©¢éuara AAyopiduwyv
AAySpi18uol kal Epappoyég orov MNMpayparnkd Kéouo
Merantuxiakd Mdenua

4n EBSoudda: Bérnoreg Aladpopéc & oe Xpovoetaptwueva Alktua

Inupog Kovroyidvvng

kontog@cse.uoi.gr

Tupa Mnxavikav H/Y & MAnpo@opikAg

Maveniompuio lwavvivwy

Tetrdpm, 15-22 Maprtiou 2017

Shortest Paths

... a fundamental problem in Computer Science

Shortest Paths Problem

Statement

e INPUT:
» Directed graph G = (V, E).
> Arc costs (distance, tfravel-fime, fuel
consumption, etc.): Yuv € E, c[uv] > 0.
» Origin-destination pair: (o,d) € V X V.
> P, q: Set of od-paths in G.
» Additive path costs: c[p] = X e, cle].

Shortest Paths Problem

Statement

e INPUT:
» Directed graph G = (V, E).
> Arc costs (distance, tfravel-fime, fuel
consumption, etc.): Yuv € E, c[uv] > 0.
» Origin-destination pair: (o,d) € V X V.
> P, q: Set of od-paths in G.
» Additive path costs: c[p] = X e, cle].

e OUTPUT: 7" € arg maxzep, ,{ c[p] }

Shortest Paths Problem

Statement

o INPUT:

>

>

Directed graph G = (V, E).

Arc costs (distance, fravel-time, fuel
consumption, etc.): Yuv € E, c[uv] > 0.
Origin-destination pair: (o, d) € V X V.
Po.q: Set of od-paths in G.

Additive path costs: c[p] = X.c,, c[e].

e OUTPUT: 7" € arg maxzep, ,{ c[p] }

@ GOAL: Route planning in

Shortest Paths Problem

Statement

e INPUT:
» Directed graph G = (V, E).
> Arc costs (distance, tfravel-fime, fuel
consumption, etc.): Yuv € E, c[uv] > 0.

» Origin-destination pair: (o,d) € V X V.
> P, q: Set of od-paths in G.
» Additive path costs: c[p] = X e, cle].

e OUTPUT: 7" € arg maxzep, ,{ c[p] }

@ GOAL: Route planning in

» Vs the set of road junctions.
> Eis the set of uninterrupted road segments.

Shortest Paths Problem

Statement

e INPUT:
» Directed graph G = (V, E).
> Arc costs (distance, tfravel-fime, fuel
consumption, etc.): Yuv € E, c[uv] > 0.

» Origin-destination pair: (o,d) € V X V.
> P, q: Set of od-paths in G.
» Additive path costs: c[p] = X e, cle].

e OUTPUT: 7" € arg maxzep, ,{ c[p] }

@ GOAL: Route planning in

» Vs the set of road junctions.
> Eis the set of uninterrupted road segments.

* Sparse netwrok: |E| € O(|V]).
* HUGE size: |V| = tens of millions of nodes.

Shortest Paths Problem

Statement

e INPUT:
» Directed graph G = (V, E).
> Arc costs (distance, tfravel-fime, fuel
consumption, etc.): Yuv € E, c[uv] > 0.

» Origin-destination pair: (o,d) € V X V.
> P, q: Set of od-paths in G.
» Additive path costs: c[p] = X e, cle].

e OUTPUT: 7" € arg maxzep, ,{ c[p] }

@ GOAL: Route planning in

» Vs the set of road junctions.

> Eis the set of uninterrupted road segments.
* Sparse netwrok: |E| € O(|V]).
* HUGE size: |V| = tens of millions of nodes.

> Arc costs usually represent

Shortest Paths Problem
A Working Example

APXIKOIMOIHZH

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) @4/97)

Shortest Paths Problem
A Working Example

E=OAOZ

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) @4/97)

Dijkstra’s Algorithm

Pseudocode

| Dijkstra(6=(V,E),0€V,deV,c:E>Ry)

1.

2.

3.

4,
4.1.
42,
4.2.1.
422

422.1.
4.222.
4.223.

forall v € V do D|v| = oo;

D[o] = 0;
Q.Insert(o, D[o]); + @ priory ueus »
while !Q.IsEmpty() do
v = Q.ExtractMin(); /4 Vi the node with rin fentative iabel +
forall vw € E(G) do /¢ scanning of node v +

if D[w| > D[v] + c[ww]

then /* relaxation of arc vw *

D[w] = D[v] + c[vw];
if w € Q then Q.DecreaseKey(w, D[w]);
else Q.Insert(w, D[w]);

=

=

-

=

Dijkstra’s Algorithm

Execution Example

APXIKOIMOIHZH

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) ©/97)

Dijkstra’s Algorithm

Execution Example

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) ©/97)

Dijkstra’s Algorithm

Execution Example

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) ©/97)

Dijkstra’s Algorithm

Execution Example

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) ©/97)

Dijkstra’s Algorithm

Execution Example

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) ©/97)

Dijkstra’s Algorithm

Execution Example

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) ©/97)

Dijkstra’s Algorithm

Execution Example

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) ©/97)

Dijkstra’s Algorithm

Execution Example

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n eBdoudda) 6/97)

Dijkstra’s Algorithm

Execution Example

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n eBdoudda) 6/97)

Dijkstra’s Algorithm

Execution Example

E=OAOZ

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n eBdoudda) ©/97)

Dijkstra’s Algorithm

Analysis

@ Correctness

> Labels: Represent on total costs (fravel-times) from the origin
towards each destination.

» In each round the node v with D[v] is chosen for
finalization of its label (not tentative anymore).

» Non-negative arc-costs = The label D[v] to be finalized in each round is the
exact min-cost from o to v (cannot be further improved).

Dijkstra’s Algorithm

Analysis

@ Correctness

> Labels: Represent on total costs (fravel-times) from the origin
towards each destination.

» In each round the node v with D[v] is chosen for
finalization of its label (not tentative anymore).

» Non-negative arc-costs = The label D[v] to be finalized in each round is the
exact min-cost from o to v (cannot be further improved).

@ Time CompleXIty /#+ depends on the choice of the priority queue */
(n) queue-insertion operations.

(n) queue-extract-minimum operations.

(m) queue-label correction operations (upon arc relaxations).

» O
» O
O

>

Dijkstra’s Algorithm

Data Structures for Priority Queue

o Implementation of the priority queue with Fibonacci Heaps

» O(log(n)) per extract-minimum operation.
> 0(1) per queue-insertion / queue-label correction
operation.

. O(m+ nlog(n)) in total.

Dijkstra’s Algorithm

Data Structures for Priority Queue

o Implementation of the priority queue with Fibonacci Heaps

» O(log(n)) per extract-minimum operation.
> 0(1) per queue-insertion / queue-label correction
operation.
. O(m+ nlog(n)) in total.
e Implementation of priority queue with Binary Heaps
» O(log(n)) per extract-minimum / insertion /
label-correction operation of the queue.
= O(mlog(n)) in total.
< Extremely simpler data structure than Fibonacci Heaps.
< Usually (for large-scale, real-world instances).
& For ,me 0(n).

Dijkstra’s Algorithm

Data Structures for Priority Queue

o Implementation of the priority queue with Fibonacci Heaps

» O(log(n)) per extract-minimum operation.
> 0(1) per queue-insertion / queue-label correction
operation.
. O(m+ nlog(n)) in total.
e Implementation of priority queue with Binary Heaps
» O(log(n)) per extract-minimum / insertion /
label-correction operation of the queue.
= O(mlog(n)) in total.
< Extremely simpler data structure than Fibonacci Heaps.
< Usually (for large-scale, real-world instances).
& For ,me 0(n).

o Implementation of priority queue with k-ary Heaps
» Each internal node has k children.
» Fewer tree levels (than binary / fioonacci heaps), more nodes per level.
< Better exploitation of data locality.
> Same time-complexity with Binary Heaps.

Dijkstra’s Algorithm

Experimental Evaluation with Various Heap Implementations

@ Execution of Dijkstra for , with respect to
metric:
Data Structure Response to Queries (sec)
2-heap 12.38
4-heap 11.63
8-heap 11.52
@ Execution times on a 2.4GHz AMD Opteron, with 16GB RAM

(Microsoft Data Structures and Algorithms School (MIDAS), St. Petersburg (2010))

@ Query fimes are for construction of a complete shortest-paths tree (SPT)
from the origin fowards

Roughly half time for responding to (o, d)-queries and
Dijkstra upon scanning the destination vertex d.

Why Algorithm Engineering?

Design

Why Algorithm Engineering?

Realistic
machine models

[Real-world Datal

Falsifiable
Hypotheses

nnalyze

Performance guarantees & algorithm dependability

Challenge of Scale

... shortest paths in large-scale road networks

Algorithm Engineering

Shortest paths in road networks: A successful showcase (mostly) in static graphs...

’Conﬁnenf—sized road networks: Millions of infersections

Algorithm Engineering

Shortest paths in road networks: A successful showcase (mostly) in static graphs...

‘ Continent-sized road networks: Millions of infersections

@ Dijkstra: Responds within

Algorithm Engineering

Shortest paths in road networks: A successful showcase (mostly) in static graphs...

‘ Continent-sized road networks: Millions of infersections

@ Dijkstra: Responds within

@ Speedup Techniques: Shortest-Path , tailored especially for road
networks.

> Respond in (or even).

Algorithm Engineering

Shortest paths in road networks: A successful showcase (mostly) in static graphs...

‘ Continent-sized road networks: Millions of infersections

@ Dijkstra: Responds within

@ Speedup Techniques: Shortest-Path , tailored especially for road
networks.
> Respond in (or even).

Most Popular Speedup Techniques

@ Arc Flags (Lauther (2004), Kéhler et al. (2006), Bauer & Deliing (2008))
@ A* with Landmarks (Goldberg & Harrelson (2005))

@ Reach (Gutman (2004), Goldberg et al. (2006))

@ Highway Hierarchies (sanders & Schultes (2005))

@ Contraction Hierarchies (Geisberger et al. (2008))

@ Transit Node Routing (Bast et al. (2006))

Distance Oracles

Another success story in stafic graphs...

Distance Oracles: Create () data structures that require
requirements and allow answering in to arbitrary queries
, with provable approximation guarantees (stretch).

Distance Oracles

Another success story in stafic graphs...

Distance Oracles: Create () data structures that require
requirements and allow answering in to arbitrary queries
, with provable approximation guarantees (stretch).

@ Trivial solution (I): Preprocess by executing and storing APSP.
= O(n?) size.
i O(1) query time.
&2 1-—stretch.

Distance Oracles

Another success story in stafic graphs...

Distance Oracles: Create () data structures that require
requirements and allow answering in to arbitrary queries
, with provable approximation guarantees (stretch).

@ Trivial solution (I): Preprocess by executing and storing APSP.
= O(n?) size.
i O(1) query time.
&2 1-—stretch.

@ Trivial solution (II): No preprocessing, respond to queries by running
Dijkstra.
@s O(n+ m) size.
= O(m+ nlog(n)) query time.
i 1—stretch.

Distance Oracles

Another success story in stafic graphs...

Distance Oracles: Create () data structures that require
requirements and allow answering in to arbitrary queries
, with provable approximation guarantees (stretch).

@ Trivial solution (I): Preprocess by executing and storing APSP.
= O(n?) size.
i O(1) query time.
&2 1-—stretch.

@ Trivial solution (II): No preprocessing, respond to queries by running
Dijkstra.
@s O(n+ m) size.
= O(m+ nlog(n)) query time.
i 1—stretch.

¢ Provide smooth tradeoffs among space / query time / stretch!!!

Distance Oracles

Theoretical bounds for static graphs...

Reference | Sefting Stretch ‘ Query ‘ Space

weighted graph 2k =1,k > | O(k) O(kn1+1/k)
(1205) 5

weighted graph 2k—1,k > | O(log(k)) O(kn1+1/k)
(WN13) 5

weighted graph 2k—1,k> | O(1) O(kn1+1/k)
(Chel3) 5

sparse weighted | 1+ ¢ o(n) of n2)
(AG13) graph
(Kie02) planar weighted | 1 + ¢ 0(6—1) O(H|O§(n))
(ThoO4) digraph

1+1/k

(MNO6) metric O(k) o(1) O(k”)

Doubling metric, | 1+ € o(1) ¢~ O(adm)
(lEteat Ly dynamic +20(ddim|og(ddim))n

Speedup Techniques / Distance Oracles
Godl...

= Dijkstra visits closer to o than d.

Speedup Techniques / Distance Oracles
Godl...

= Dijkstra visits closer to o than d.

o computations towards (eventually)
irrelevant directions.

Speedup Techniques / Distance Oracles
Godl...

= Dijkstra visits closer to o than d.
o computations towards (eventually)
irrelevant directions.

@ Too many in networks that
change very slowly (or, not at all) over time.

Speedup Techniques / Distance Oracles
Godl...

= Dijkstra visits closer to o than d.

e computations towards (eventually)
irrelevant directions.

© 100 many in networks that
change very slowly (or, not at all) over time.

¢ Exploit : Compute offline selected
that will later allow, in
responses to arbitrary shortest path requests.

Speedup Techniques / Distance Oracles
Godl...

= Dijkstra visits closer to o than d.

@ computations towards (eventually)
irrelevant directions.

© 100 many in networks that
change very slowly (or, not at all) over time.

¢ Exploit : Compute offline selected
that will later allow, in
responses to arbitrary shortest path requests.

° of Speedup Techniques / Distance
Oracles:
> Preprocessing time / space.

> Query (response) time to arbitrary requests.

» Stretch (approximation guarantee).

Speedup Techniques / Distance Oracles

Generic idea...

@ Metric-independent preprocessing: Pick a subset of
vertices in the graph, possibly ignoring the metric. E.g.:

Speedup Techniques / Distance Oracles

Generic idea...

@ Metric-independent preprocessing: Pick a subset of
vertices in the graph, possibly ignoring the metric. E.g.:

» Consider (small) sets of in a partition of the graph into
roughly equal-sized cells.

