provably works space/time optimally (within

constant factors) wrt concave continuous pwl arc-delay functions.

Both One-To-One Approximation of [FHS (2011)] and

One-To-All Bisection of [KZ (2014)] suffer from linear dependence
in the degree of disconcavity (value of K ∗) in the TD Instance.

A novel one-to-all (again label-setting) approximation technique, called

the Trapezoidal method ([KWZ (2016)]) avoids entirely the dependence

of the required space from the network structure (and, of course, the

degree of disconcavity).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [62 / 97]

Implementation Issues wrt One-To-All Bisection

One-To-All Bisection of [KZ (2014)] is a label-setting
approximation method that provably works space/time optimally (within

constant factors) wrt concave continuous pwl arc-delay functions.

Both One-To-One Approximation of [FHS (2011)] and

One-To-All Bisection of [KZ (2014)] suffer from linear dependence
in the degree of disconcavity (value of K ∗) in the TD Instance.

A novel one-to-all (again label-setting) approximation technique, called

the Trapezoidal method ([KWZ (2016)]) avoids entirely the dependence

of the required space from the network structure (and, of course, the

degree of disconcavity).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [62 / 97]

The Trapezoidal One-To-All Approximation Method

Sample travel-times to all destinations,

from coarser to finer departure-times

from the (common) origin.

Between consecutive samples of the

same resolution, the unknown function is

bounded within a given trapezoidal.

‘‘Freeze’’ destinations within intervals with

satisfactory approximation guarantee.

Trapezoidal Approximation

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

departure time from landmark
ts tf

Slope: Λmax
Slope: -Λmin

Slope: Λmax
Slope: -Λmin

Max Abs Error

tm tm

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)

D[l,v](tf)

D[l,v](ts)

Avoids dependence on concavity-spoiling BPs of the metric.

Cannot provide good approximations for ‘‘nearby’’ destinations around the

origin.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [63 / 97]

The Trapezoidal One-To-All Approximation Method

Sample travel-times to all destinations,

from coarser to finer departure-times

from the (common) origin.

Between consecutive samples of the

same resolution, the unknown function is

bounded within a given trapezoidal.

‘‘Freeze’’ destinations within intervals with

satisfactory approximation guarantee.

Trapezoidal Approximation

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

departure time from landmark
ts tf

Slope: Λmax
Slope: -Λmin

Slope: Λmax
Slope: -Λmin

Max Abs Error

tm tm

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)

D[l,v](tf)

D[l,v](ts)

Avoids dependence on concavity-spoiling BPs of the metric.

Cannot provide good approximations for ‘‘nearby’’ destinations around the

origin.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [63 / 97]

The Trapezoidal One-To-All Approximation Method

Sample travel-times to all destinations,

from coarser to finer departure-times

from the (common) origin.

Between consecutive samples of the

same resolution, the unknown function is

bounded within a given trapezoidal.

‘‘Freeze’’ destinations within intervals with

satisfactory approximation guarantee.

Trapezoidal Approximation

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

sh
or

te
st

 tr
av

el
 ti

m
e

at
 v

departure time from landmark
ts tf

Slope: Λmax
Slope: -Λmin

Slope: Λmax
Slope: -Λmin

Max Abs Error

tm tm

Dm[l,v](ts,tf)

Dm[l,v](ts,tf)

D[l,v](tf)

D[l,v](ts)

Avoids dependence on concavity-spoiling BPs of the metric.

Cannot provide good approximations for ‘‘nearby’’ destinations around

the origin.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [63 / 97]

Time-Dependent OraclesTime-Dependent Oracles

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [64 / 97]

Distance Oracles

Extremely successful theme in static graphs.

I In theory:

F P-Space: Subquadratic (sometimes quasi-linear).

F Q-Time: Constant.

F Stretch: Small (sometimes PTAS).

I In practice:

F P-Space: A few GBs (sometimes less than 1 GB).

F Q-Time: Miliseconds (sometimes microseconds).

F Stretch: Exact distances (in most cases).

Some practical algorithms extended to time-dependent case.

FOR THE REST OF THE TALK

The focus is on time-dependent oracles, with provably good
preprocessing-space / query-time / stretch tradeoffs.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [65 / 97]

Distance Oracles

Extremely successful theme in static graphs.

I In theory:

F P-Space: Subquadratic (sometimes quasi-linear).

F Q-Time: Constant.

F Stretch: Small (sometimes PTAS).

I In practice:

F P-Space: A few GBs (sometimes less than 1 GB).

F Q-Time: Miliseconds (sometimes microseconds).

F Stretch: Exact distances (in most cases).

Some practical algorithms extended to time-dependent case.

FOR THE REST OF THE TALK

The focus is on time-dependent oracles, with provably good
preprocessing-space / query-time / stretch tradeoffs.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [65 / 97]

Distance Oracles

Extremely successful theme in static graphs.

I In theory:

F P-Space: Subquadratic (sometimes quasi-linear).

F Q-Time: Constant.

F Stretch: Small (sometimes PTAS).

I In practice:

F P-Space: A few GBs (sometimes less than 1 GB).

F Q-Time: Miliseconds (sometimes microseconds).

F Stretch: Exact distances (in most cases).

Some practical algorithms extended to time-dependent case.

FOR THE REST OF THE TALK

The focus is on time-dependent oracles, with provably good
preprocessing-space / query-time / stretch tradeoffs.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [65 / 97]

Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a large scale graph with continuous, pwl, FIFO arc-delay

functions, create a data structure (oracle) that requires reasonable

(subquadratic) space and allows answering distance queries efficiently (in

sublinear time).

Trivial solution: Precompute all the (1 + ε)−approximate distance

summaries from every origin to every destination.

O(n3) size (O(n2), if all arc-delay functions concave).

O(log log(n)) query time.

(1 + ε)−stretch.

Trivial solution: No preprocessing, respond to queries by running

TD-Dijkstra.

O(n + m + K) size (K = total number of PBs of arc-delays).

O([m + n log(n)] × log log(K)) query time.

1−stretch.

Is there a smooth tradeoff among space / query time / stretch?

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [66 / 97]

Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a large scale graph with continuous, pwl, FIFO arc-delay

functions, create a data structure (oracle) that requires reasonable

(subquadratic) space and allows answering distance queries efficiently (in

sublinear time).

Trivial solution: Precompute all the (1 + ε)−approximate distance

summaries from every origin to every destination.

O(n3) size (O(n2), if all arc-delay functions concave).

O(log log(n)) query time.

(1 + ε)−stretch.

Trivial solution: No preprocessing, respond to queries by running

TD-Dijkstra.

O(n + m + K) size (K = total number of PBs of arc-delays).

O([m + n log(n)] × log log(K)) query time.

1−stretch.

Is there a smooth tradeoff among space / query time / stretch?

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [66 / 97]

Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a large scale graph with continuous, pwl, FIFO arc-delay

functions, create a data structure (oracle) that requires reasonable

(subquadratic) space and allows answering distance queries efficiently (in

sublinear time).

Trivial solution: Precompute all the (1 + ε)−approximate distance

summaries from every origin to every destination.

O(n3) size (O(n2), if all arc-delay functions concave).

O(log log(n)) query time.

(1 + ε)−stretch.

Trivial solution: No preprocessing, respond to queries by running

TD-Dijkstra.

O(n + m + K) size (K = total number of PBs of arc-delays).