> Randomly select vertices.

» Consider nearest (hubs) per vertex.

4 e

Speedup Techniques / Distance Oracles

Generic idea...

@ Metric-independent preprocessing: Pick a subset of
vertices in the graph, possibly ignoring the metric. E.g.:

» Consider (small) sets of in a partition of the graph into
roughly equal-sized cells.

> Randomly select vertices.

» Consider nearest (hubs) per vertex.

4 e

@ Metric-dependent preprocessing: Equip the network with selective
distance summaries, e.g., boundary-to-boundary, hub-to-cell,
landmark-to-all distances, etc.

Speedup Techniques / Distance Oracles

Generic idea...

@ Metric-independent preprocessing: Pick a subset of
vertices in the graph, possibly ignoring the metric. E.g.:

» Consider (small) sets of in a partition of the graph into
roughly equal-sized cells.

> Randomly select vertices.

» Consider nearest (hubs) per vertex.

4 e

@ Metric-dependent preprocessing: Equip the network with selective
distance summaries, e.g., boundary-to-boundary, hub-to-cell,
landmark-to-all distances, etc.

© Query Algorithm: Respond fast o queries, based on the (possibly
metric-independent) preprocessing and/or the precomputed
metric-dependent distance summaries.

Speedup Techniques / Distance Oracles

Performance...

@ Extremely successful theme in static graphs.

> In theory (oracles):

* PRE-Space: Subquadratic (sometimes quasi-linear).
* QUE-Time: Constant / sublinear in graph size.
* Stretch: Small (sometimes PTAS).

> In practice (speedups):

* PRE-Space: A few GBs (sometimes less than 1 GB).
* QUE-Time: Miliseconds (sometimes microseconds).

* Stretch: Exact distances (in most cases).

Time Dependent
Shortest Path

... a more redlistic but also more involved problem

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

@ Graph elements in real-tfime. /+ Dynamic Shortest Path «/
@ Metric demonstrates . / Sthochastic Shortest Path «/
@ Graph is , metric y €1[0,1]in

a predetermined fashion. / Parametric Shortest Path +/
@ Graphis , metric in a predetermined fashion. /%

Time-Dependent Shortest Path /

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

@ Graphis , metric in a predetermined fashion. /%

Time-Dependent Shortest Path /

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

@ Graphis , metric in a predetermined fashion. /%

Time-Dependent Shortest Path /

> Arcs are allowed to become (e.g.. due to
periodic maintenance, saving consumption of resources, etc), for
predetermined unavailability time-intervals (discrete domain).

> Arc lengths (e.g., fraversal-time / consumption)
which is freated as a real-valued variable (functions with
continuous domain, but not necessarily continuous range).

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

@ Graph is , metric y €1[0,1]in
a predetermined fashion. / Parametric Shortest Path +/
@ Graphis , metric in a predetermined fashion. /%

Time-Dependent Shortest Path /

> Arc lengths (e.g., fraversal-time / consumption)
which is freated as a real-valued variable (functions with
continuous domain, but not necessarily continuous range).

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

@ Graphis , metric in a predetermined fashion. /%

Time-Dependent Shortest Path /

> Arc lengths (e.g., fraversal-time / consumption)
which is freated as a real-valued variable (functions with
continuous domain, but not necessarily continuous range).

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

Instance with ARC DELAY functions
X+.
2x+0.1
1
B

X+2 P

2x+0.1
How would you commute from o to d, for a given

departure time (from 0)?

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

0.3

How would you commute from o to d, for a given

departure time (from 0)? Eg:

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

How would you commute from o to d, for a given
departure time (from 0)? Eg: |1, = 1

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

Instance with ARC DELAY functions
X+.
2x+0.1
1
B

X+2 P

2x+0.1
How would you commute from o to d, for a given

departure time (from 0)?
What if you are not sure about the departure time?

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

Instance with ARC-ARRIVAL functions

How would you commute from o to d, for a given
departure time (from 0)?

What if you are not sure about the departure time?

TDSP :: EXAMPLE 1 ...working with earliest arrivals...

Instance with ARC-ARRIVAL functions
Arrfoud](t;) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](t,) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t;) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

How would you commute from o to d, for a given
departure time (from 0)?

What if you are not sure about the departure time?

TDSP :: EXAMPLE 1

Instance with ARC-ARRIVAL functions

...working with earliest arrivals...

Arrfoud](t;) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](t,) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t;) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

How would you commute

departure time (from 0)?

from o to d, for a given

What if you are not sure about the departure time?

shortest od—path =

Jif 1, € [0,0.03]

yellow path, if
purple path, if

t, € [0.03,2.9]
to € [2.9, +0)

TDSP :: EXAMPLE 2

Instance with ARC-ARRIVAL functions

Would be worth it?

...waiting at nodes...

Arrfoud](t;) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](t,) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t;) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

TDSP :: EXAMPLE 2 ...waiting at nodes...

Instance with ARC-ARRIVAL functions
Arrfoud](t;) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](t,) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t;) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

Would be worth it?

NO, since arrival-time functions are functions of
departure-time from origin.

TDSP :: EXAMPLE 2

Instance with ARC DELAY functions

1x)72,0 <x<1

1%72,0<x<1
1,x>1

...waiting at nodes...

| Q4| Would

be worth it in this case?

TDSP :: EXAMPLE 2 ...waiting at nodes...

Instance with ARC DELAY functions Instance with ARC ARRIVAL functions
(1-x)/2,0 <x<1 (1+x)/2,0 <x <1
1,¥>1 x+,x>1
(1x/2,9<x<1 (14x)/2,0<x <1
I,x>1 x+tl,x>1

3-x,0<x<1
x+1,x>1

Would be worth it in this case?
YES, because arrival-time function is in x: Wait until time 1 and

then tfraverse od, if already present at o at time 1, < 1. Otherwise, traverse
od immediately.

Waiting Policies

Unrestricted Waiting (UW) Unlimited waiting is allowed at every node along an
od-path.

Origin Waiting (OW) Unlimited waiting is only allowed at the origin node of
each od-path.

Forbidden Waiting (FW) No waiting is allowed at any node of each od-path.

Depending on the , the scheduler has to decide not
only for an optimal connecting path (that assures the earliest arrival
at the destination), but also for the appropriate optimal waiting fimes
at the nodes along this path.

....forbidden waiting times....

TDSP :: EXAMPLE 3

Instance with ARC DELAY functions

Instance with ARC ARRIVAL functions

(1+x)/2,0 <x<1
x+1,x>1

(1+x)/2,0 <x <1
x+1,x>1

3-x,0<x<1]
x+1,x>1

is forbidden?

What if

....forbidden waiting times....

TDSP :: EXAMPLE 3

Instance with ARC DELAY functions

Instance with ARC ARRIVAL functions

(1+x)/2,0 <x<1
x+1,x>1

(1+x)/2,0 < x <1
x+1,x>1
3-x,0<x<1]
x+1,x>1

is forbidden?

What if

An infinite, non-simple TD shortest od-path with finite delay.
ol [|] I
| 3-¢

sff T 1

TDSP :: EXAMPLE 3

Instance with ARC DELAY functions

....forbidden waiting times....

Instance with ARC ARRIVAL functions

(1+x)/2,0 <x<1
x+1,x>1

(1+x)/2,0 <x <1
x+1,x>1

3-x,0<x<1]
x+1,x>1

What if

is forbidden?

An infinite, non-simple TD shortest od-path with finite delay.
I

olf| u | o | |

I |
s 215

TDSP :: EXAMPLE 3

Instance with ARC DELAY functions

....forbidden waiting times....

Instance with ARC ARRIVAL functions

(1+x)/2,0 <x<1
x+1,x>1

(1+x)/2,0 <x <1
x+1,x>1

3-x,0<x<1]
x+1,x>1

What if

is forbidden?

An infinite, non-simple TD shortest od-path with finite delay.
| d

o

ol ul o | u|
T+ | 358 | 780 5+ H — 1555
16 3-T% >2

s 35

TDSP :: EXAMPLE 3forbidden waiting times....

Instance with ARC DELAY functions Instance with ARC ARRIVAL functions

What if is forbidden?

An infinite, non-simple TD shortest od-path with finite delay.
o H u ‘ o ‘ presence at o dfter k T oo visits of u H d

146 346 . 2% 14§ __
HEAES iMoo == =1 I

and are
for TDSP, if waiting-at-nodes is forbidden.

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?
Unfortunately NOT! Bad Example:

A = Arc-Arrival Arr[uv]
'T; nJ —— Arc-Delay D[uy]
100, f, <10, e
Plwv](t) = { L t>10 5
9 u E o
5]
100, #,<10, | — ————
TU+) u =) 2463]0121416]810122426‘
Arrfu](t,) = { b1, t,> 10 departure t, from tail[uv]

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?
Unfortunately NOT! Bad Example:

A = Arc-Arrival Arr[uv]
'T; nJ —— Arc-Delay D[uy]
100, f, <10, e
Plwv](t) = { L t>10 5
9 u E o
5]
100, t, <10, | — e ——
TU+) u =) 2463]0121416]310122426‘
Arrfu](t,) = { b1, t,> 10 departure t, from tail[uv]
» Reason:

of the delay / arrival-time function.

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?
Unfortunately NOT! Bad Example:

EW|
100, t, <10, I e
Dluvi(t) = { 1, 4>10 Bn
9 u E i
(5]
100, £, <10, | — — |
u b u —= 9 2 4 6 8 10 12 14 16 18 20 22 24 26
Arrfu](t,) = { b1, t,> 10 departure t, from tail[uv]

> Reason: of the delay / arrival-time function.

» Solution: Optimal waiting times always exist for continuous functions, and
for (possibly discontinuous) functions for which
if limy;, D[uv](t) < limyyy, D[uv](1)
then D[uv](f,) = lim;;, D[uv](#)

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?
Unfortunately NOT! Bad Example:

A —— Arc-Arrival Arr[uv]
T§ —— Arc-Delay Djuv]
100, 1, <10, £
Pluv](t) = { L t>10 B
9 u g o
g
100, f,<10, >
fu+ 5 u= 5 2 4 6 8 10 12 14 16 18 20 22 24 26
Arr[uV](Tu) = { b1, t,> 10 departure t, from tail[uv]

> Reason: of the delay / arrival-time function.

» Solution: Optimal waiting times always exist for continuous functions, and
for (possibly discontinuous) functions for which
if Iimfuu D[UV](T) < |im1m D[UV](T)
then D[uv](1,) = limy;, D[uv](1)

From now on we assume that

at nodes always
exist and are polynomial-time computable.

FIFO vs non-FIFO Arc Delays

@ (Strict) FIFO Arc-Delays: The slopes of all the
least equal to (greater than) —1.
Equivalently: functions are
(aka no-overtaking property).

functions are at

FIFO vs non-FIFO Arc Delays

@ (Strict) FIFO Arc-Delays: The slopes of all the functions are at
least equal to (greater than) —1.
Equivalently: functions are
(aka no-overtaking property).

@ Non-FIFO Arc-Delays: Possibly preferrable to wait for some period at the
tail of an arc, before frespassing it. E.g.:

» Wait for the next , than use the (immediately available)

FIFO vs non-FIFO Arc Delays

@ (Strict) FIFO Arc-Delays: The slopes of all the functions are at
least equal to (greater than) —1.

Equivalently: functions are
(aka no-overtaking property).

@ Non-FIFO Arc-Delays: Possibly preferrable to wait for some period at the
tail of an arc, before frespassing it. E.g.:

» Wait for the next , than use the (immediately available)

»-\
S o
»

arc delay
PN

= Y

2 4 6 8 10 12 14 16 18 20 22 24 26

departure t, from tail[uv]

FIFO arc delay example

FIFO vs non-FIFO Arc Delays

@ (Strict) FIFO Arc-Delays: The slopes of all the functions are at
least equal to (greater than) —1.
Equivalently: functions are ty
(aka no-overtaking property). oy

@ Non-FIFO Arc-Delays: Possibly preferrable to wait for some period at the
tail of an arc, before frespassing it. E.g.:

> Wait for the next , than use the (immediately available)
A A
10| 10|
o T 8| 9
2) |
> 9 D 5 i
© o * "
o 4 o 4 H i
e Qs :
2 : 4 6 8 10 12 14 16 18 20 22 2.4 26 > 2 4 6 8 10 12 1‘4 16 18 20 22 2‘4 26
departure t, from tail[uv] departure t, from tail[uv]

FIFO arc delay example Non-FIFO arc delay example

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 26 /97)

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

@ A “'scan’ of the line with slope —1 from right fo left suffices.

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 26 /97)

Non-FIFO+UW Arc < FIFO Arc

A A
10 10|
------------------------------- < Q
8 8 i
2 2 -
o @
© * © *
@ 9 1 i o 4 H
R ' e
T 7 * S
2 : 4 6 8 10 12 1’4 16 18 20 22 2‘4 26 > 2 : 4 6 8 10 12 14 16 18 20 22 2‘4 26 >
departure t, from tail[uv] departure t, from tail[uv]
Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function
@ A “'scan’’ of the line with slope —1 suffices.

> pieces of the arc-delay function lying above the line of slope —1.

Non-FIFO+UW Arc < FIFO Arc

arc delay

-------- T

*

arc delay

2‘46810121:4161820222.426= 2:488101214181820222.426=
departure t, from tail[uv] departure t, from tail[uv]
Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function
@ A “'scan’’ of the line with slope —1 suffices.
> pieces of the arc-delay function lying above the line of slope —1.

in Non-FIFO+UW and FIFO instances.

Non-FIFO+UW Arc < FIFO Arc

A
10
q 9
z =
o § K}
o * . ©
o 4 ; ; o
R b
< ! ; <
2 : 4 6 8 10 12 1’4 16 18 20 22 2‘4 26 > 2 : 4 6 8 10 12 14 16 18 20 22 2‘4 26 >
departure t, from tail[uv] departure t, from tail[uv]
Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function
@ A “'scan’’ of the line with slope —1 suffices.
> pieces of the arc-delay function lying above the line of slope —1.
° in Non-FIFO+UW and FIFO instances.
@ Need to consider given the arrival times, in order to

compute the optimal waiting times in the original Non-FIFO+UW instance.

Non-FIFO+UW Arc < FIFO Arc

A
10
q 9
z =
o § o
o * . ©
o 4 ; ; o
R b
< ! ; <
2 : 4 6 8 10 12 1’4 16 18 20 22 2‘4 26 > 2 : 4 6 8 10 12 14 16 18 20 22 2‘4 26 >
departure t, from tail[uv] departure t, from tail[uv]
Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function
@ A “'scan’’ of the line with slope —1 suffices.
> pieces of the arc-delay function lying above the line of slope —1.
° in Non-FIFO+UW and FIFO instances.
@ Need to consider given the arrival times, in order to

compute the optimal waiting times in the original Non-FIFO+UW instance.

< Interested in programming the transformation? Let me know!

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths
INPUT:
° graph G = (V, A) with
arc-travel-time functions
(D[A])gea- (Arr[a] = ID + D[q]) qea-

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths
INPUT:
° graph G = (V, A) with
arc-travel-time functions
(D[A])gea- (Arr[a] = ID + D[q]) qea-

DEFINITIONS:
@ Path arrival / travel-time functions: Yp = (a, ..., k) € Pogq.
Arr[p] = Arr[ai] o - - - o Arr[ay] (of the involved arc-arrivals).

D[p] = Arr[p] — ID.

o Earliest-arrival / Shortest-travel-time functions:
Arr[o, d] = mingep, , { Arr[p] }. D[o, d] = Arr[o,d] — ID.

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths
INPUT:
° graph G = (V, A) with
arc-travel-time functions
(D[A])gea- (Arr[a] = ID + D[q]) qea-

DEFINITIONS:
@ Path arrival / travel-time functions: Yp = (a, ..., k) € Pogq.
Arr[p] = Arr[ai] o - - - o Arr[ay] (of the involved arc-arrivals).

D[p] = Arr[p] — ID.

o Earliest-arrival / Shortest-travel-time functions:
Arr[o, d] = mingep, , { Arr[p] }. D[o, d] = Arr[o,d] — ID.

GOALL: For departure-time t, from o, determine ty = Arr[o, d](t).
GOAL2: Provide a of Arr[o, d] (or Do, d)).

Why Care for Both Goals?

@ Not always sure when to depart (still think about it)! Possessing the entire
D[o, d] allows for easy answers (e.g., via look-ups) in
several queries for varying departure times, or even finding the
within a window of possible departure times.

Why Care for Both Goals?

@ Not always sure when to depart (still think about it)! Possessing the entire
D[o, d] allows for easy answers (e.g., via look-ups) in
several queries for varying departure times, or even finding the
within a window of possible departure times.

@ Need to respond (theory: in sublinear time; practice: in
micro/milliseconds) to arbitrary queries in , for arbitrary
departure-times and od—pairs.

Why Care for Both Goals?

@ Not always sure when to depart (still think about it)! Possessing the entire
D[o, d] allows for easy answers (e.g., via look-ups) in
several queries for varying departure times, or even finding the
within a window of possible departure times.

@ Need to respond (theory: in sublinear time; practice: in
micro/milliseconds) to arbitrary queries in , for arbitrary
departure-times and od—pairs.

R (offline) towards GOAL2 (succinct representations of
D|o, d] functions) in order to support responses to of
GOALL.

Why Care for Both Goals?

@ Not always sure when to depart (still think about it)! Possessing the entire
D[o, d] allows for easy answers (e.g., via look-ups) in
several queries for varying departure times, or even finding the
within a window of possible departure times.

@ Need to respond (theory: in sublinear time; practice: in
micro/milliseconds) to arbitrary queries in , for arbitrary
departure-times and od—pairs.

R (offline) towards GOAL2 (succinct representations of
D|o, d] functions) in order to support responses to of
GOALL.

9 of distance summaries (as in stafic case) requires to
precompute functions instead of scalars.

Conseqguencies of Different Network Models

@ (Dreyfus (1969)) Prefix-subpath optimality holds in networks
(given that optimal waiting fimes). The same applies for networks.

Conseqguencies of Different Network Models

@ (Dreyfus (1969)) Prefix-subpath optimality holds in networks
(given that optimal waiting fimes). The same applies for networks.

@ (OR(1990)) Prefix-subpath optimality does NOT hold in
networks (cf. EXAMPLE of Slide 7).

Conseqguencies of Different Network Models

@ (Dreyfus (1969)) Prefix-subpath optimality holds in networks
(given that optimal waiting fimes). The same applies for networks.

@ (OR(1990)) Prefix-subpath optimality does NOT hold in
networks (cf. EXAMPLE of Slide 7).

@ (OR(1990)) If arc-delay functions are ,or
!, then the solution (path+waiting policy) in
non-FIFO+UW network induces a solution in network using
the and appropriate waiting fime

'This means that: Yt,, D[uv](t,) > lim,;, D[uv](#))

Conseqguencies of Different Network Models

@ (Dreyfus (1969)) Prefix-subpath optimality holds in networks
(given that optimal waiting fimes). The same applies for networks.

@ (OR(1990)) Prefix-subpath optimality does NOT hold in
networks (cf. EXAMPLE of Slide 7).

@ (OR(1990)) If arc-delay functions are ,or
!, then the solution (path+waiting policy) in
non-FIFO+UW network induces a solution in network using
the and appropriate waiting fime

@ (KZ014) In networks, (general) subpath optimality holds also in
the time-dependent case.

'This means that: Yt,, D[uv](t,) > lim,y;, D[uv](#))

Conseqguencies of Different Network Models

@ (Dreyfus (1969)) Prefix-subpath optimality holds in networks
(given that optimal waiting fimes). The same applies for networks.

@ (OR(1990)) Prefix-subpath optimality does NOT hold in
networks (cf. EXAMPLE of Slide 7).

@ (OR(1990)) If arc-delay functions are ,or
!, then the solution (path+waiting policy) in
non-FIFO+UW network induces a solution in network using
the and appropriate waiting fime

@ (KZ014) In networks, (general) subpath optimality holds also in
the time-dependent case.

@ (FHS(2011)) In networks, Arr[o, d] is non-decreasing (increasing).

'This means that: Yt,, D[uv](t,) > lim,y;, D[uv](#))

Algorithms for TDSP

@ For arbitrary (o, d, 1,) queries (GOALT1):

Algorithms for TDSP

@ For arbitrary (o, d, 1,) queries (GOALT1):

> TD variants of Dijkstra and Bellman-Ford algorithms work correctly in
networks, and in networks. Time complexity slightly worse
(when updating arc labels, some arc-delay are evaluated).

> TD variants of Dijkstra and Bellman-Ford algorithms do NOT work
correctly in networks. Determining existence of a

is NP—hard.

Algorithms for TDSP

@ For arbitrary (o, d, 1,) queries (GOALT1):

> TD variants of Dijkstra and Bellman-Ford algorithms work correctly in
networks, and in networks. Time complexity slightly worse
(when updating arc labels, some arc-delay are evaluated).

> TD variants of Dijkstra and Bellman-Ford algorithms do NOT work
correctly in networks. Determining existence of a

is NP—hard.

@ For arbitrary (o, d) queries (GOAL2):

> (OR(1990)) Propose a TD-variant of Bellman-Ford, for
networks.

Algorithms for TDSP

@ For arbitrary (o, d, 1,) queries (GOALT1):

> TD variants of Dijkstra and Bellman-Ford algorithms work correctly in
networks, and in networks. Time complexity slightly worse
(when updating arc labels, some arc-delay are evaluated).

> TD variants of Dijkstra and Bellman-Ford algorithms do NOT work
correctly in networks. Determining existence of a

is NP—hard.

@ For arbitrary (o, d) queries (GOAL2):

> (OR(1990)) Propose a TD-variant of Bellman-Ford, for
networks.

A Complexity is in the number of *‘elementary’”
i.e., (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

. Not so “‘elementary’’ operations after all (see next slides)!!!

Algorithms for TDSP

... in FIFO, continuous, pwl instances

Input/Output Data

PWL Arc Delays

Forward Description (as function of departure times from origin)

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) (33/97)

PWL Arc Delays

Forward Description (as function of departure times from origin)

Reverse Description (as function of arrival times at destination)

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) (33/97)

How to Store/Access PWL Arc Delays

@ Exploit periodicity and piecewise-linearity:
My+1, 0<tmodT<3
5, 3<tmodT <5
%
Vi, € R, Duv](t,) = 2t,—-5, 5<tmodT<7

-2t + 12, 7<tmodT <20

1, 20 < t,mod T < 24

@ Representation: Array of (slope-constant-dep.fime UB) friples
equipped with advanced (binary/predecessor) search capabilities.

4 8 173

(3.1.3) | (0.5.,5) | (2.-5,7) | (-, '2.20) | (0,1,24) |

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) (34 /97)

How to Store/Access PWL Arc Delays

@ Exploit periodicity and piecewise-linearity:

My+1, 0<tmodT<3

5, 3<fymodT <5
Vi, € R, Blw](t) = 2t,~5, 5<tmodT <7
-2t + 12, 7<tmodT <20
1, 20< fymod T <24
@ Representation: Array of (dep.time-delay) pairs

equipped with advanced (binary/predecessor) search capabilities.

(0. [@5)] (55 (7.9] 20.1)]

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) (34 /97)

@ Primitive Breakpoint (PB): Departure-time b/, from head[e] at which D[e]
changes slope (assume K € O(m) PBs in total).

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 35/97)

Piecewise Linearity of Path / Earliest Arrivals

Art{o-u-d] Arr{o.d] Arr{o-v-d]

I =2 g |

Mo«Cn i
Arrf;ld] Arr{’ou] < Arr[l:v] Arr[t;/d]

@ Primitive Breakpoint (PB): Departure-time b/, from head[e] at which D[e]
changes slope (assume K € O(m) PBs in total).

@ Primitive Image (PI): be from origin o s.t.
earliest-arrival-time b, = Arr[o, tail(e)](bs) coincides with a breakpoint for
Dlel].

Piecewise Linearity of Path / Earliest Arrivals

Art{o-u-d] Arr{o.d] Arr{o-v-d]

il ’_./ ¢ d -

Moo« i
Arrf;ld] Arr{’ou] < Arr[l:v] Arr[t;/d]

@ Primitive Breakpoint (PB): Departure-time b/, from head[e] at which D[e]
changes slope (assume K € O(m) PBs in total).

@ Primitive Image (PI): be from origin o s.t.
earliest-arrival-time b, = Arr[o, tail(e)](bs) coincides with a breakpoint for
Dlel].

@ Minimization Breakpoint (MB): Departure-time b, from origin o s.t. Arr[o, V]
due to application of

Piecewise Linearity of Path / Earliest Arrivals

Art{o-u-d] Arr{o.d] Arr{o-v-d]

I =2 g |

Mo«Cn i
Arrf;/d] Arr[’ou] < Arr{l:v] Aﬂ[t;/d]

@ Primitive Breakpoint (PB): Departure-time b/, from head[e] at which D[e]
changes slope (assume K € O(m) PBs in total).

@ Primitive Image (PI): be from origin o s.t.
earliest-arrival-time b, = Arr[o, tail(e)](bs) coincides with a breakpoint for
Dlel].

@ Minimization Breakpoint (MB): Departure-time b, from origin o s.t. Arr[o, V]
due to application of

@ Periodicity of arc-delays implies periodicity of earliest-arrival function
Arr[o, d].

Known Issues wrt Representations
both for arc-arrival (or delay) functions and
earliest-arrival (or shortest-tfravel-time) functions.

» Convenient for handling artificial arcs (representing shortest-travel-time
functions) in of the road network.

Known lIssues wrt Representations
i both for arc-arrival (or delay) functions and
earliest-arrival (or shortest-tfravel-time) functions.

» Convenient for handling artificial arcs (representing shortest-travel-time
functions) in of the road network.

2 Too many (worst case: n&1°8(")y preakpoints to store Arr[o, d] (or D[o, dl).
even for arc-delays and graphs.

Known Issues wrt Representations

i both for arc-arrival (or delay) functions and
earliest-arrival (or shortest-tfravel-time) functions.

» Convenient for handling artificial arcs (representing shortest-travel-time
functions) in of the road network.

2 Too many (worst case: n&1°8(")y preakpoints to store Arr[o, d] (or D[o, dl).
even for arc-delays and graphs.

Dmax [O,d]

<% We need only O(% -log (Dm0l

)) breakpoints for a (1 + &)

Do, d] of DJo, d]. for the case of continuous,
piecewise-linear arc-delays.

Complexity of TDSP

Lower Bound: |BP(Arrylo, d])| = nXlen) ()

A Useful Observation (L2.1-2.2 in FHS11)

For any pair of functions f and g, both their composition f o g
and their minimum min{f, g} are also functions.

Lower Bound: |BP(Arrylo, d])| = nXlen) ()

A Useful Observation (L2.1-2.2 in FHS11)

For any pair of functions f and g, both their composition f o g
and their minimum min{f, g} are also functions.

Parametric Shortest Path (PSP): A Similar (but different) Problem
e INPUT: G = (V,A),0,d€ V. A
f[a](y) = A[a] - y + u[a] per edge a € A (negative lengths are
@ DEFINITIONS:
» Path-length: Vp € G, L[p](y) = Xaep £a](¥).
» Min-length: Vo,d € V, L[o, d](y) = minpep, ,{L[P](7)}.

@ GOAL1: Compute L[o, d] for a of y.
@ GOALZ2: Succinctly represent L[o, d for of y.

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGSAWORLD (2017): Time Dependent Shortest Path (4n epdopdda) 39/97)

TDSP vs PSP?