O([m + n log(n)] × log log(K)) query time.

1−stretch.

Is there a smooth tradeoff among space / query time / stretch?

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [66 / 97]

Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a large scale graph with continuous, pwl, FIFO arc-delay

functions, create a data structure (oracle) that requires reasonable

(subquadratic) space and allows answering distance queries efficiently (in

sublinear time).

Trivial solution: Precompute all the (1 + ε)−approximate distance

summaries from every origin to every destination.

O(n3) size (O(n2), if all arc-delay functions concave).

O(log log(n)) query time.

(1 + ε)−stretch.

Trivial solution: No preprocessing, respond to queries by running

TD-Dijkstra.

O(n + m + K) size (K = total number of PBs of arc-delays).

O([m + n log(n)] × log log(K)) query time.

1−stretch.

Is there a smooth tradeoff among space / query time / stretch?

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [66 / 97]

FLAT TD-OracleFLAT TD-Oracle

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [67 / 97]

Landmark Selection Policy

Rationale: Identify a few ‘‘important’’ vertices (landmarks) in the

network, which are assumed to be crucial for almost all shortest paths.

Then compute approximate travel-time summaries (functions) ∆[`, v](t),

∀(`, v) ∈ L × V , ∀t ∈ [0, T) s.t.:

D[`, v](t) ≤ ∆[`, v](t) ≤ (1 + ε) · D[`, v](t)

In theory: Choose landmarks independently and uniformly at random.

In practice: Several options.

I Random Selection (R). [KMPPWZ (2015)]

I METIS Selection (M). [KMPPWZ (2015)]

I KaHIP Selection (K). [KMPPWZ (2015)]

I Important-Random Selection (IR). [KMPPWZ (2016)]

I Sparse-Random Selection (SR). [KMPPWZ (2016)]

I Hybrid Selection (H). [KMPPWZ (2016)]

I Betweeness-Centrality Selection (BC). [KPPWZ (2017)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [68 / 97]

Landmark Selection Policy

Rationale: Identify a few ‘‘important’’ vertices (landmarks) in the

network, which are assumed to be crucial for almost all shortest paths.

Then compute approximate travel-time summaries (functions) ∆[`, v](t),

∀(`, v) ∈ L × V , ∀t ∈ [0, T) s.t.:

D[`, v](t) ≤ ∆[`, v](t) ≤ (1 + ε) · D[`, v](t)

In theory: Choose landmarks independently and uniformly at random.

In practice: Several options.

I Random Selection (R). [KMPPWZ (2015)]

I METIS Selection (M). [KMPPWZ (2015)]

I KaHIP Selection (K). [KMPPWZ (2015)]

I Important-Random Selection (IR). [KMPPWZ (2016)]

I Sparse-Random Selection (SR). [KMPPWZ (2016)]

I Hybrid Selection (H). [KMPPWZ (2016)]

I Betweeness-Centrality Selection (BC). [KPPWZ (2017)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [68 / 97]

Landmark Selection Policy

Rationale: Identify a few ‘‘important’’ vertices (landmarks) in the

network, which are assumed to be crucial for almost all shortest paths.

Then compute approximate travel-time summaries (functions) ∆[`, v](t),

∀(`, v) ∈ L × V , ∀t ∈ [0, T) s.t.:

D[`, v](t) ≤ ∆[`, v](t) ≤ (1 + ε) · D[`, v](t)

In theory: Choose landmarks independently and uniformly at random.

In practice: Several options.

I Random Selection (R). [KMPPWZ (2015)]

I METIS Selection (M). [KMPPWZ (2015)]

I KaHIP Selection (K). [KMPPWZ (2015)]

I Important-Random Selection (IR). [KMPPWZ (2016)]

I Sparse-Random Selection (SR). [KMPPWZ (2016)]

I Hybrid Selection (H). [KMPPWZ (2016)]

I Betweeness-Centrality Selection (BC). [KPPWZ (2017)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [68 / 97]

Landmark Selection Policy

Rationale: Identify a few ‘‘important’’ vertices (landmarks) in the

network, which are assumed to be crucial for almost all shortest paths.

Then compute approximate travel-time summaries (functions) ∆[`, v](t),

∀(`, v) ∈ L × V , ∀t ∈ [0, T) s.t.:

D[`, v](t) ≤ ∆[`, v](t) ≤ (1 + ε) · D[`, v](t)

In theory: Choose landmarks independently and uniformly at random.

In practice: Several options.

I Random Selection (R). [KMPPWZ (2015)]

I METIS Selection (M). [KMPPWZ (2015)]

I KaHIP Selection (K). [KMPPWZ (2015)]

I Important-Random Selection (IR). [KMPPWZ (2016)]

I Sparse-Random Selection (SR). [KMPPWZ (2016)]

I Hybrid Selection (H). [KMPPWZ (2016)]

I Betweeness-Centrality Selection (BC). [KPPWZ (2017)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [68 / 97]

Preprocessing of FLAT
[KZ (2014), KMPPWZ2015, KMPPWZ2016]

Each landmark is informed about all destinations.

Subquadratic preprocessing space/time.

Query time sublinear in the network size.

Constant approximation, or even PTAS.

Preprocessing Complexity of FLAT
When the landmark set L ⊂ V is chosen uniformly at random:

[KZ (2014)] Subquadratic preprocessing time and space, when BIS is used

and the degree of disconcavity K ∗ is not too large: K ∗ · |L| ∈ o(n).

[KWZ-2016] If each vertex becomes a landmark with probability ρ = n−δ,

BIS is used for F =
√

n ‘‘nearby’’ destinations and TRAP is used

for the rest ‘‘faraway’’ destinations from each landmark, then the

preprocessing space and time are O
(
n2−δ · polylog(n)

)
.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [69 / 97]

Preprocessing of FLAT
[KZ (2014), KMPPWZ2015, KMPPWZ2016]

Each landmark is informed about all destinations.

Subquadratic preprocessing space/time.

Query time sublinear in the network size.

Constant approximation, or even PTAS.

Preprocessing Complexity of FLAT
When the landmark set L ⊂ V is chosen uniformly at random:

[KZ (2014)] Subquadratic preprocessing time and space, when BIS is used

and the degree of disconcavity K ∗ is not too large: K ∗ · |L| ∈ o(n).

[KWZ-2016] If each vertex becomes a landmark with probability ρ = n−δ,

BIS is used for F =
√

n ‘‘nearby’’ destinations and TRAP is used

for the rest ‘‘faraway’’ destinations from each landmark, then the

preprocessing space and time are O
(
n2−δ · polylog(n)

)
.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [69 / 97]

Preprocessing of FLAT
[KZ (2014), KMPPWZ2015, KMPPWZ2016]

Each landmark is informed about all destinations.

Subquadratic preprocessing space/time.

Query time sublinear in the network size.

Constant approximation, or even PTAS.

Preprocessing Complexity of FLAT
When the landmark set L ⊂ V is chosen uniformly at random:

[KZ (2014)] Subquadratic preprocessing time and space, when BIS is used

and the degree of disconcavity K ∗ is not too large: K ∗ · |L| ∈ o(n).

[KWZ-2016] If each vertex becomes a landmark with probability ρ = n−δ,

BIS is used for F =
√

n ‘‘nearby’’ destinations and TRAP is used

for the rest ‘‘faraway’’ destinations from each landmark, then the

preprocessing space and time are O
(
n2−δ · polylog(n)

)
.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [69 / 97]

FCA: A Constant-Approximation Query Algorithm [KZ (2014)]

Forward Constant Approximation (FCA)

1. Grow TD-Dijkstra ball B(o, to) until the closest landmark `o, or d, is settled

2. return solo = D[o, `o](to) + ∆[`o, d](to + D[o, `o](to))

td = to + D[o,d](to)

Ro

x

lo

w od
P SP[o,d](to)

to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

Complexity of FCA for random landmarks

Constant approximation guarantee: solo ≤ (1 + ε + ψ) · D[o, d](to), for

ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ ∈ O(1).

Sublinear Query-time: O
(

1

ρ · ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [70 / 97]

FCA: A Constant-Approximation Query Algorithm [KZ (2014)]

Forward Constant Approximation (FCA)

1. Grow TD-Dijkstra ball B(o, to) until the closest landmark `o, or d, is settled

2. return solo = D[o, `o](to) + ∆[`o, d](to + D[o, `o](to))

td = to + D[o,d](to)

Ro

x

lo

w od
P SP[o,d](to)

to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

Complexity of FCA for random landmarks

Constant approximation guarantee: solo ≤ (1 + ε + ψ) · D[o, d](to), for

ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ ∈ O(1).

Sublinear Query-time: O
(

1

ρ · ln
(

1

ρ

)
log log(Kmax)

)
S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [70 / 97]

FCA+: A natural extension of FCA [KMPPWZ (2015-2016)]

Extended Forward Constant Approximation (FCA+)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks `o, . . . , `N−1 (or d)

are settled.

2. return mini∈{0,1,...,N−1}

{
soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))

}

Performance of FCA+ for random landmarks

In theory: Analogous to that of FCA.

In practice: Performance analogous to (indeed, better than) that of RQA.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [71 / 97]

FCA+: A natural extension of FCA [KMPPWZ (2015-2016)]

Extended Forward Constant Approximation (FCA+)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks `o, . . . , `N−1 (or d)

are settled.

2. return mini∈{0,1,...,N−1}

{
soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))

}

do
to

Performance of FCA+ for random landmarks

In theory: Analogous to that of FCA.

In practice: Performance analogous to (indeed, better than) that of RQA.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [71 / 97]

FCA+: A natural extension of FCA [KMPPWZ (2015-2016)]

Extended Forward Constant Approximation (FCA+)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks `o, . . . , `N−1 (or d)

are settled.

2. return mini∈{0,1,...,N−1}

{
soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))

}

lo
d

to

R0
o

Performance of FCA+ for random landmarks

In theory: Analogous to that of FCA.

In practice: Performance analogous to (indeed, better than) that of RQA.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [71 / 97]

FCA+: A natural extension of FCA [KMPPWZ (2015-2016)]

Extended Forward Constant Approximation (FCA+)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks `o, . . . , `N−1 (or d)

are settled.

2. return mini∈{0,1,...,N−1}

{
soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))

}

lo

l1

d

l3

l2

l4

to

R0

R1R2

R3

R4

o

Performance of FCA+ for random landmarks

In theory: Analogous to that of FCA.

In practice: Performance analogous to (indeed, better than) that of RQA.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [71 / 97]

FCA+: A natural extension of FCA [KMPPWZ (2015-2016)]

Extended Forward Constant Approximation (FCA+)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks `o, . . . , `N−1 (or d)

are settled.

2. return mini∈{0,1,...,N−1}

{
soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))

}

lo

l1

d

l3

l2

l4

to

R0

R1R2

R3

R4

o

Performance of FCA+ for random landmarks

In theory: Analogous to that of FCA.

In practice: Performance analogous to (indeed, better than) that of RQA.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [71 / 97]

FCA+: A natural extension of FCA [KMPPWZ (2015-2016)]

Extended Forward Constant Approximation (FCA+)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks `o, . . . , `N−1 (or d)

are settled.

2. return mini∈{0,1,...,N−1}

{
soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))

}

lo

l1

d

l3

l2

l4

to

R0

R1R2

R3

R4

o

Performance of FCA+ for random landmarks

In theory: Analogous to that of FCA.

In practice: Performance analogous to (indeed, better than) that of RQA.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [71 / 97]

RQA: A Sublinear-Time Approximation Scheme [KZ (2014)]

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled

3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1

5. end while

6. return best solution found

Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

Complexity of RQA for random landmarks

PTAS: sol ≤ (1 + σ) · D[o, d](to), for σ = ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
and R ∈ O(1).

Sublinear Query-time: O
((

1

ρ

)R+1

· ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [72 / 97]

RQA: A Sublinear-Time Approximation Scheme [KZ (2014)]

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled

3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1

5. end while

6. return best solution found

do
to

Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

Complexity of RQA for random landmarks

PTAS: sol ≤ (1 + σ) · D[o, d](to), for σ = ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
and R ∈ O(1).

Sublinear Query-time: O
((

1

ρ

)R+1

· ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [72 / 97]

RQA: A Sublinear-Time Approximation Scheme [KZ (2014)]

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled

3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1

5. end while

6. return best solution found

t1

t2

t3lo

d

w3

w1o
to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

Complexity of RQA for random landmarks

PTAS: sol ≤ (1 + σ) · D[o, d](to), for σ = ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
and R ∈ O(1).

Sublinear Query-time: O
((

1

ρ

)R+1

· ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [72 / 97]

RQA: A Sublinear-Time Approximation Scheme [KZ (2014)]

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled

3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1

5. end while

6. return best solution found

t1

t2

t3lo

l1

d

w3

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

Complexity of RQA for random landmarks

PTAS: sol ≤ (1 + σ) · D[o, d](to), for σ = ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
and R ∈ O(1).

Sublinear Query-time: O
((

1

ρ

)R+1

· ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [72 / 97]

RQA: A Sublinear-Time Approximation Scheme [KZ (2014)]

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled

3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1

5. end while

6. return best solution found

t1

t2

t3lo

l1

d

w3

l2

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

Complexity of RQA for random landmarks

PTAS: sol ≤ (1 + σ) · D[o, d](to), for σ = ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
and R ∈ O(1).

Sublinear Query-time: O
((

1

ρ

)R+1

· ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [72 / 97]

RQA: A Sublinear-Time Approximation Scheme [KZ (2014)]

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled

3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1

5. end while

6. return best solution found

t1

t2

t3lo

l1

d

w3

l3

l2

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

Complexity of RQA for random landmarks

PTAS: sol ≤ (1 + σ) · D[o, d](to), for σ = ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
and R ∈ O(1).

Sublinear Query-time: O
((

1

ρ

)R+1

· ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [72 / 97]

RQA: A Sublinear-Time Approximation Scheme [KZ (2014)]

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled

3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1

5. end while

6. return best solution found

t1

t2

t3lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

Complexity of RQA for random landmarks

PTAS: sol ≤ (1 + σ) · D[o, d](to), for σ = ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
and R ∈ O(1).

Sublinear Query-time: O
((

1

ρ

)R+1

· ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [72 / 97]

RQA: A Sublinear-Time Approximation Scheme [KZ (2014)]

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled

3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1

5. end while

6. return best solution found

t1

t2

t3lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2 Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

Complexity of RQA for random landmarks

PTAS: sol ≤ (1 + σ) · D[o, d](to), for σ = ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
and R ∈ O(1).