Instance with ARC DELAY functions

X+
2x+0.1

e

X+2
2x+0.1

Arr[oud](t) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arrfovd](t,) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t;) = Arr[vd](Arr[uv](Arr[ou](t,))) = 36t+1.3

L[oud](t,) = 3t, + 2.1

Liovd](t,) = 3t + 2.1
Liouvd](t,) = 7t, + 0.2

TDSP: Arc-arrival composition along paths PSP: Arc-length addition along paths

Lower Bound: |BP(Arryu[o, d])| = nXl°en) ()

Known Fact (carstensen (1984), Mulmuley-Shah (2000))

There exists (inear) PSP-instance with nA'°€") BPs in L[o, d].

Lower Bound: |BP(Arryu[o, d])| = nXl°en) ()

Known Fact (Carstensen (1984), Mulmuley-Shah (2000))

There exists (inear) PSP-instance with nA'°€") BPs in L[o, d].

Main Steps for TDSP Lower Bound:

@ Assure in the PSP instance, in the

@ Scale properly the PSP instance.

© Consider the corresponding TDSP instance, with parameter y handled as
departure time from the origin o.

@ Prove that L[o, d] (for PSP instance) and D|o, d] (for TDSP instance) have
(almost) the of BPs.

Lower Bound: |BP(Arr[o, d])] = nX°e™) qI

@ Construct a layered-graph, in a path-length-preserving manner:

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 41/97)

Lower Bound: |BP(Arr[o, d])] = nX°e™) qI

@ Construct a layered-graph, in a path-length-preserving manner:

Assure non-negativity of arc-lengths in PSP: For the sequence
(Y1, Y2, - ., yYn) Of breakpoints (BPs) wrt L[o, d], shift arc lengths by

max{O, _Lmin}: Linin = minye[yl,yN],aeA(G){L[a](7)} g

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 41/97)

Lower Bound: |BP(Arr,[o, d])| = nXl°e") (i

@ Construct a layered-graph, in a manner:

Assure non-negativity of arc-lengths in PSP: For the sequence
Y1,¥2s .., YNy Of (BPs) wrt L[o, d]. shift arc lengths by

max{0, —Lmin}. | Lmin = minye[y],yN],ceA(G){L[C’](V)} .

@ Scale arc-length functions in PSP by a proper positive constant p.

Lower Bound: |BP(Arr,[o, d])| = nXl°e") (i

@ Construct a layered-graph, in a manner:

Assure non-negativity of arc-lengths in PSP: For the sequence
Y1,¥2s .., YNy Of (BPs) wrt L[o, d]. shift arc lengths by

max{0, —Lmin}. | Lmin = minye[y],yN],ceA(G){L[C’](V)} .

@ Scale arc-length functions in PSP by a proper positive constant p.

© For the TDSP resulting from the scaled PSP when considering y as
departure time, prove that Vj € {1,...,N — 1}, at ¥ = ”:ﬁ both
instances return shortest od—path p;.

Lower Bound: |BP(Arry[o, d])| = nflen) (v)

How it works: At givenje {1,...,N— 1}

- T y y
o ¥ =212 T — 1[p](¥) = Lo, d](¥).

o L

)

= Mingep, —(p{L[al(¥)). & = L] - L; > 0.

Amin = minje[N—1] Af

0" = minaeA:/l[o]th {#m[g]‘}

Lower Bound: |BP(Arry[o, d])| = nflen) (v)

How it works: At givenje {1,...,N— 1}
+ -
o ¥ =131, 1 = Up|(¥) = Lo, d](7).

® L = mingep,,(){L[a](¥). A = L] - ;> 0.

. * Amin _ H Amin
® | Anin = MIN;e[N-1] A}' € =5 S MINgeA: A[a]#0 {m}
° Small-enough so as of p;

in PSP instance: Ye, € (0, &]

Sace, a7+ £a) <L+ F

+L]f , _
— < Lj < Zaeq f[a](%')’ Vg # Pj

Lower Bound: |BP(Arry[o, d])| = nflen) (v)

How it works: At givenje {1,...,N— 1}
+ -
o ¥ =131, 1 = Up|(¥) = Lo, d](7).

® L = mingep,,(){L[a](¥). A = L] - ;> 0.

. * Amin _ H Amin
® | Anin = MINje[N-1] A}' € =5 S MINgeA: A[a]#0 {m}
° Small-enough so as of p;

in PSP instance: Ye, € (0, &]

Sace, a7+ £a) <L+ F

+L]f , _
— < Lj < Zaeq f[a](%')’ Vg # Pj

) Small-enough so as to cause
:Ya €A, Y, € (0,6%].
|D[al(3) + 6a) = €[al(F + 6a) < {[al(7) + &

Lower Bound: |BP(Arry[o, d])| = nXlen) (v)

How it works (continued): At givenj € {1,...,N— 1}

@ Scale-invariance of time-perturbations: of all arc-delays by a
number u > 0 does not affect at all the range of allowed

. i Amin
& = mlngeA:/l[O]¢O {m}

Lower Bound: |BP(Arry[o, d])| = nXlen) (v)

How it works (continued): At givenj € {1,...,N— 1}

@ Scale-invariance of time-perturbations: of all arc-delays by a
number u > 0 does not affect at all the range of allowed

* H Amin
6" = MiNgea:a[a]20 {m}

@ TDSP-instance: Scale the PSP-instance by u = 3

5
T Handle the
PSP-parameter y as time.

Lower Bound: |BP(Arry[o, d])| = nXlen) (v)

How it works (continued): At givenj € {1,...,N— 1}
@ Scale-invariance of time-perturbations: of all arc-delays by a
number u > 0 does not affect at all the range of allowed

* H Amin
6" = MiNgea:a[a]20 {m}

@ TDSP-instance: Scale the PSP-instance by u = 3

5
T Handle the
PSP-parameter y as time.

° guarantees sufficiently smalll
Arlp](%) = ¥ + Dlpl () < ¥ + 6"

Lower Bound: |BP(Arry[o, d])| = nXlen) (v)

How it works (continued): At givenj € {1,...,N— 1}

@ Scale-invariance of time-perturbations: of all arc-delays by a
number u > 0 does not affect at all the range of allowed

* H Amin
6" = MiNgea:a[a]20 {m}

@ TDSP-instance: Scale the PSP-instance by u =
PSP-parameter y as time.

5
m . Handle the

° guarantees sufficiently smalll
Arlp](%) = ¥ + Dlpl () < ¥ + 6"

*. Smalll time-perturbations guarantee sufficiently small
., and thus, optimality of p;:

Dlpl(¥) < m-Li+u- m
(n=1)Amin

< po L —p—m < Dal(), Ya # py

QED

Upper Bound: |BP(Arr,y[o, d])| = K - nX°e") ()
Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (Pls) # < t.1. Arr[o, d] forms a
concave chain.

Upper Bound: |BP(Arr,y[o, d])| = K - nX°e") ()

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (Pls) # < t.1. Arr[o, d] forms a
concave chain.

EXPLANATION:

@ Any arc-delay is (no primitive breakpoints occur at edges), if the
departure-time domain is restricted to (f, fi41).

@ Any path-arrival Arr[p](t) function is a of linear functions, thus

o Arr[o, d] is the application of the min operator among linear functions,
thus

Upper Bound: |BP(Arr,y[o, d])| = K - nX°e") ()

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (Pls) # < t.1. Arr[o, d] forms a
concave chain.

EXPLANATION:

@ Any arc-delay is (no primitive breakpoints occur at edges), if the

departure-time domain is restricted to (f, fi41).
@ Any path-arrival Arr[p](t) function is a of linear functions, thus

o Arr[o, d] is the application of the min operator among linear functions,
thus

e Corollary: |BP(Arryi[o, d])| < #different path slopes

Upper Bound: |BP(Arr,y[o, d])| = K - nX°e") ()

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (Pls) # < t.1. Arr[o, d] forms a
concave chain.

EXPLANATION:

@ Any arc-delay is (no primitive breakpoints occur at edges), if the
departure-time domain is restricted to (f, fi41).

@ Any path-arrival Arr[p](t) function is a of linear functions, thus

o Arr[o, d] is the application of the min operator among linear functions,
thus

e Corollary: |BP(Arryi[o, d])| < #different path slopes

@ Is this enough?

Upper Bound: |BP(Arr,y[o, d])| = K - nX°e") ()

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (Pls) # < t.1. Arr[o, d] forms a
concave chain.

EXPLANATION:

@ Any arc-delay is (no primitive breakpoints occur at edges), if the
departure-time domain is restricted to (f, fi41).

e Any path-arival Arr[p](t) function is a of linear functions, thus

o Arr[o, d] is the application of the min operator among linear functions,
thus

e Corollary: |BP(Arryi[o, d])| < #different path slopes

2-=000--.__ 0
@ Is this enough? (“:éa Ef_
(L+py)* (Lep X reaen (Lpod X (Lpr)*

Upper Bound: |BP(Arr,y[o, d])| = K - nX'°e) qiy

OBSERVATION II: (L4.2 in FHS11)
|BP(Arrpwi[o, d])I < K - |BP(Armin [0, d])l. J

Upper Bound: |BP(Arr,[o, d])| = K - n1°&") @y

OBSERVATION II: (L4.2 in FHST11)
|BP(Arrpwi[o, d])| < K - |BP(Amim [0, d])l.

Lemmma 4.3 (FHS11)

1+logc
|BP(Armrin[o, d])| < Cot) T G layered
2
graph with ¢ layers of n nodes each.

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 45/ 97)

Upper Bound: |BP(Arr,[o, d])| = K - n1°&") @y

OBSERVATION II: (L4.2 in FHST11)
|BP(Arrpwi[o, d])| < K - |BP(Amim [0, d])l.

Lemma 4.3 (FHS11)

log ¢
|BP(Arnin[o, d])| < W in a layered

graph with ¢ layers of n nodes each.

THM4.4 (FHS11)
IBP(Arrin[o, d])| = nX1°€") in any graph G and pair of nodes o, d € V(G). J

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 45/ 97)

(Exact) Output Sensitive Algorithm
for Earliest-Arrival Functions

Why Do We Need the Output Sensitive Algorithm?

Why Do We Need the Output Sensitive Algorithm?

@ It gives exactly the distance functions in question, ie,
, that we would ideally like to have from/to
any origin/destination vertex.

Why Do We Need the Output Sensitive Algorithm?

@ It gives exactly the distance functions in question, ie,
, that we would ideally like to have from/to
any origin/destination vertex.

@ We may need to compute for
(eg. from/to hubs, all superhub-to-superhub connections, etc).

Why Do We Need the Output Sensitive Algorithm?

@ It gives exactly the distance functions in question, ie,
, that we would ideally like to have from/to
any origin/destination vertex.

@ We may need to compute for
(eg. from/to hubs, all superhub-to-superhub connections, etc).

© Interesting fo discover whether the complexity of the earliest-arrival
functions is indeed so bad

The Output-Sensitive Algorithm (1)

The Output-Sensitive Algorithm (1)

@ ASSUMPTION: The in-degree of every node in the
graph is at most 2.

The Output-Sensitive Algorithm (1)

@ ASSUMPTION: The in-degree of every node in the
graph is at most 2.

@ Given an arbitrary point in time ()
fo = 0 as departure time from origin o, compute a

The Output-Sensitive Algorithm (1)
@ ASSUMPTION: The in-degree of every node in the
graph is at most 2.

@ Given an arbitrary point in time ()
fo = 0 as departure time from origin o, compute a

@ Discover the TDSP tree is
» Yv € V, two short alternatives when departing from

o at time fy: Earliest-arrival to each parent, plus
delay of corresponding incoming arc.

» Minimization (vertex) Certificate #;[v]: Earliest departure time from o at

which the two alternatives of v become

» Primitive (arc) Certificate Tfa,,[e]: Primitive image of the next (ie, after 1y)

breakpoint of the arc to come.

The Output-Sensitive Algorithm (1)
@ ASSUMPTION: The in-degree of every node in the
graph is at most 2.

@ Given an arbitrary point in time ()
fo = 0 as departure time from origin o, compute a

@ Discover the TDSP tree is
» Yv € V, two short alternatives when departing from

o at time fy: Earliest-arrival to each parent, plus
delay of corresponding incoming arc.

» Minimization (vertex) Certificate #;[v]: Earliest departure time from o at

which the two alternatives of v become

» Primitive (arc) Certificate Tfa,,[e]: Primitive image of the next (ie, after 1y)

breakpoint of the arc to come.

@ All (m + n) certificates temporarily stored in a

The Output-Sensitive Algorithm (lI)

When current fime t; > fy matches the earliest failure-time of a certificate in the
queue:

if minimization-certificate failure, at

then

node v € V:

(1) Update shortest ov—path

/+ ONE-BIT change in combinatorial structure s/

(2) Update Arr[o, x] and #g[].
VYx €T,.

(3) Updo’re ffg//[e],
Ve € E: x = taille] € T,.

Arr[o,v](t=ti-€) = At + B, + D[uv](At + B,) = Ay t + By \
Arr[o,x](t=t,-€) = A+t + B, + D[vx](Ast + B-,)

A, t+ B, = Arrfo,u](t)

ast+ By ast + B3 D

Subtree

st + B2

Arrfo,x](t=t +e) = A"t + B*, + D[vx](A*,t + B*,)
Arr[o,v](t=ti+€) = Ayt + B, + D[Wv](A,t + B,) = A*,t + B*, fm LA

NON-TDSPT-EDGE

At + B, = Arrfo,w](t

Arr[o,V](t=ti-€) = At + B, + D[uv](Aut + B)) = A, t + B, \
Arr[o,x](t=ts-€) = A\t + B, + D[vx](Ait + B,)

A, t + B, = Arr[o,u](t)

ait + By TDSPT

azt + Bz Sutree

Arr[o,x](t=ti+€) = Ayt + B, + [V (At + By)
Arr[o,v](t=t;+€) = At + B, + D[uv](A,t + B,) = A, t + B, [l LSS
== NON-TDSPT-EDGE

A, t + B, = Arrfo,w](t

The Output-Sensitive Algorithm (lI)

When current fime t; > fy matches the earliest failure-time of a certificate in the
queue:

if minimization-certificate failure, at

then

else

node v € V:

(1) Update shortest ov—path

/+ ONE-BIT change in combinatorial structure s/

(2) Update Arr[o, x] and #g[].
VYx €T,.