Sublinear Query-time: O
((

1

ρ

)R+1

· ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [72 / 97]

RQA: A Sublinear-Time Approximation Scheme [KZ (2014)]

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled

3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1

5. end while

6. return best solution found

Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

Complexity of RQA for random landmarks

PTAS: sol ≤ (1 + σ) · D[o, d](to), for σ = ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
and R ∈ O(1).

Sublinear Query-time: O
((

1

ρ

)R+1

· ln
(

1

ρ

)
log log(Kmax)

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [72 / 97]

RQA: Boosting The Approximation Guarantee Of FCA [KZ (2014)]

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers at

nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends on last

ball radius.

4 R = O(1) recursion budget suffices to ensure guarantee close to 1 + ε.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [73 / 97]

RQA: Boosting The Approximation Guarantee Of FCA [KZ (2014)]

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers at

nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends on last

ball radius.

4 R = O(1) recursion budget suffices to ensure guarantee close to 1 + ε.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [73 / 97]

RQA: Boosting The Approximation Guarantee Of FCA [KZ (2014)]

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers at

nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends on last

ball radius.

4 R = O(1) recursion budget suffices to ensure guarantee close to 1 + ε.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [73 / 97]

RQA: Boosting The Approximation Guarantee Of FCA [KZ (2014)]

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers at

nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends on last

ball radius.

4 R = O(1) recursion budget suffices to ensure guarantee close to 1 + ε.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [73 / 97]

RQA: Boosting The Approximation Guarantee Of FCA [KZ (2014)]

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers at

nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends on last

ball radius.

4 R = O(1) recursion budget suffices to ensure guarantee close to 1 + ε.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [73 / 97]

HORN OracleHORN Oracle

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [74 / 97]

HORN Preprocessing: Hierarchy of Landmarks (I) [KWZ (2016)]

Selection of landmark sets (colors indicate sizes of coverages).

Small-coverage landmarks ‘‘learn’’ travel-time functions to their (only

short-range) destinations.

Medium-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

medium-range) destinations.

. . .

Global-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

long-range) destinations.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [75 / 97]

HORN Preprocessing: Hierarchy of Landmarks (I) [KWZ (2016)]

Selection of landmark sets (colors indicate sizes of coverages).

Small-coverage landmarks ‘‘learn’’ travel-time functions to their (only

short-range) destinations.

Medium-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

medium-range) destinations.

. . .

Global-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

long-range) destinations.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [75 / 97]

HORN Preprocessing: Hierarchy of Landmarks (I) [KWZ (2016)]

Selection of landmark sets (colors indicate sizes of coverages).

Small-coverage landmarks ‘‘learn’’ travel-time functions to their (only

short-range) destinations.

Medium-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

medium-range) destinations.

. . .

Global-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

long-range) destinations.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [75 / 97]

HORN Preprocessing: Hierarchy of Landmarks (I) [KWZ (2016)]

Selection of landmark sets (colors indicate sizes of coverages).

Small-coverage landmarks ‘‘learn’’ travel-time functions to their (only

short-range) destinations.

Medium-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

medium-range) destinations.

. . .

Global-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

long-range) destinations.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [75 / 97]

HORN Preprocessing: Hierarchy of Landmarks (I) [KWZ (2016)]

Selection of landmark sets (colors indicate sizes of coverages).

Small-coverage landmarks ‘‘learn’’ travel-time functions to their (only

short-range) destinations.

Medium-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

medium-range) destinations.

. . .

Global-coverage landmarks ‘‘learn’’ travel-time functions to their (up to

long-range) destinations.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [75 / 97]

HORN Preprocessing: Hierarchy of Landmarks (II) [KWZ (2016)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [76 / 97]

Creating Distance Summaries From Landmarks [KWZ (2016)]

Preprocessing of HORN

Depending on its level, each landmark has its own coverage, a given-size

set of surrounding vertices for which it is informed.

Exponentially decreasing sequence of landmark set sizes.

exponentially increasing sequence of coverages per landmark

∴ O(log log(n)) levels ⇒ Subquadratic preprocessing space/time.

Preprocessing Complexity of HORN [KWZ (2016)]

An appropriate construction of the hierarchy assures preprocessing space and

time O
(
n

2− δ
R+1 · polylog(n)

)
, i.e., subquadratic. R is the recursion budget

(depth), and δ ∈ (0, 1) is the targeted exponent of sublinearity, for the query

algorithm to be used (see next slides).

NEXT: Query algorithm with constant approximation, or even PTAS, and

query-time sublinear in the Dijkstra Rank of the query at hand.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [77 / 97]

Creating Distance Summaries From Landmarks [KWZ (2016)]

Preprocessing of HORN

Depending on its level, each landmark has its own coverage, a given-size

set of surrounding vertices for which it is informed.

Exponentially decreasing sequence of landmark set sizes.

exponentially increasing sequence of coverages per landmark

∴ O(log log(n)) levels ⇒ Subquadratic preprocessing space/time.

Preprocessing Complexity of HORN [KWZ (2016)]

An appropriate construction of the hierarchy assures preprocessing space and

time O
(
n

2− δ
R+1 · polylog(n)

)
, i.e., subquadratic. R is the recursion budget

(depth), and δ ∈ (0, 1) is the targeted exponent of sublinearity, for the query

algorithm to be used (see next slides).

NEXT: Query algorithm with constant approximation, or even PTAS, and

query-time sublinear in the Dijkstra Rank of the query at hand.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [77 / 97]

Creating Distance Summaries From Landmarks [KWZ (2016)]

Preprocessing of HORN

Depending on its level, each landmark has its own coverage, a given-size

set of surrounding vertices for which it is informed.

Exponentially decreasing sequence of landmark set sizes.

exponentially increasing sequence of coverages per landmark

∴ O(log log(n)) levels ⇒ Subquadratic preprocessing space/time.

Preprocessing Complexity of HORN [KWZ (2016)]

An appropriate construction of the hierarchy assures preprocessing space and

time O
(
n

2− δ
R+1 · polylog(n)

)
, i.e., subquadratic. R is the recursion budget

(depth), and δ ∈ (0, 1) is the targeted exponent of sublinearity, for the query

algorithm to be used (see next slides).

NEXT: Query algorithm with constant approximation, or even PTAS, and

query-time sublinear in the Dijkstra Rank of the query at hand.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [77 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Rationale of the hierarchy...

level targeted DR Q-time coverage TRAP Ring

1 N1 = n(γ−1)/γ Nδ
1

c1 = N1 · n
ξ1

√
c1 N

δ/(R+1)
1

·
(

1

ln(n) , ln(n)
]

2 N2 = n(γ2−1)/γ2

Nδ
2

c2 = N2 · n
ξ2

√
c2 N

δ/(R+1)
2

·
(

1

ln(n) , ln(n)
]

...

k Nk = n(γk−1)/γk

Nδ
k

ck = Nk · n
ξk

√
ck N

δ/(R+1)
k

·
(

1

ln(n) , ln(n)
]

k+1 Nk+1 = n nδ ck+1 = n
√

n
(
N
δ/(R+1)
k

· ln(n), n
]

1 Mimic FLAT in each level i: All level-i landmarks are informed about ci

destinations around them.

2 The density of level-i landmarks is such that ALL queries of Dijkstra rank ≤ Ni

can be answered by using ONLY level-i landmarks.