(3) Updo’re ffg//[e],
Ve € E: x = taille] € T,.

/* primitive-certificate failure, at arc e = vx € E */

Arr[o,v](t=ti-€) = At + B, + D[uv](At + B,) = Ay t + By \
Arr[o,x](t=t,-€) = A+t + B, + D[vx](Ast + B-,)

A, t+ B, = Arrfo,u](t)

ast+ By ast + B3 D

azt+ Bz Subtree

Arrfo,x](t=t +e) = A"t + B*, + D[vx](A*,t + B*,)
Arr[o,v](t=ti+€) = Ayt + B, + D[Wv](A,t + B,) = A*,t + B*, fm LA

NON-TDSPT-EDGE

At + B, = Arrfo,w](t

Arr[o,V](t=ti-€) = At + B, + D[uv](Aut + B)) = A, t + B, \
Arr[o,x](t=ts-€) = A\t + B, + D[vx](Ait + B,)

A, t + B, = Arr[o,u](t)

ait + By TDSPT

azt + Bz Subtee
Arr[o,x](t=ti+€) = Ayt + B, + [V (At + By)
Arr[o,v](t=t;+€) = At + B, + D[uv](A,t + B,) = A, t + B, [l LSS
—» NON-TDSPT-EDGE

A, t + B, = Arrfo,w](t

(1) Update Arr[o, y] and ti[y]. Yy € Ts.

(2) Update try[€’]. Ve’ € E : taille’] € T.

The Output-Sensitive Algorithm (lII)

@ What to keep in memory:
> Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating the
parent).
> Advanced search structures, if number of BPs is large.

» Only temporarily store certificates in a priority queue.

The Output-Sensitive Algorithm (lII)

@ What to keep in memory:

>

Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating the
parent).

Advanced search structures, if number of BPs is large.
Only temporarily store certificates in a priority queue.

per certificate failure at ¢ € V U E:
In the (or any constant-in-degree graph): O(|E;| - log n).
E. is the set of arcs whose fails are in T¢, OF Theqq|c]- Logarithmic factor is due
to .
In the (in worst-case): O(m X |og2 n). Second logarithmic
factor is due to implementing the MIN operator
at a particular node, upon emergence of a single certificate failure.

The Output-Sensitive Algorithm (lII)

@ What to keep in memory:

>

Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating the
parent).

Advanced search structures, if number of BPs is large.
Only temporarily store certificates in a priority queue.

per certificate failure at ¢ € V U E:
In the (or any constant-in-degree graph): O(|E;| - log n).
E. is the set of arcs whose fails are in T¢, OF Theqq|c]- Logarithmic factor is due
to

In the (in worst-case): O(m X |og2 n). Second logarithmic
factor is due to implementing the MIN operator
at a particular node, upon emergence of a single certificate failure.

of output-sensitive algorithm:

O(m x log? n x (PRIMBPs + MINBPs))

Poly-time Approximation Algorithms

(1 + &)—approximation of D[o, d] : Preliminaries

@ Why focus on shortest-travel-time (delays) functions, and not on
earliest-arrival-time functions?

@ Arc/Path Delay Reversal: Easy task!!!

«— —
e f, = Arrfo,V|(t,) = t, — D[o, v](t): Latest-departure-time from o to v, as
a function of the arrival time 1, at v.

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 52 /97)

@ Maximum Absolute Error: A crucial quantity both for the time-complexity
and for the space-complexity of the algorithm:

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 53 /97)

Approximating D[o, d] : Quality

@ Maximum Absolute Error: A crucial quantity both for the time-complexity
and for the space-complexity of the algorithm:

7 O .
3 & S N
~ @, 5 @
& N x v x
9 Y \e)
Dy =D D, % &
= - D = D)
<-d)F % l D L o
- ~C,
U 7 . * D
D(D(
£ R A—
c m] c m] 3 m]
(b) 47(c) > 0> A(d) (©) 0= A*(c) > A(d)

(@) 4°(c)> 4(d) 20

LEMMA: Closed Form of Maximum Absolute Error (Kontogianis-Zaroliagis (2014))

MAE(c, d) = (/\+(c) - A (d))- (m—c)~L(d—m) < L.(/\+(c)4—A*(d))

Approximating D[o, d: Basic Idea (I)

@ Approximations of D[o, d]: For given € > 0, and Yt € [0, T),

|Dlo.d(f) < Dlo. () < Dlo. d(1) < (1 + &) - Dlo.d](1) |

Approximating D[o, d: Basic Idea (I)

@ Approximations of D[o, d]: For given € > 0, and Yt € [0, T),

|Dlo.d(f) < Dlo. () < Dlo. d(1) < (1 + &) - Dlo.d](1) |

e FACT: if D|o, d] was a priori known then a would give a
space-optimal (1 + s)—upper-opproximo’rion (i.e., with the MIN #BPs).

Approximating D[o, d: Basic Idea (I)

@ Approximations of D[o, d]: For given € > 0, and Yt € [0, T),

|Dlo.d(f) < Dlo. () < Dlo. d(1) < (1 + &) - Dlo.d](1) |

e FACT: if D|o, d] was a priori known then a would give a
space-optimal (1 + s)—upper-opproximo’rion (i.e., with the MIN #BPs).

e PROBLEM: Prohibitively expensive to compute/store D|o, d| before
approximating it. We must be based only on a few of Do, d].

Approximating D[o, d: Basic Idea (I)

@ Approximations of D[o, d]: For given € > 0, and Yt € [0, T),

|Dlo.d(f) < Dlo. () < Dlo. d(1) < (1 + &) - Dlo.d](1) |

e FACT: if D|o, d] was a priori known then a would give a
space-optimal (1 + s)—upper-opproximo’rion (i.e., with the MIN #BPs).

e PROBLEM: Prohibitively expensive to compute/store D|o, d| before
approximating it. We must be based only on a few of Do, d].

e FOCUS: arc-delays. Later extend to pwl arc-delays.

Approximating D[o, d: Basic Idea (I)

@ Approximations of D[o, d]: For given € > 0, and Yt € [0, T),

|Dlo.d(f) < Dlo. () < Dlo. d(1) < (1 + &) - Dlo.d](1) |

e FACT: if D|o, d] was a priori known then a would give a
space-optimal (1 + s)—upper-opproximo’rion (i.e., with the MIN #BPs).

e PROBLEM: Prohibitively expensive to compute/store D|o, d| before
approximating it. We must be based only on a few of Do, d].

e FOCUS: arc-delays. Later extend to pwl arc-delays.

@ Dlo, d] lies entirely in a bounding box that we can easily determine, with
only 3 TD-Djikstra probes.

Approximating D[o, d]: Basic Idea (Il

@ Make the sampling so that Vt € [0, T], D[o, d](t) < (1 + &) - D[o, d](#).

@ Keep sampling always the fastest-growing axis wrt to D[o, d].

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) (55 /97)

One-To-One Approximation: PHASE-1

(Foschini-Hershberger-Suri (2011))

while slope of D[o, d] > 1do

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) (56 /97)

One-To-One Approximation: PHASE-1

(Foschini-Hershberger-Suri (2011))

while slope of D[o, d] > 1do

Bad Case for (Foschini-Hersberger-Suri (2011)) &

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) (56 /97)

One-To-One Approximation: PHASE-1

(Foschini-Hershberger-Suri (2011))

while slope of D[o, d] > 1do

ntogiannis-Zaroliagis (2013)) :

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) (56 /97)

One-To-One Approximation: PHASE-2

(Foschini-Hershbberger-Suri (2011))

of D[o,d] < 1:
repeat
Apply fo the remaining time-interval(s)

until desired approximation guarantee (wrt

) is achieved.

One-To-All Approximaton via Bisection (I)
(Kontogiannis-Zaroliagis (2013))

ASSUMPTION 1: Concavity of arc-delays. /to be removed later /
» Implies concavity of the function Do, d].

One-To-All Approximaton via Bisection (I)
(Kontogiannis-Zaroliagis (2013))

ASSUMPTION 1: Concavity of arc-delays. /to be removed later /
» Implies concavity of the function Do, d].

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of the (pwl)
arc-delay functions.

> by TD-traffic data for road network of Berlin (TomTom (February 2013))
that all arc-delay slopes are in [-0.5, 0.5].

> Slopes of function D[o, d] from [=Amin, Amax]. for some
constants Apax > 0, Amin € [0, 1).

Under ASSUMPTIONS 1-2: Execute Bisect ion to sample simultaneously
all distance values from o, at mid-points of time intervals, until required
approximation guarantee is achieved for each desfination node.

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 59 /97)

One-To-All Approximaton via Bisection (Il
(Kontogiannis-Zaroliagis (2013))

Under ASSUMPTIONS 1-2: Execute Bisection to

all distance values from o, at mid-points of time intervals, until required
approximation guarantee is achieved

A

Dyf--

Dy

L
»
to t

Example of Bisection Execution : ORANGE = Upper Bound, = Lower Bound

One-To-All Approximaton via Bisection (lI)
(Kontogiannis-Zaroliagis (2013))

Under ASSUMPTIONS 1-2: Execute Bisection to

all distance values from o, at mid-points of time intervals, until required
approximation guarantee is achieved

A
D [°]
Dy
D .
L
>
to t t
Example of Bisection Execution : Level-1 Recursion

One-To-All Approximaton via Bisection (lI)
(Kontogiannis-Zaroliagis (2013))

Under ASSUMPTIONS 1-2: Execute Bisection to

all distance values from o, at mid-points of time intervals, until required
approximation guarantee is achieved

A

Dy

v

to t tz

Example of Bisection Execution : Level-2 Recursion

One-To-All Approximaton via Bisection ()

(Kontogiannis-Zaroliagis (2013))

Only under ASSUMPTION 2: For continuous, pwl arc-delays.

@ CadllReverse
TD-D1i jkstra to project
each concavity-spoiling PB to a
Pl of the origin o.

@ For each pair of
at o, run Bisection for the
corresponding departure-times
interval.

head[uv]

earliest-arrival times at v

L &t U
departure time from u = tail[uv]

\4

© Return the of approximate distance summaries.

Approximating D[o, d| : Space/Time Complexity

THEOREM: Space Complexity (KZ (2014))

Let K* be the total number of concavity-spoiling BPs among all the arc-delay
functions in the instance.

Space Complexity: For a o € V and all possible destinations
d € V, the following complexity bounds hold for creating all the
approximation functions D[o, x| = (Do, d])gev:

o O(K—* Iog (Dmax[o,*](O,T)))

Dmin[0,%](0,T)
@ In each interval of Pls,
|UBP[o, d]| < 4 - (minimum #BPs for any (1 + &)—approximation.

Time Complexity: The number of executed for the
computation of the approximate distance functions is:

SPlo, o € Of o8 557 log (226)

Implementation Issues wrt One-To-All Bisection

W One—-To—-All Bisection of (kz@o14) isa
approximation method that provably works (within
constant factors) wrt continuous pwl arc-delay functions.

Implementation Issues wrt One-To-All Bisection

W One—-To—-All Bisection of (kz@o14) isa
approximation method that provably works (within
constant factors) wrt continuous pwl arc-delay functions.

= Both One—-To-One Approximation of (FHs@o11)) and
One-To—-All Bisection of (kz@014)) suffer from
in the degree of disconcavity (value of K*) in the TD Instance.

Implementation Issues wrt One-To-All Bisection

O

One-To—-All Bisection of (kz@o14) isa
approximation method that provably works (within
constant factors) wrt continuous pwl arc-delay functions.

! Both One—-To-One Approximation of (FHs@o11)) and

One-To—-All Bisection of (kz@014)) suffer from
in the degree of disconcavity (value of K*) in the TD Instance.

A novel (again) approximation technique, called
the Trapezoidal method ((kwz 2016))) avoids entirely the dependence
of the required space from the network structure (and, of course, the
degree of disconcavity).

The Trapezoidal One-To-All Approximation Method

DLVt

) to all destinations,
from coarser to finer departure-times
from the (common) origin.

\Slope: -Amin

..... [LV](t)
Abs Erro

@ Between consecutive samples of the DIV
same resolution, the unknown function is

Slope: Amax
Slope: -Amin

hortest travel time at
shortest travel time at v

@ “‘Freeze’’ destinations within infervals with e
satisfactory approximation guarantee.

&t

-
v

Gty
departure time from landmark

The Trapezoidal One-To-All Approximatio

DLVt
) to all destinations,
from coarser to finer departure-times
from the (common) origin.

@ Between consecutive samples of the DIV
same resolution, the unknown function is

hortest travel time at

@ “‘Freeze’’ destinations within infervals with e
satisfactory approximation guarantee.

&t

n Method

\Slope: -Amin

Abs Erro

Slope: Amax
Slope: -Amin

shortest travel time at v

[1.v](t)

Gty
departure time from landmark

% Avoids dependence on concavity-spoiling BPs of the metric.

\4

The Trapezoidal One-To-All Approximation Method

DLVt

) to all destinations,
from coarser to finer departure-times
from the (common) origin.

\Slope: -Amin

..... [LV](t)
Abs Erro

Between consecutive samples of the DIV
same resolution, the unknown function is

Slope: Amax
Slope: -Amin

hortest travel time at
shortest travel time at v

“‘Freeze’’ destinations within intervals with p.uve
satisfactory approximation guarantee.

&t

-
v

Gty
departure time from landmark

% Avoids dependence on concavity-spoiling BPs of the metric.

5

. Cannot provide good approximations for *‘nearby’” destinations around
the origin.

Time-Dependent Oracles

Distance Oracles

@ Extremely successful theme in static graphs.
> In theory:

* P-Space: Subquadratic (sometimes quasi-linear).
* Q-Time: Constant.

* Stretch: Small (sometimes PTAS).
> In practice:

* P-Space: A few GBs (sometimes less than 1 GB).
* Q-Time: Miliseconds (sometimes microseconds).

* Stretch: Exact distances (in most cases).