3 FACT: Running RQA at the appropriate level of the hierarchy would yield a

good approximation.

4 CHALLENGE: ‘‘Guess’’ the appropriate level, whp . Then, sublinearity in Ni

(rather than n) can be achieved.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [78 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Rationale of the hierarchy...

level targeted DR Q-time coverage TRAP Ring

1 N1 = n(γ−1)/γ Nδ
1

c1 = N1 · n
ξ1

√
c1 N

δ/(R+1)
1

·
(

1

ln(n) , ln(n)
]

2 N2 = n(γ2−1)/γ2

Nδ
2

c2 = N2 · n
ξ2

√
c2 N

δ/(R+1)
2

·
(

1

ln(n) , ln(n)
]

...

k Nk = n(γk−1)/γk

Nδ
k

ck = Nk · n
ξk

√
ck N

δ/(R+1)
k

·
(

1

ln(n) , ln(n)
]

k+1 Nk+1 = n nδ ck+1 = n
√

n
(
N
δ/(R+1)
k

· ln(n), n
]

1 Mimic FLAT in each level i: All level-i landmarks are informed about ci

destinations around them.

2 The density of level-i landmarks is such that ALL queries of Dijkstra rank ≤ Ni

can be answered by using ONLY level-i landmarks.

3 FACT: Running RQA at the appropriate level of the hierarchy would yield a

good approximation.

4 CHALLENGE: ‘‘Guess’’ the appropriate level, whp . Then, sublinearity in Ni

(rather than n) can be achieved.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [78 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Rationale of the hierarchy...

level targeted DR Q-time coverage TRAP Ring

1 N1 = n(γ−1)/γ Nδ
1

c1 = N1 · n
ξ1

√
c1 N

δ/(R+1)
1

·
(

1

ln(n) , ln(n)
]

2 N2 = n(γ2−1)/γ2

Nδ
2

c2 = N2 · n
ξ2

√
c2 N

δ/(R+1)
2

·
(

1

ln(n) , ln(n)
]

...

k Nk = n(γk−1)/γk

Nδ
k

ck = Nk · n
ξk

√
ck N

δ/(R+1)
k

·
(

1

ln(n) , ln(n)
]

k+1 Nk+1 = n nδ ck+1 = n
√

n
(
N
δ/(R+1)
k

· ln(n), n
]

1 Mimic FLAT in each level i: All level-i landmarks are informed about ci

destinations around them.

2 The density of level-i landmarks is such that ALL queries of Dijkstra rank ≤ Ni

can be answered by using ONLY level-i landmarks.

3 FACT: Running RQA at the appropriate level of the hierarchy would yield a

good approximation.

4 CHALLENGE: ‘‘Guess’’ the appropriate level, whp . Then, sublinearity in Ni

(rather than n) can be achieved.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [78 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Rationale of the hierarchy...

level targeted DR Q-time coverage TRAP Ring

1 N1 = n(γ−1)/γ Nδ
1

c1 = N1 · n
ξ1

√
c1 N

δ/(R+1)
1

·
(

1

ln(n) , ln(n)
]

2 N2 = n(γ2−1)/γ2

Nδ
2

c2 = N2 · n
ξ2

√
c2 N

δ/(R+1)
2

·
(

1

ln(n) , ln(n)
]

...

k Nk = n(γk−1)/γk

Nδ
k

ck = Nk · n
ξk

√
ck N

δ/(R+1)
k

·
(

1

ln(n) , ln(n)
]

k+1 Nk+1 = n nδ ck+1 = n
√

n
(
N
δ/(R+1)
k

· ln(n), n
]

1 Mimic FLAT in each level i: All level-i landmarks are informed about ci

destinations around them.

2 The density of level-i landmarks is such that ALL queries of Dijkstra rank ≤ Ni

can be answered by using ONLY level-i landmarks.

3 FACT: Running RQA at the appropriate level of the hierarchy would yield a

good approximation.

4 CHALLENGE: ‘‘Guess’’ the appropriate level, whp . Then, sublinearity in Ni

(rather than n) can be achieved.
S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [78 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Guessing the appropriate level in the hierarchy...

level-1 landmark `1,o

is uninformed.

level-3 landmark `3,o,

although informed,

came too early.

level-2 landmark `2,o

is informed and

within the right
distance.

∴ RQA will use only

level-(≥ 2) landmarks

from now on.

uninformed

informed and in-time

informed but too early

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [79 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Guessing the appropriate level in the hierarchy...

level-1 landmark `1,o

is uninformed.

level-3 landmark `3,o,

although informed,

came too early.

level-2 landmark `2,o

is informed and

within the right
distance.

∴ RQA will use only

level-(≥ 2) landmarks

from now on.

uninformed

informed and in-time

informed but too early

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [79 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Description and performance guarantee...

Hierarchical Query Algorithm (HQA)

1. Grow a unique TD-ball from (o, to), until the first informed landmark `o

discovered at the right distance (not too close, not too far) from o.

2. (ESC) Interrupt the process if an informed landmark is discovered very

close to the origin (already a good approximation).

3. (ALH) Execute an appropriate variant of RQA, using only landmarks of

level at least as high as that of `o.

4. Return the best approximation, via all discovered informed landmarks.

Performance of HQA for random landmarks

HORN can be fine-tuned so that it achieves subquadratic preprocessing space

and time, and query-response time Õ(Nδ
i
), i.e., sublinear in Ni , when

Ni−1 < DR[o, d](to) ≤ Ni , with probability 1 − O
(

1

n

)
. The approximation

guarantee is 1 + ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
, where R ≤ 2δ

α − 1 is the recursion budget.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [80 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Description and performance guarantee...

Hierarchical Query Algorithm (HQA)

1. Grow a unique TD-ball from (o, to), until the first informed landmark `o

discovered at the right distance (not too close, not too far) from o.

2. (ESC) Interrupt the process if an informed landmark is discovered very

close to the origin (already a good approximation).

3. (ALH) Execute an appropriate variant of RQA, using only landmarks of

level at least as high as that of `o.

4. Return the best approximation, via all discovered informed landmarks.

Performance of HQA for random landmarks

HORN can be fine-tuned so that it achieves subquadratic preprocessing space

and time, and query-response time Õ(Nδ
i
), i.e., sublinear in Ni , when

Ni−1 < DR[o, d](to) ≤ Ni , with probability 1 − O
(

1

n

)
. The approximation

guarantee is 1 + ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1
, where R ≤ 2δ

α − 1 is the recursion budget.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [80 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Approximation guarantee of RQA (in FLAT) also holds for HQA...

Despite using only landmarks of the appropriate level (and above), RQA
may fail to provide approximate paths via every landmark that it settles

(some of them may be ‘‘uninformed’’).

By defining the appropriate level i according to the first landmark that is

both ‘‘informed’’ and at the ‘‘right’’ distance, we can guarantee that the

closest level-i landmark to subsequent ball centers along the unknown

shortest path are always informed.

Analysis of RQA’s approximation guarantee still works, because it is based on

the via-landmark paths corresponding only to balls centered at vertices of

the unknown shortest od-path.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [81 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Approximation guarantee of RQA (in FLAT) also holds for HQA...

Despite using only landmarks of the appropriate level (and above), RQA
may fail to provide approximate paths via every landmark that it settles

(some of them may be ‘‘uninformed’’).

By defining the appropriate level i according to the first landmark that is

both ‘‘informed’’ and at the ‘‘right’’ distance, we can guarantee that the

closest level-i landmark to subsequent ball centers along the unknown

shortest path are always informed.

Analysis of RQA’s approximation guarantee still works, because it is based on

the via-landmark paths corresponding only to balls centered at vertices of

the unknown shortest od-path.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [81 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Approximation guarantee of RQA (in FLAT) also holds for HQA...

Despite using only landmarks of the appropriate level (and above), RQA
may fail to provide approximate paths via every landmark that it settles

(some of them may be ‘‘uninformed’’).

By defining the appropriate level i according to the first landmark that is

both ‘‘informed’’ and at the ‘‘right’’ distance, we can guarantee that the

closest level-i landmark to subsequent ball centers along the unknown

shortest path are always informed.

Analysis of RQA’s approximation guarantee still works, because it is based

on the via-landmark paths corresponding only to balls centered at vertices

of the unknown shortest od-path.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [81 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Query-time of HQA...

The quality of approximation provided via an informed landmark is

dependent on the landmark’s relative distance from the origin.

For the first informed level-i landmark, the probability of its distance from o

NOT belonging to the N
δ/(R+1)
i

·

(
1

ln(n)
, ln(n)

]
is O

(
1

n

)
, where i is the

appropriate level for (o, d, to).

∴ Success of (ALH) criterion, which happens whp , reveals asymptotic

bounds, for the (unknown) distance (and Dijkstra rank) from o to d.

Given that (ESC) did not occur (which could only improve the

performance), and that (ALH) succeeds in its ‘‘guess’’ of the appropriate

level, the corresponding variant of RQA works fine.

Level-(k + 1) landmarks would always provide a solution, in time o(n).

∴ Failure-of-(ALH) contribution to the expectation of the query-time is

negligible.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [82 / 97]

HQA: The Query Algorithm of HORN [KWZ (2016)]

Query-time of HQA...

The quality of approximation provided via an informed landmark is

dependent on the landmark’s relative distance from the origin.

For the first informed level-i landmark, the probability of its distance from o

NOT belonging to the N
δ/(R+1)
i

·

(
1

ln(n)
, ln(n)

]
is O

(
1

n

)
, where i is the

appropriate level for (o, d, to).

∴ Success of (ALH) criterion, which happens whp , reveals asymptotic

bounds, for the (unknown) distance (and Dijkstra rank) from o to d.

Given that (ESC) did not occur (which could only improve the

performance), and that (ALH) succeeds in its ‘‘guess’’ of the appropriate

level, the corresponding variant of RQA works fine.

Level-(k + 1) landmarks would always provide a solution, in time o(n).

∴ Failure-of-(ALH) contribution to the expectation of the query-time is

negligible.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [82 / 97]

Experimental EvaluationExperimental Evaluation

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [83 / 97]

Experimental Evaluation

Identities of Instances

PARAMETER \ INSTANCE Berlin (TomTom) Germany (PTV AG)

#Nodes 473,253 4,692,091

#Edges 1,126,468 11,183,060

Time Period 24h (Tue) 24h (Tue-Wed-Thu)

λmax 0.017 0.130

−λmin -0.013 -0.130

#Arcs with constant traversal-times 924,254 10,310,234

#Arcs with non-constant traversal-times 20,2214 872,826

Min #Breakpoints 4 5

Avg #Breakpoints 10.4 16.3

Max #Breakpoints 125 52

Total #Breakpoints 3,234,213 25,424,506

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [84 / 97]

Experimental Evaluation

Landmark Selection Methods

(A) Three variants of random selection method:

RANDOM (R): Independent and uniform random selections.

IMPORTANT RANDOM (IR): Move each selection of (R) to the most important

node within a small ball from the selection.

SPARSE RANDOM (SR): Sequential random selection. Each selected landmark

excludes a small neighborhood around it from future selections.

(B) Partition-dependent selections: Given a graph partition, consider as candidate

landmarks only the boundary nodes of the partition.

METIS (M) / KAHIP (K): Start from a METIS / KaHIP partition.

SPARSE KAHIP (SK): Start from a finer KaHIP partition. Choose randomly, assuring

sparsity, landmarks from the boundary nodes.

HYBRID (H): In a KaHIP partition, half landmarks chosen randomly (and sparsely)

from boundary nodes. Remaining nodes equi-distributed randomly in the cells.

(C) BETWEENESS CENTRALITY (BC): Choose landmarks sequentially, assuring sparsity,

according to an approximate BC order.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [85 / 97]

Experimental Evaluation

Landmark Selection Methods

(A) Three variants of random selection method:

RANDOM (R): Independent and uniform random selections.

IMPORTANT RANDOM (IR): Move each selection of (R) to the most important

node within a small ball from the selection.

SPARSE RANDOM (SR): Sequential random selection. Each selected landmark

excludes a small neighborhood around it from future selections.

(B) Partition-dependent selections: Given a graph partition, consider as candidate

landmarks only the boundary nodes of the partition.

METIS (M) / KAHIP (K): Start from a METIS / KaHIP partition.

SPARSE KAHIP (SK): Start from a finer KaHIP partition. Choose randomly, assuring

sparsity, landmarks from the boundary nodes.

HYBRID (H): In a KaHIP partition, half landmarks chosen randomly (and sparsely)

from boundary nodes. Remaining nodes equi-distributed randomly in the cells.

(C) BETWEENESS CENTRALITY (BC): Choose landmarks sequentially, assuring sparsity,

according to an approximate BC order.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [85 / 97]

Experimental Evaluation

Landmark Selection Methods

(A) Three variants of random selection method:

RANDOM (R): Independent and uniform random selections.

IMPORTANT RANDOM (IR): Move each selection of (R) to the most important

node within a small ball from the selection.

SPARSE RANDOM (SR): Sequential random selection. Each selected landmark

excludes a small neighborhood around it from future selections.

(B) Partition-dependent selections: Given a graph partition, consider as candidate

landmarks only the boundary nodes of the partition.

METIS (M) / KAHIP (K): Start from a METIS / KaHIP partition.

SPARSE KAHIP (SK): Start from a finer KaHIP partition. Choose randomly, assuring

sparsity, landmarks from the boundary nodes.

HYBRID (H): In a KaHIP partition, half landmarks chosen randomly (and sparsely)

from boundary nodes. Remaining nodes equi-distributed randomly in the cells.

(C) BETWEENESS CENTRALITY (BC): Choose landmarks sequentially, assuring sparsity,

according to an approximate BC order.
S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [85 / 97]

Experimental Evaluation [KMPPWZ (2016)]

Preprocessing and Live-Traffic Updates

Preprocessing of FLAT @ BERLIN:

BERLIN GERMANY

Parallelism 1 thread 6 threads 1 thread 6 threads

Time per landmark 69.5sec 11.5sec 481sec 80.2sec

Space per landmark 13.8MB 25.7MB

Responsiveness to live-traffic reporting: Averaging 1, 000 random

disruptions of 15-min duration.

BERLIN GERMANY

#Affected Update Time #Affected Update Time

Landmarks (sec) Landmarks (sec)

SR2000 32 21.4 3 37.2

SK2000 36 28.8 4 39.1

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [86 / 97]

Experimental Evaluation [KMPPWZ (2016)]

Query-Time Performance: Speedup > 1, 146 for Berlin and > 902 for Germany.