Distance Oracles

@ Extremely successful theme in static graphs.
> In theory:

* P-Space: Subquadratic (sometimes quasi-linear).
* Q-Time: Constant.
* Stretch: Small (sometimes PTAS).

> In practice:

* P-Space: A few GBs (sometimes less than 1 GB).
* Q-Time: Miliseconds (sometimes microseconds).

* Stretch: Exact distances (in most cases).

@ Some practical algorithms extended to time-dependent case.

Distance Oracles

@ Extremely successful theme in static graphs.
> In theory:

* P-Space: Subquadratic (sometimes quasi-linear).
* Q-Time: Constant.
* Stretch: Small (sometimes PTAS).

> In practice:
* P-Space: A few GBs (sometimes less than 1 GB).
* Q-Time: Miliseconds (sometimes microseconds).

* Stretch: Exact distances (in most cases).

@ Some practical algorithms extended to time-dependent case.

FOR THE REST OF THE TALK
The focus is on time-dependent oracles, with
preprocessing-space / query-time / stretch fradeoffs.

Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a graph with contfinuous, pwl, FIFO arc-delay
functions, create a data structure (oracle) that requires reasonable
space and allows answering distance queries efficiently (in
time).

Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a graph with contfinuous, pwl, FIFO arc-delay
functions, create a data structure (oracle) that requires reasonable
space and allows answering distance queries efficiently (in
time).

@ Trivial solution: Precompute all the (1 + €)—approximate distance
summaries from every origin to every destination.
2 0(n®) size (O(n?), if all arc-delay functions concave).
2 O(loglog(n)) query time.
@i (14 €)—stretch.

Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a graph with contfinuous, pwl, FIFO arc-delay
functions, create a data structure (oracle) that requires reasonable

space and allows answering distance queries efficiently (in
time).

@ Trivial solution: Precompute all the (1 + €)—approximate distance
summaries from every origin to every destination.
2 0(n®) size (O(n?), if all arc-delay functions concave).
2 O(loglog(n)) query time.
@s (14 €)—stretch.

@ Trivial solution: No preprocessing, respond to queries by running
TD-Dijkstra.
@ O(n+ m+ K) size (K = total number of PBs of arc-delays).
= O([m—+ nlog(n)] x log log(K)) query time.
& T—stretch.

Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a graph with contfinuous, pwl, FIFO arc-delay
functions, create a data structure (oracle) that requires reasonable
space and allows answering distance queries efficiently (in
time).

@ Trivial solution: Precompute all the (1 + €)—approximate distance
summaries from every origin to every destination.
2 0(n®) size (O(n?), if all arc-delay functions concave).
2 O(loglog(n)) query time.
@s (14 €)—stretch.

@ Trivial solution: No preprocessing, respond to queries by running
TD-Dijkstra.
@ O(n+ m+ K) size (K = total number of PBs of arc-delays).
= O([m—+ nlog(n)] x log log(K)) query time.
& T—stretch.

¢ Is there a smooth tradeoff among space / query time / stretch?

FLAT TD-Oracle

Landmark Selection Policy

@ Rationale: Identify a few “‘important’’ vertices (landmarks) in the
network, which are assumed to be crucial for almost all shortest paths.
Then compute approximate travel-time summaries (functions) A[¢, v](t).
Y(¢,v) eLx V, Vte[0,T)st:

|D[e. V(1) < <(1+¢€)-D[t.v](1)]

Landmark Selection Policy

@ Rationale: Identify a few “‘important’’ vertices (landmarks) in the
network, which are assumed to be crucial for almost all shortest paths.
Then compute approximate travel-time summaries (functions) A[¢, v](t).
Y(¢,v) eLx V, Vte[0,T)st:

\D[f, v](t) < <(1+e€)-D[t, V](T)\
@ In theory: Choose landmarks

@ In practice: Several options.

> Random Selection (R). (KMPPWZ (2015))
» METIS Selection (M). (KMPPWZ (2015))
» KaHIP Selection (K). (KMPPWZ (2015))

Landmark Selection Policy

@ Rationale: Identify a few “‘important’’ vertices (landmarks) in the
network, which are assumed to be crucial for almost all shortest paths.
Then compute approximate travel-time summaries (functions) A[¢, v](t).
Y(¢,v) eLx V, Vte[0,T)st:

|D[e. V(1) <

<(1+¢€)-D[t.v](1)]

@ In theory: Choose landmarks

@ In practice: Several options.

>

>

Random Selection (R).
METIS Selection (M).
KaHIP Selection (K).

Important-Random Selection (IR).

Sparse-Random Selection (SR).
Hybrid Selection (H).

(KMPPWZ (2015))
(KMPPWZ (2015))
(KMPPWZ (2015))
(KMPPWZ (2016))
(KMPPWZ (2016))
(KMPPWZ (2016))

Landmark Selection Policy

@ Rationale: Identify a few “‘important’’ vertices (landmarks) in the
network, which are assumed to be crucial for almost all shortest paths.
Then compute approximate travel-time summaries (functions) A[¢, v](t).
Y(¢,v) eLx V, Vte[0,T)st:

|D[e. V(1) < <(1+¢€)-D[t.v](1)]

@ In theory: Choose landmarks

@ In practice: Several options.

>

>

Random Selection (R).

METIS Selection (M).

KaHIP Selection (K).
Important-Random Selection (IR).
Sparse-Random Selection (SR).
Hybrid Selection (H).
Betweeness-Centrality Selection (BC).

(KMPPWZ (2015))
(KMPPWZ (2015))
(KMPPWZ (2015))
(KMPPWZ (2016))
(KMPPWZ (2016))
(KMPPWZ (2016))

(KPPWZ (2017))

Preprocessing of F'LAT

(KZ (2014), KMPPWZ2015, KMPPWZ2016)
@ Each landmark is informed about all destinations.
@ Subquadratic preprocessing space/time.

@ Query fime sublinear in the network size.

@ Constant approximation, or even PTAS.

Preprocessing of F'LAT

(KZ (2014), KMPPWZ2015, KMPPWZ2016)

@ Each landmark is informed about all destinations.

@ Subquadratic preprocessing space/time.

@ Query fime sublinear in the network size.

@ Constant approximation, or even PTAS.
Preprocessing Complexity of FLAT

When the landmark set L C V is chosen

(Kz 2014)) Subquadratic preprocessing time and space, when BT S is used
and the K* is not too large: K* - |L| € o(n).

Preprocessing of F'LAT

(KZ (2014), KMPPWZ2015, KMPPWZ2016)

@ Each landmark is informed about all destinations.
@ Subquadratic preprocessing space/time.
@ Query fime sublinear in the network size.

@ Constant approximation, or even PTAS.

Preprocessing Complexity of FLAT
When the landmark set L C V is chosen

(Kz 2014)) Subquadratic preprocessing tfime and space, when B 1S is used
and the K* is not too large: K* - |L| € o(n).

(kwz2016) If each vertex becomes a landmark with probability p = no,

BIS isused for F = \/ﬁ destinations and TRAP is used
for the rest destinations from each landmark, then the
preprocessing space and time are O(n2‘5 . polylog(n)).

F'CA: A Constant-Approximation Query Algorithm (k2 o)

‘ Forward Constant Approximation (FCA)

1.
2.

Grow TD-Dijkstra ball B(o, f,) until the closest landmark ¢, or d, is settled
return sol, = D[o, {,|(1,) + A[ts, d](t, + D[o, £5)(1))

0=

T & ASP[lo,d](t+Ro)
o .\Q € SP[o,l](t)
P e SP[o,d](t,) \

=1, + Dlodlt) ‘ ‘

F'CA: A Constant-Approximation Query Algorithm (k2 o)

‘ Forward Constant Approximation (FCA)

1.
2.

Grow TD-Dijkstra ball B(o, f,) until the closest landmark ¢, or d, is settled
return sol, = D[o, {,|(1,) + A[ts, d](t, + D[o, £5)(1))

0=

T & ASP[lo,d](t+Ro)
o .\Q € SP[o,l](t)
P e SP[o,d](t,) \

=1, + Dlodlt) ‘ ‘

Complexity of F'CA for random landmarks

@ Constant approximation guarantee: sol, < (1 + € + ¢) - D[o, d|(t,). for

Y =14 Amax(1 + €)(1 + 2 + Amaxd) + (1 + €)¢ € O(1).

@ Sublinear Query-time: O(“In (/l)) log Iog(KmaX))

1
P

FCA+: A natural extension of F'CA (KMPPWZ (2015-2016))

] Extended Forward Constant Approximation (FCA+) ‘
1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £o, . .., {n_1 (or d)
are seftled.

2. return min,'qoj _____ N-1} { sol, = D[O, f,'](fo) aF A[f;, d](f, =F D[O, f,'](fo)) }

F'CA+: A natural extension of F'CA (KMPPWZ (2015-2016))

1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £o, . .., {n_1 (or d)
are seftled.

2. return min 1, n-1) { ol = Do, €](t,) + A[&;, d](f; + Dlo, €](1,)) }

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 71/97)

F'CA+: A natural extension of F'CA (KMPPWZ (2015-2016))

1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £o, . .., {n_1 (or d)
are seftled.

2. return min 1, n-1) { ol = Do, €](t,) + A[&;, d](f; + Dlo, €](1,)) }

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 71/97)

FCA+: A natural extension of F'CA (KMPPWZ (2015-2016))

] Extended Forward Constant Approximation (FCA+) ‘
1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £o, . .., {n_1 (or d)
are seftled.

2. return min,'qoj _____ N-1} { SOI,' = D[O, Z/](fo) =+ A[f;, d](f, + D[O, f,'](fo)) }

FCA+: A natural extension of F'CA (KMPPWZ (2015-2016))

] Extended Forward Constant Approximation (FCA+) ‘
1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £o, . .., {n_1 (or d)
are seftled.

2. return min,'qoj _____ N-1} { sol, = D[O, f,'](fo) aF A[f;, d](f, =F D[O, f,'](fo)) }

Performance of F'CA+ for random landmarks
@ In theory: Analogous to that of E'CA.

FCA+: A natural extension of F'CA (KMPPWZ (2015-2016))

] Extended Forward Constant Approximation (FCA+) ‘
1. Grow TD-Dikstra ball B(o, t,) until the N closest landmarks £o, . .., {n_1 (or d)
are seftled.

2. return min,'qoj _____ N-1} { sol, = D[O, f,'](fo) aF A[f;, d](f, =F D[O, f,'](fo)) }

Performance of F'CA+ for random landmarks
@ In theory: Analogous to that of E'CA.

@ In practice: Performance analogous to (indeed, better than) that of ROA.

ROA: A Sublinear-Time Approximation Scheme (KZ 2014))

Recursive Query Approximation (RQA)

while recursion budget R not exhausted do
Grow TD-Dijkstra ball B(w;, 1) until closest landmark ¢ is settled
sol = D[o, wi](t,) + D[w;, }](t) + A[¢€;, d](# + Dlw;, €](t))
Run ROA at of B(w;, ;) with budget R — 1
end while

SN LI

return best solution found

ROA: A Sublinear-Time Approximation Scheme (KZ 2014))

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2. Grow TD-Dijkstra ball B(w;, 1) until closest landmark ¢ is settled
3. soli = D[o, wi](t,) + D[ws, €] (1) + A[€;, d](+ Dlw;, €](1))

4. Run ROA at of B(w;, 1;) with budget R — 1
5. end while

6.

return best solution found

ROA: A Sublinear-Time Approximation Scheme (KZ 2014))

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2 Grow TD-Dijkstra ball B(w;, 1) until closest landmark ¢ is settled
3 sol = D[o, wi](t,) + D[w;, }](t) + A[¢€;, d](# + Dlw;, €](t))

4. Run ROA at of B(w;, ;) with budget R — 1
5. end while

6. return best solution found

@ Growing level-0 balll...

ROA: A Sublinear-Time Approximation Scheme (KZ 2014))

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2 Grow TD-Dijkstra ball B(w;, 1) until closest landmark ¢ is settled
3 sol = D[o, wi](t,) + D[w;, }](t) + A[¢€;, d](# + Dlw;, €](t))

4. Run ROA at of B(w;, ;) with budget R — 1
5. end while

6

return best solution found

@ Growing level-0 balll...

. \: @ Growing level-1 balss...

ROA: A Sublinear-Time Approximation Scheme (KZ 2014))

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2 Grow TD-Dijkstra ball B(w;, 1) until closest landmark ¢ is settled
3 sol = D[o, wi](t,) + D[w;, }](t) + A[¢€;, d](# + Dlw;, €](t))

4. Run ROA at of B(w;, ;) with budget R — 1
5. end while

6

return best solution found

@ Growing level-0 balll...

\: @ Growing level-1 balss...

ROA: A Sublinear-Time Approximation Scheme (KZ 2014))

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2 Grow TD-Dijkstra ball B(w;, 1) until closest landmark ¢ is settled
3 sol = D[o, wi](t,) + D[w;, }](t) + A[¢€;, d](# + Dlw;, €](t))

4. Run ROA at of B(w;, ;) with budget R — 1
5. end while

6

return best solution found

@ Growing level-0 balll...

\: @ Growing level-1 balss...

ROA: A Sublinear-Time Approximation Scheme (KZ 2014))

Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2 Grow TD-Dijkstra ball B(w;, 1) until closest landmark ¢ is settled
3 sol = D[o, wi](t,) + D[w;, }](t) + A[¢€;, d](# + Dlw;, €](t))

4. Run ROA at of B(w;, ;) with budget R — 1
5. end while

6

return best solution found

@ Growing level-0 balll...
@ Growing level-1 balls...

@ Growing level-2 balls...

ROA: A Sublinear-Time Approximation Scheme (KZ 2014))

Recursive Query Approximation (RQA)

1

2
3
4,
5
6

while recursion budget R not exhausted do

Grow TD-Dijkstra ball B(w;, 1) until closest landmark ¢ is settled
sol, = D[o, w](1,) + D[w;, €](1:) + A[¢;, d](t; + D[w;, €](1))
Run ROA at of B(w;, ;) with budget R — 1

end while
return best solution found

@ Growing level-0 balll...
@ Growing level-1 balls...
@ Growing level-2 balls...

ROA: A Sublinear-Time Approximation Scheme (KZ 2014))

‘ Recursive Query Approximation (RQA)

1. while recursion budget R not exhausted do

2 Grow TD-Dijkstra ball B(w;, 1) until closest landmark ¢ is settled
3 sol = D[o, wi](t,) + D[w;, }](t) + A[¢€;, d](# + Dlw;, €](t))

4. Run ROA at of B(w;, ;) with budget R — 1
5. end while

6. return best solution found

Complexity of ROA for random landmarks

@ PTAS: sol < (1 + o) - D[o, d|(t,).foro = ¢ - % and R € O(1).

R+1
@ Sublinear Query-time: O((%) A In ()—)) Ioglog(Kmax))

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 73/97)

ROA: Boosting The Approximation Guarantee Of F'CA (k2 co14)

@ One of the discovered approximate od—paths has all its ball centers at
nodes of the (unknown) shortest od-path.

S. Kontogiannis (konfog@cse.uoi.gr) CSE.UOI / ALGS4WORLD (2017): Time Dependent Shortest Path (4n epdoudda) 73/97)

ROA: Boosting The Approximation Guarantee Of F'CA (kz o)
2R

Pﬂ}c € 'SP[é Wk](fo)

& Q, € SPIwi » L] (%) "

2Rt Rt Ren T RS dic R

@ One of the discovered approximate od—paths has all its ball centers at

Q@ Optimal improve approximation guarantee:

VB >1, YA€ (0,1), 1-OPT+ (1= 2)-B-OPT <f3- OPT

ROA: Boosting The Approximation Guarantee Of F'CA (kz o)
2R

POk e SP[o, wi](t,)

B N\ Qy € SPIwe, [l (%) "

./'
s

>Ro+Ri+ ...+ Riy 6 CT0,= ASPL, dI(6HRe)

@ One of the discovered approximate od—paths has all its ball centers at

Q@ Optimal improve approximation guarantee:

VB>1,VY1¢e(0,1), 1-OPT+ (1—2)-B-OPT < 3- OPT

@ Approximation guarantee for to destination depends on

ROA: Boosting The Approximation Guarantee Of F'CA (kz o)
2R

Pox € SPlo, wi(%,)

O D0 @

t Q& SPIwg . Ll (%) "

./'
s

>Ro+Ri+ ...+ Riy ‘ CT0,= ASPL, dI(6HRe)

@ One of the discovered approximate od—paths has all its ball centers at

Q@ Optimal improve approximation guarantee:

\V,B>1, VA€ (0,1), 1-OPT+ (1= 1) -B- OPT <3 - OPT

@ Approximation guarantee for to destination depends on

@ R = O(1) recursion budget suffices to ensure guarantee close to 1 + &.

HORN Oracle

HORN Preprocessing: Hierarchy of Landmarks (I) (kwz@oie)

HORN Preprocessing: Hierarchy of Landmarks (I) (kwz@oie)

@ Selection of landmark sets (colors indicate sizes of coverages).

HORN Preprocessing: Hierarchy of Landmarks (I) (kwz@oie)

@ Selection of landmark sets (colors indicate sizes of coverages).
@ Small-coverage landmarks *“'learn’” travel-time functions to their (only
short-range) destinations.

HORN Preprocessing: Hierarchy of Landmarks (I) (kwz@oie)

@ Selection of landmark sets (colors indicate sizes of coverages).

@ Small-coverage landmarks *“'learn’” travel-time functions to their (only
short-range) destinations.

@ Medium-coverage landmarks “‘learn’” travel-time functions to their (up to
medium-range) destinations.

HORN Preprocessing: Hierarchy of Landmarks (I) (kwz@oie)

@ Selection of landmark sets (colors indicate sizes of coverages).

@ Small-coverage landmarks *“'learn’” travel-time functions to their (only
short-range) destinations.

@ Medium-coverage landmarks “‘learn’” travel-time functions to their (up to
medium-range) destinations.

@ Global-coverage landmarks *‘learn’” fravel-time functions to their (up fo
long-range) destinations.

HORN Preprocessing: Hierarchy of Landmarks (Il) (kwz 2016

LEV;L 3

,_)/

LEVEL 2 LEVEL 2 LEVEL 2 LEVEL 2 LEVEL 2

_ I) \I) o 4 ¢ 4 \I)
o,

\

),0,0,.0,0,0,.0,0,0,0,0,0,0 0.

Creating Distance Summaries From Landmarks (KWZ (2016))

Preprocessing of HORN
@ Depending on its level, each landmark has its own coverage, a given-size
set of surrounding vertices for which it is
@ Exponentially decreasing sequence of

@ exponentially increasing sequence of

‘ O(log log(n)) levels ‘ = Subquadratic preprocessing space/time.

Creating Distance Summaries From Landmarks (KWZ (2016))

Preprocessing of HORN
@ Depending on its level, each landmark has its own coverage, a given-size
set of surrounding vertices for which it is
@ Exponentially decreasing sequence of

@ exponentially increasing sequence of

‘ O(log log(n)) levels ‘ = Subquadratic preprocessing space/time.

Preprocessing Complexity of HORN (KWZ (2016))

An appropriate construction of the hierarchy assures preprocessing space and
)

time O(nz_ﬁ . polylog(n)), ie. . Ris the

(depth), and ¢ € (0, 1) is the targeted exponent of sublinearity, for the query
algorithm to be used (see next slides).

Creating Distance Summaries From Landmarks (KWZ (2016))

Preprocessing of HORN
@ Depending on its level, each landmark has its own coverage, a given-size
set of surrounding vertices for which it is
@ Exponentially decreasing sequence of

@ exponentially increasing sequence of

‘ O(log log(n)) levels ‘ = Subquadratic preprocessing space/time.

Preprocessing Complexity of HORN (KWZ (2016))

An appropriate construction of the hierarchy assures preprocessing space and
)

time O(nz_ﬁ . polylog(n)), ie. . Ris the

(depth), and ¢ € (0, 1) is the targeted exponent of sublinearity, for the query
algorithm to be used (see next slides).

NEXT: Query algorithm with constant approximation, or even PTAS, and
query-time sublinear in the Dijkstra Rank of the query at hand.

HOA: The Query Algorithm of HORN (KWZ (2016))

Rationale of the hierarchy...

] level | targeted DR | Q-time ‘ coverage | TRAP | Ring ‘
U M= [N o =N | ve | MO ()]
kK | Ne=n0 D7 | N | ae=Nerf |y | N (Ingn)’ln(n)]

k1 Ner=n n’ Crr1=n vn (Nf/(RH) : In(n),n]

@ Mimic FLAT in each level i: All level-i landmarks are informed about ¢;

destinations around them.

HOA: The Query Algorithm of HORN (KWZ (2016))

Rationale of the hierarchy...

] level | targeted DR | Q-time ‘ coverage | TRAP | Ring ‘
1 N, = n-1/y NS =N - | yor N;S/(I?H) '(|ngn)’|”(”)]
2 | N=n" | N | =N |y | N (fhin(n)]

K N = n(r =D/ N o= Ng-rfe | o Nf/(/?+1) (ngn ,In(n)]
k1 Ner=n n’ Crr1=n vn (Nf/(RH) : In(n),n]
@ Mimic FLAT in each level i: All level-i landmarks are informed about ¢;

destinations around them.

=

Q The of level-i landmairks is such that ALL queries of Dijkstra rank < N;
can be answered by using ONLY level-i landmarks.

HOA: The Query Algorithm of HORN (KWZ (2016))

Rationale of the hierarchy...

] level | targeted DR | Q-time ‘ coverage | TRAP | Ring ‘
1 Ny = =D/ N a=met | e | MR '(mEn)"”(n)]
K| Ne=n0 07 1N | = N |y | D '(lngn)’“‘(n)]
k1 Ner=n n’ Crr1=n vn (Nf/(RH) : In(n),n]
@ Mimic FLAT in each level i: All level-i landmarks are informed about ¢;
destinations around them.
Q The of level-i landmairks is such that ALL queries of Dijkstra rank < N;
can be answered by using ONLY level-i landmarks.
© FACT: Running ROA at the appropriate level of the hierarchy would yield a

good approximation.

HOA: The Query Algorithm of HORN (KWZ (2016))
Rationale of the hierarchy...
] level | targeted DR | Q-time ‘ coverage | TRAP | Ring ‘
1 N, = n-1/y NS =N - | yor Nf/(’?“) . |n2n)"”(”)]
2 | N=n" | N | =N |y | N (fhin(n)]
k| Ne=n 1N | o= N |y | NERY '(mfn)""(n)]
k1 Ner=n n’ Crr1=n vn (Nf/(RH) : In(n),n]
@ Mimic FLAT in each level i: All level-i landmarks are informed about ¢;
destinations around them.
Q The of level-i landmairks is such that ALL queries of Dijkstra rank < N;
can be answered by using ONLY level-i landmarks.
© FACT: Running ROA at the appropriate level of the hierarchy would yield a
good approximation.
© CHALLENGE: the appropriate level, whp . Then, sublinearity in N;

(rather than n) can be achieved.

HOA: The Query Algorithm of HORN

Guessing the appropriate level in the hierarchy...

@ level-1 landmark £7 o /
is . /

@ level-3 landmark {3 o, /
although informed, /
came

@ level-2 landmark {5 o
is and
within the

(KWZ (2016))
-7 -7 TS ~
N
N
\
AN
(mform,ed‘ﬁut too early) ~o
5
et 11,4) l3’° \\
/ he. ¢ %

(Unipfo PA \
e L0
| RINﬁaned and in- 'tlme)

\RING 3 7
s,/
RING 3 27
-~

HOA: The Query Algorithm of HORN (KWZ (2016))

Guessing the appropriate level in the hierarchy...

~ ~
e ~ N
@ level-1 landmark £7 o s d N
is . 4 \\
/
/
@ level-3 landmark {3 o, /
although informed, / (mform,ed‘ﬁut o early) ~
came — l
7 4) i1 BN N
@ level-2 landmark €3 o \ (n'y?o i .: P \
. i Jiein i
is and \ \\ ‘12.‘~:'f’$0
within the \ l RI YARAY
\ l Nﬁm}ned and in-time)
\
. ROA will use only N\ \ \RING 2 ///
level-(2) landmarks RIN _ //
from now on. G 3 o

._4

HOA: The Query Algorithm of HORN (KWZ (2016))

Description and performance guarantee...

‘ Hierarchical Query Algorithm (HQA)

1.

Grow a unique TD-ball from (o, fo), until the first lo
discovered (not too close, not too far) from o.

(ESC) Interrupt the process if an informed landmark is discovered very
close to the origin (already a good approximation).

(ALH) Execute an appropriate variant of ROA, using only landmarks of
level at least as high as that of £,.

Return the best approximation, via all discovered informed landmarks.

HOA: The Query Algorithm of HORN (KWZ (2016))

Description and performance guarantee...

| Hierarchical Query Algorithm (HQA)

1. Grow a unique TD-ball from (o, fo), until the first lo
discovered (not too close, not too far) from o.
2. (ESC) Interrupt the process if an informed landmark is discovered very

close to the origin (already a good approximation).

3. (ALH) Execute an appropriate variant of ROA, using only landmarks of
level at least as high as that of £,.

4. Return the best approximation, via all discovered informed landmarks.

Performance of HQA for random landmarks

HORN can be fine-tuned so that it achieves preprocessing space

and time, and query-response time (~)(Nl.5), ie., in N;, when

Ni—1 < DR[o, d|(t,) < N;, with probability 1 — O(%) The approximation
(1+&/y)R "

guaranteeis 1 + € - 0 ,where R < 2;5 — 1 is the recursion budget.

'|+g/w)l?+1_]

HOA: The Query Algorithm of HORN (KWZ (2016))

Approximation guarantee of ROA (in F'LAT) also holds for HOA...

= Despite using only landmarks of the appropriate level (and above), ROA
may via every landmark that it settles
(some of them may be *‘uninformed’”).

HOA: The Query Algorithm of HORN (KWZ (2016))

Approximation guarantee of ROA (in F'LAT) also holds for HOA...

Despite using only landmarks of the appropriate level (and above), ROA
may via every landmark that it settles

(some of them may be *‘uninformed’”).

By defining the appropriate level i according to the first landmark that is
, we can guarantee that the

closest level-i landmark to subsequent ball centers along the unknown
shortest path are

HOA: The Query Algorithm of HORN (KWZ (2016))

Approximation guarantee of ROA (in F'LAT) also holds for HOA...

Despite using only landmarks of the appropriate level (and above), ROA
may via every landmark that it settles

(some of them may be *‘uninformed’”).

By defining the appropriate level i according to the first landmark that is

, we can guarantee that the
closest level-i landmark to subsequent ball centers along the unknown
shortest path are

4 Analysis of ROA’s approximation guarantee still works, because it is based

on the via-landmark paths corresponding only to balls centered at vertices
of the unknown shortest od-path.

HOA: The Query Algorithm of HORN (KWZ (2016))

Query-time of HOA...

@ The quality of approximation provided via an informed landmark is

dependent on the from the origin.
@ For the first level-i landmark, the probability of its distance from o
NOT belonging to the Nf/(RH) . (lngn) , ln(n)] is O(%) where i is the

appropriate level for (o, d, 1,).

.. Success of (ALH) criterion, which happens whp , reveals
, for the (unknown) distance (and Dijkstra rank) from o to d.

HOA: The Query Algorithm of HORN (KWZ (2016))

Query-time of HOA...

@ The quality of approximation provided via an informed landmark is
dependent on the from the origin.
@ For the first level-i landmark, the probability of its distance from o

NOT belonging to the Nf/(RH) . (lngn) , ln(n)] is O(%) where i is the

appropriate level for (o, d, 1,).

*. Success of (ALH) criterion, which happens whp , reveals
, for the (unknown) distance (and Dijkstra rank) from o to d.

@ Given that (ESC) did not occur (which could only improve the
performance), and that (ALH) succeeds in its **guess’” of the appropriate
level, the corresponding variant of ROA works fine.