Berlin: n = 473, 253 vertices, m = 1, 126, 468 arcs.

Germany: n = 4, 692, 091 vertices, m = 11, 183, 060 arcs.

BERLIN: 1.32sec resolution and 10, 000 random queries.

TDD FCA FCA+(6) RQA
Time

(msec)

Rel.Error

%

Time

(msec)

Rel.Error

%

Time

(msec)

Rel.Error

%

Time

(msec)

Rel.Error

%

R2000
92.906 0

0.100 0.969 0.527 0.405 0.519 0.679

K2000 0.115 1.089 0.321 0.405 0.376 0.523

H2000 0.102 0.886 0.523 0.332 0.445 0.602

IR2000 0.086 0.923 0.489 0.379 0.473 0.604

SR2000 0.081 0.771 0.586 0.317 0.443 0.611

SK2000 0.083 0.781 0.616 0.227 0.397 0.464

R541 0.326 1.854 1.887 0.693 1.904 1.610

SR541 0.451 1.638 3.252 0.614 2.856 1.531

R270 0.639 2.583 3.707 0.881 3.842 2.482

SR270 0.730 2.198 4.491 0.745 4.271 2.336

GERMANY: 8.82sec resolution and 10,000 random queries.

TDD FCA FCA+(6) RQA
Time

(msec)

Rel.Error

%

Time

(msec)

Rel.Error

%

Time

(msec)

Rel.Error

%

Time

(msec)

Rel.Error

%

R2000
1, 145.060 0

1.532 1.567 8.529 0.742 9.219 1.502

K2000 10.455 2.515 15.209 1.708 30.577 2.343

SR2000 1.275 1.444 9.952 0.662 9.011 1.412

SK2000 1.269 1.534 9.689 0.676 7.653 1.475

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [87 / 97]

Experimental Evaluation [KMPPWZ (2016)]

Dijkstra-Rank Performance: Speedup > 1, 570 for Berlin and > 1, 531 for Germany.

Berlin: n = 473, 253 vertices, m = 1, 126, 468 arcs.

Germany: n = 4, 692, 091 vertices, m = 11, 183, 060 arcs.

BERLIN: 1.32sec resolution and 10, 000 random queries.

TDD FCA FCA+(6) RQA
Rank Speedup Rank Speedup Rank Speedup Rank Speedup

R2000
146, 022 1

150 973.480 877 166.502 925 157.862

K2000 190 768.537 866 168.616 670 217.943

H2000 154 948.195 851 171.589 777 187.931

IR2000 135 1, 081.644 823 177.426 839 174.043

SR2000 119 1, 227.075 952 153.384 776 188.173

SK2000 93 1, 570.129 755 193.406 501 291.461

R541 545 267.930 3, 178 45.947 3, 406 42.872

SR541 638 228.874 3, 684 39.637 3, 950 36.967

R270 1, 075 135.834 6, 198 23.559 6, 702 21.788

SR270 1, 195 122.194 7, 362 19.835 7, 398 19.738

GERMANY: 8.82sec resolution and 10, 000 random queries.

TDD FCA FCA+(6) RQA
Rank Speedup Rank Speedup Rank Speedup Rank Speedup

R2000
1, 717, 793 1

1, 659 1, 035.439 10, 159 169.091 11, 045 155.527

K2000 9, 302 184.669 15, 373 111.741 30, 137 56.999

SR2000 1, 277 1, 345.178 9, 943 172.764 9, 182 187.082

SK2000 1, 122 1, 531.010 9, 000 190.866 7, 975 215.397

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [88 / 97]

Experimental Evaluation [KMPPWZ (2016)]

Performance of HORN in BERLIN

Landmark hierarchies for HORN, with HR and HSR landmark sets:

Level Size of Levels Area of coverage Excluded Ball Size (for HSR)

|L| = 10, 256 |L| = 20, 513 |L| = 10, 256 |L| = 20, 513

L1 7, 685 15, 370 1, 274 35 15

L2 1, 604 3, 208 29, 243 150 80

L3 697 1, 394 154, 847 350 180

L4 270 541 292, 356 800 400

Performance of HQA at 2.64sec resolution and 10, 000 random queries:

TDD HQA

Time

(msec)

Rel.Error

%

Rank Speedup
Time

(msec)

Rel.Error

%

Rank Speedup

HR10256
92.906 0 146, 022 1

0.354 1.499 636 229.594

HSR10256 0.436 1.409 721 202.527

HR20513 0.217 1.051 324 450.685

HSR20513 0.314 0.919 378 386.302

HQA vs. FLAT/FCA in Berlin:

Improvement in Deterioration in

Query Times (%) Worst-case Relative Error (%) Dijkstra Ranks (%) Space (times)

R270 vs HR10256 44.60 41.96 40.83 6.089

SR270 vs HSR10256 40.27 35.89 39.66 6.407

R541 vs HR20513 33.43 43.31 40.55 6.195

SR541 vs HSR20513 30.37 43.89 40.75 6.438

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [89 / 97]

Work In Progress (I) [KPPWZ (2017)]

CFLAT -- A combinatorial oracle that:

I Preprocesses and stores only time-varying shortest-path trees, rather than

travel-time functions: Each vertex has a time-dependent parent, per

landmark.

I Avoids duplicates in preprocessed data, by storing common departure-time

sequences only once and having all the relevant landmark-vertex pairs

index them.

CFCA -- A novel query algorithm that:

1 Computes, in reverse order, many candidate paths from each discovered

landmark to the destination.

2 Runs TD-Dijkstra in the subgraph induced by the edges of these paths.

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [90 / 97]

Work In Progress (II) [KPPWZ (2017)]

Experimental Evaluation for CFLAT:

I More detailed average-case statistics (50, 000 random queries).

I Significant preprocessing space/time requirements.

I Comparable query times with FLAT/FCA+, but now including the path

reconstruction in the measurements.

I Improved approximation guarantees.

I Study the tails of the statistics (existence of outliers).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [91 / 97]

Preprocessing of CFLAT (RANDOM landmarks) [KPPWZ (2017)]

30,00
40,00
50,00
60,00
70,00
80,00
90,00

Ti
m

e
(h

ou
rs

) &
 S

pa
ce

 (G
B)

Preprocessing @ BERLIN

R250 R500 R1K R2K R4K R8K R16K R32K

Time (12 threads) 0,23 0,46 0,92 1,95 3,73 7,45 14,70 29,38

Time (6 threads) 0,38 0,75 1,53 3,02 6,08 12,05 24,12 48,02

Space (uncompr.) 0,70 1,30 2,60 5,20 10,40 20,80 41,40 80,66

Space (compr.) 0,17 0,34 0,69 1,40 2,80 5,60 12,00 21,94

0,00
10,00
20,00

Ti
m

e
(h

ou
rs

) &
 S

pa
ce

 (G
B)

30,0
40,0
50,0
60,0
70,0
80,0
90,0

100,0
110,0

Ti
m

e
(h

ou
rs

) &
 S

pa
ce

 (G
B)

Preprocessing @ GERMANY

R1K R2K R3K R4K

Time (12 threads) 8,1 16,3 24,4 32,6

Time (6 threads) 13,3 26,6 39,8 53,0

Space (uncompr.) 26,8 53,6 80,4 107,2

Space (compr.) 8,1 16,1 24,2 32,3

0,0
10,0
20,0
30,0

Ti
m

e
(h

ou
rs

) &
 S

pa
ce

 (G
B)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [92 / 97]

Query-time / Error Scalability CFCA [KPPWZ (2017)]

1,000

1,500

2,000

2,500

3,000

3,500

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

Query Time Scalability @ BERLIN

R250 R500 R1K R2K R4K R8K R16K R32K

CFCA(1) 0,565 0,356 0,205 0,140 0,106 0,085 0,079 0,077

CFCA(2) 1,109 0,644 0,371 0,236 0,169 0,125 0,112 0,105

CFCA(4) 2,212 1,274 0,702 0,425 0,291 0,204 0,177 0,161

CFCA(6) 3,330 1,848 1,031 0,613 0,411 0,281 0,237 0,219

0,000

0,500

1,000

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

1,000

1,500

2,000

2,500

Av
g

Re
la

tiv
e

Er
ro

r (
%

)

Relative Error Scalability @ BERLIN

R250 R500 R1K R2K R4K R8K R16K R32K

CFCA(1) 2,418 1,915 1,383 0,967 0,668 0,438 0,282 0,180

CFCA(2) 0,880 0,760 0,570 0,385 0,287 0,193 0,136 0,098

CFCA(4) 0,276 0,234 0,196 0,127 0,108 0,082 0,059 0,050

CFCA(6) 0,136 0,102 0,100 0,064 0,060 0,047 0,038 0,032

0,000

0,500

Av
g

Re
la

tiv
e

Er
ro

r (
%

)

4,000

6,000

8,000

10,000

12,000

14,000

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

Query Time Scalability @ GERMANY

R1K R2K R3K R4K

CFCA(1) 2,175 1,333 0,981 0,819

CFCA(2) 4,219 2,492 1,824 1,503

CFCA(4) 8,238 4,845 3,477 2,864

CFCA(6) 11,974 7,130 5,045 4,201

0,000

2,000

4,000

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

0,600
0,800
1,000
1,200
1,400
1,600
1,800

Av
g

Re
la

tiv
e

Er
ro

r (
%

)

Relative Error Scalability @ GERMANY

R1K R2K R3K R4K

CFCA(1) 1,582 1,197 1,016 0,911

CFCA(2) 0,547 0,426 0,384 0,346

CFCA(4) 0,160 0,125 0,118 0,106

CFCA(6) 0,071 0,060 0,055 0,049

0,000
0,200
0,400
0,600

Av
g

Re
la

tiv
e

Er
ro

r (
%

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [93 / 97]

Query-time / Error of CFCA w.r.t. Landmark Sets [KPPWZ (2017)]

N=1 N=2 N=4 N=6
0,000

0,100

0,200

0,300

0,400

0,500

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

Query Time of CFCA(N) @ BERLIN

N=1 N=2 N=4 N=6

R4K 0,106 0,169 0,291 0,411

SR4K 0,108 0,199 0,349 0,474

IR4K 0,098 0,159 0,261 0,371

SK4K 0,089 0,147 0,265 0,373

KC4K 0,091 0,148 0,262 0,374

BC4K 0,088 0,144 0,257 0,367

KB4K 0,093 0,169 0,294 0,411

N=1 N=2 N=4 N=6
0,000
0,100
0,200
0,300
0,400
0,500
0,600
0,700

Av
g

Re
la

tiv
e

Er
ro

r (
%

)

Relative Error of CFCA(N) @ BERLIN

N=1 N=2 N=4 N=6
R4K 0,668 0,287 0,108 0,060

SR4K 0,546 0,121 0,033 0,019

IR4K 0,653 0,329 0,140 0,078

SK4K 0,557 0,166 0,055 0,033

KC4K 0,544 0,181 0,060 0,033

BC4K 0,521 0,121 0,036 0,021

KB4K 0,534 0,184 0,058 0,031

2,000

3,000

4,000

5,000

6,000

Av
g

Q
ue

ry
 T

im
e

(m
se

c)

Query Time of CFCA(N) @ GERMANY

N=1 N=2 N=4 N=6

R3K 0,981 1,824 3,477 5,045

SR3K 0,825 1,727 3,373 5,010

SK3K 0,819 1,587 3,129 4,669

BC3K 0,733 1,568 3,158 4,787

0,000

1,000Av
g

Q
ue

ry
 T

im
e

(m
se

c)

0,400

0,600

0,800

1,000

1,200

Av
g

Re
la

tiv
e

Er
ro

r (
%

)

Relative Error of CFCA(N) @ GERMANY

N=1 N=2 N=4 N=6

R3K 1,016 0,384 0,118 0,055

SR3K 0,970 0,274 0,065 0,028

SK3K 1,062 0,352 0,100 0,044

BC3K 0,911 0,269 0,068 0,029

0,000

0,200Av
g

Re
la

tiv
e

Er
ro

r (
%

)

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [94 / 97]

Exploring Outliers of Relative Error in BERLIN [KPPWZ (2017)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [95 / 97]

Exploring Outliers of Relative Error in GERMANY [KPPWZ (2017)]

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [96 / 97]

Related Literature

1 [Dreyfus (1969)] S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,

17(3):395--412, 1969.

2 [OR (2000)] A. Orda, R. Rom. Shortest-path and minimum delay algorithms in networks with
time-dependent edge-length. J. ACM, 37(3):607--625, 1990.

3 [Dean (2004)] B. C. Dean. Shortest paths in FIFO time-dependent networks: Theory and algorithms.
Technical report. MIT, 2004.

4 [DOS (2010)] F. Dehne, O. T. Masoud, J. R. Sack. Shortest paths in time-dependent FIFO networks.

ALGORITHMICA, 62(1-2):416--435, 2012.

5 [FHS (2011)] L. Foschini, J. Hershberger, S. Suri. On the complexity of time-dependent shortest paths.
ALGORITHMICA, 68(4), pp. 1075--1097, 2014.

6 [KZ (2014)] S. Kontogiannis, C. Zaroliagis. Distance oracles for time dependent networks. In

ALGORITHMICA.

7 [KMPPWZ (2016)] S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D.

Wagner, C. Zaroliagis. Engineering Oracles for Time-Dependent Road Networks. Algorithm

Engineering and Experiments (ALENEX 2016), SIAM, 2016.

8 [KPPWZ (2017)] S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C. Zaroliagis.

Improved Oracles for Time-Dependent Road Networks. Submitted for publication.

9 [KWZ (2016)] S. Kontogiannis, D. Wagner, C. Zaroliagis. Hierarchical Oracles for Time-Dependent
Road Networks. In ISAAC 2016. Invited to ALGORITHMICA (2017).

S. Kontogiannis (kontog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4η εβδοµάδα) [97 / 97]

	Problem Statements & Examples
	Shortest Paths in & Networks
	The Challenge of Scale
	Time Dependent Shortest Path Examples
	Problem Statements

	Algorithms for TDSP on FIFO, Continuous, Pwl Instances
	Input/Output Data
	Complexity Results
	Lower Bound on Number of Breakpoints
	Upper Bound on Number of Breakpoints
	An Exact (output-sensitive) Algorithm for Arr[o,]
	Poly-time Approximation Algorithms for D[o,d] and D[o,]

	Distance Oracles
	Preliminaries
	FLAT TD Oracle
	HORN Oracle
	Experimental Evaluation