@ Level-(k + 1) landmarks would ,in time o(n).

*. Failure-of-(ALH) contribution to the expectation of the query-time is
negligible.

Experimental Evaluation

Experimental Evaluation

Identities of Instances

| PARAMETER | INSTANCE || Berlin TomTom) |
#Nodes 473,253 4,692,091
#Edges 1,126,468 11,183,060
Time Period 24h (Tue) 24h (Tue-Wed-Thu)
A 0.017 0.130
—Amin -0.013 -0.130
#Arcs with constant traversal-times 924,254 10,310,234
#Arcs with non-constant traversal-times 20,2214 872,826
Min #Breakpoints 4 5
Avg #Breakpoints 104 16.3
Max #Breakpoints 125 52
Total #Breakpoints 3,234,213 25,424,506

Experimental Evaluation

Landmark Selection Methods

(A) Three variants of method:
@ RANDOM (R): Independent and uniform random selections.

@ IMPORTANT RANDOM (IR): Move each selection of (R) to the most important
node within a small ball from the selection.

@ SPARSE RANDOM (SR): Sequential random selection. Each selected landmark
excludes a small neighborhood around it from future selections.

Experimental Evaluation

Landmark Selection Methods

(A) Three variants of method:
@ RANDOM (R): Independent and uniform random selections.

@ IMPORTANT RANDOM (IR): Move each selection of (R) to the most important
node within a small ball from the selection.

@ SPARSE RANDOM (SR): Sequential random selection. Each selected landmark
excludes a small neighborhood around it from future selections.

(B) Partition-dependent selections: Given a graph partition, consider as candidate
landmarks only the boundary nodes of the partition.

@ METIS (M) / KAHIP (K): Start from a METIS / KaHIP partition.

@ SPARSE KAHIP (SK): Start from a finer KaHIP partition. Choose randomly, assuring
sparsity, landmarks from the boundary nodes.

@ HYBRID (H): In a KaHIP partition, half landmarks chosen randomly (and sparsely)
from boundary nodes. Remaining nodes equi-distributed randomly in the cells.

Experimental Evaluation

Landmark Selection Methods

(A) Three variants of method:
@ RANDOM (R): Independent and uniform random selections.

@ IMPORTANT RANDOM (IR): Move each selection of (R) to the most important
node within a small ball from the selection.

@ SPARSE RANDOM (SR): Sequential random selection. Each selected landmark
excludes a small neighborhood around it from future selections.

(B) Partition-dependent selections: Given a graph partition, consider as candidate
landmarks only the boundary nodes of the partition.

@ METIS (M) / KAHIP (K): Start from a METIS / KaHIP partition.

@ SPARSE KAHIP (SK): Start from a finer KaHIP partition. Choose randomly, assuring
sparsity, landmarks from the boundary nodes.

@ HYBRID (H): In a KaHIP partition, half landmarks chosen randomly (and sparsely)
from boundary nodes. Remaining nodes equi-distributed randomly in the cells.

(C) BETWEENESS CENTRALITY (BC): Choose landmarks sequentially, assuring sparsity,
according to an approximate BC order.

Experimental Evaluation (KMPPWZ (2016))

Preprocessing and Live-Traffic Updates

@ Preprocessing of E'LAT @ BERLIN:

Parallelism || 1thread | 6 threads || 1thread | 6 threads

Time per landmark || 69.5sec 11.5sec 481sec 80.2sec
Space per landmark 13.8MB 25.7MB
@ Responsiveness to : Averaging 1,000 random

disruptions of 15-min duration.

#Affected | Update Time || #Affected | Update Time

Landmarks (sec) Landmarks (sec)
SRo000 32 21.4 3 37.2
SKoooo 36 28.8 4 39.1

Experimental Evaluation
Query-Time Performance: Speedup > 1, 146 for Berlin and > 902 for Germany.
Berlin: n = 473, 253 vertices, m = 1, 126, 468 arcs.
Germany: n = 4,692,091 vertices, m = 11, 183, 060 arcs.

(KMPPWZ (2016))

° 1.32sec resolution and 10, 000 random queries.
TDD FCA FCAT (6) RQA
Time Rel.Error Time Rel.Error Time Rel.Error Time Rel.Error
(msec) % (msec) % (msec) % (msec) %
Ro000 02,006 0 0.100 0.969 0.527 0.405 0519 0.679
Koooo 0.115 1.089 0.321 0.405 0.376 0.523
Hoooo 0.102 0.886 0.523 0.332 0.445 0.602
IR2000 0.086 0.923 0.489 0.379 0.473 0.604
SR2000 0.586 0.317 0.443 0.611
SKo000 0.083 0.781 0.616 0.227 0.397 0.464
Rsa1 0.326 1.854 1.887 0.693 1.904 1.610
SRs41 0.451 1.638 3.252 0.614 2.856 1.531
Ro70 0.639 2.583 3.707 0.881 3.842 2.482
SRo70 0.730 2.198 4.491 0.745 4.271 2.336
° 8.82sec resolution and 10,000 random queries.
TDD FCA FCAT (6) RQA
Time Rel.Error Time Rel.Error Time Rel.Error Time Rel.Error
(msec) % (msec) % (msec) % (msec) %
Ro00o 1 145,060 o 1.532 1.567 8.529 0.742 9.219 1.502
Koo00 10.455 2.515 15.209 1.708 30.577 2.343
SRa000 1275 F 9.952 0.662 9.011 1.412
SKao00 1.534 9.689 0.676 7.653 1.475

Experimental Evaluation (KMPPWZ (2016))
Dijkstra-Rank Performance: Speedup > 1, 570 for Berlin and > 1,531 for Germany.

Berlin: n = 473, 253 vertices, m = 1, 126, 468 arcs.

Germany: n = 4,692,091 vertices, m = 11, 183, 060 arcs.

o 1.32sec resolution and 10, 000 random queries.
TDD FCA FCAT (6) RQA
Rank Speedup Rank Speedup Rank Speedup Rank Speedup
R000 | 14 022) 150 973.480 877 166.502 925 157.862
Kaooo 790 768.537 866 168.616 670 217.943
Haooo 154 948.195 851 171.589 777 187.931
IRo000 135 1,081.644 823 177.426 839 174.043
SRo000 119 1,227.075 952 153.384 776 188.173
SKa000 ﬁ 755 193.406 501 291.461
Rsa1 545 267.930 | 3,178 45947 | 3,406 42.872
SRss1 638 228.874 | 3,684 39.637 | 3,950 36.967
Ro70 1,075 135.834 | 6,198 23569 | 6,702 21.788
SRo70 1,195 122194 | 7,362 19.835 | 7,398 19.738
° 8.82sec resolution and 10, 000 random queries.
TDD FCA FCAT(6) RQA
Rank Speedup Rank Speedup Rank Speedup Rank Speedup
R000 | 1 717 798 | 1,669 | 1,035.439 | 10,159 169.091 11,045 155.527
Ka000 ’ 9,302 184.669 | 15,373 111.741 | 30,137 56.999
SRa000 1,277 | 1,345.178 9,943 172.764 9,182 187.082
SKa000 [R 190866 | 7,975 215.397

Experimental Evaluation (KMPPWZ (2016))
Performance of HORN in BERLIN

@ Landmark hierarchies for HORN, with HR and HSR landmark sets:

Level Size of Levels Area of coverage Excluded Ball Size (for HSR)
|| = 10,256 |L| = 20,513 L] = 10,256 |L| = 20,513
Ly 7,685 15,370 1,274 35 15
Ly 1,604 3,208 29,243 150 80
L3 697 1,394 154,847 350 180
La 270 541 292,356 800 400

@ Performance of HOA at 2.64sec resolution and 10, 000 random queries:

TDD HQOA
Rank Rank
Time Rel.Error Soeccie) Time Rel.Error SpEEElD
(msec) % (msec) %

HR10256 92.006 0 146,022 1 0.354 1.499 636 229.594
HSR10256 0.436 1.409 721 202.527
HRx0513 0.217 1.051 324 450.685
HSRo0513 0.314 0.919 378 386.302

@ HOA vs. FLAT/FCA in Berlin:

Improvement in Deterioration in

Query Times (%) Worst-case Relative Error (%) Dijkstra Ranks (%) Space (times)
Ro70 vs HR10256 44.60 41.96 40.83 6.089
SRy70 Vs HSR10p56 4027 35.89 39.66 6.407
Rsa1 vs HRog513 33.43 43.31 40.56 6.195
SRs41 Vs HSRo0513 30.37 43.89 40.75 6.438

Work In Progress (1) (KPPWZ (2017))

@ CFLAT - A combinatorial oracle that:

> Preprocesses and stores only , rather than
travel-time functions: Each vertex has a , per
landmark.

> Avoids in preprocessed data, by storing common departure-time
sequences only once and having all the relevant landmark-vertex pairs
index them.

@ CFCA -- A novel query algorithm that:

@ Computes, in reverse order, many candidate paths from each discovered
landmark to the destination.

@ Runs TD-Dijkstra in the subgraph induced by the edges of these paths.

Work In Progress (II) (KPPWZ (2017))

@ Experimental Evaluation for CELAT:

v

More detailed average-case statistics (60, 000 random queries).

v

Significant preprocessing space/time requirements.

v

Comparable query fimes with FLAT /FCA+, but now including the path
reconstruction in the measurements.

> |Improved approximation guarantees.

A\

Study the tails of the statistics (existence of outliers).

Preprocessing of CE'LAT (RANDOM landmarks) kepwz 2017))
50,00 Preprocessing @ BERLIN

80,00 ’—
70,00

60,00 /

50,00 /
40,00 / A
30,00

20,00

10,00

0,00 | [
R250 | RS00 | R1K | R2K | R4K | R8K | RieK | R32k

—&—Time (12 threads)| 0,23 | 0,46 | 0,92 195 | 3,73 | 7,45 | 14,70 | 29,38
~#—Time (6 threads) | 0,38 | 0,75 1,53 | 3,02 | 6,08 | 12,05 | 24,12 | 48,02
== Space (uncompr.) | 0,70 1,30 2,60 5,20 10,40 | 20,80 | 41,40 | 80,66

Time (hours) & Space (GB)

=== Space (compr.) 0,17 0,34 0,69 1,40 2,80 5,60 | 12,00 | 21,94
1100 Preprocessing @ GERMANY
_ 100,0 o~
;s; 90,0
s 800 /l/
g8 700
@ 60,0
< 50,0 4./7,4;
7
5 400 —__—%
2 w00 | g I
E 20,0 #
£ 100 —
0,0
R1K R2K R3K R4K
«==Time (12 threads) 8,1 16,3 24,4 32,6
«==Time (6 threads) 13,3 26,6 39,8 53,0
~fli—Space (uncompr.) 26,8 53,6 80,4 107,2
«=é=Space (compr.) 8,1 16,1 24,2 32,3

Query-time / Error Scalability CEFCA

Query Time Scalability @ BERLIN

(KPPWZ (2017))

Relative Error Scalability @ BERLIN

3,500 2,500
3z \
g 3,000
H \ . 2,000
T 2500 B
E Lo 5 1,500
N H
$ 1,500 g
3 2 1000
® 1,000 2
< w 0,500
0,500 E
0,000 0,000
R250 R500 R1K R2K R4K R8K R16K R32K R250 R500 R1K R2K R4K R8K R16K R32K
—4—CFCA(1)| 0,565 0,356 0,205 0,140 0,106 0,085 0,079 0,077 —4—CFCA(1)| 2,418 1,915 1,383 0,967 0,668 0,438 0,282 0,180
~#-CFCA(2)| 1,109 0,644 0,371 0,236 0,169 0,125 0,112 0,105 —@—CFCA(2)| 0,880 0,760 0,570 0,385 0,287 0,193 0,136 0,098
~#—CFCA(4)| 2,212 1,274 0,702 0,425 0,291 0,204 0,177 0,161 ~#~CFCA(4)| 0,276 0,234 0,196 0,127 0,108 0,082 0,059 0,050
—>é=CFCA(6)| 3,330 1,848 1,031 0,613 0,411 0,281 0,237 0,219 —=CFCA(6)| 0,136 0,102 0,100 0,064 0,060 0,047 0,038 0,032
L0000 Query Time Scalability @ GERMANY Lo Relative Error Scalability @ GERMANY
1,600
< 12,000 -
g N 8 1,400 ~_
£ 10,000 5
- 2 1,200
£ 8000 A & 1,000
g ' ——
z 6,000 S— £ 0800
B ®
3
& 4000 & 0600 —__
® £ 0400
< 2,000 —— 0,200 —
0,000 0,000
R1K R2K R3K R4K R1K R2K R3K R4K
—&—CFCA(1) 2,175 1,333 0,981 0,819 ——CFCA(1) 1,582 1,197 1,016 0,911
~-CFCA(2) 4,219 2,492 1,824 1,503 ~—CFCA(2) 0,547 0,426 0,384 0,346
e CFCA(4) 8,238 4,845 3,477 2,864 b CFCA(4) 0,160 0,125 0,118 0,106
i CFCA(6) 11,974 7,130 5,045 4,201 === CFCA(6) 0,071 0,060 0,055 0,049

Query-time / Error of CEF'CA wi.r.t,

Query Time of CFCA(N) @ BERLIN

Landmark Sets

Relative Error of CFCA(N) @ BERLIN

(KPPWZ (2017))

0,500 0,700
3 £ 0600
£ 0,400 Y go
I _ AN
£ 0,300 % 0,400
E ‘s 0/
£ 2
£ 0,200 0300 A N\
] £ 0200 N
3 % ~
0,100 ®»
H £ 0100 —
0,000 0,000
N=1 N=2 N=4 N=6 N-1 N=2 N=4 N=6
——RAK 0,106 0,169 0,291 0,411 ——RaK 0,668 0,287 0,108 0,060
—m—SRAK 0,108 0,199 0349 0,474 —— SRAK 0,546 0,121 0,033 0,019
——IRAK 0,098 0,159 0,261 0,371 ——IR4K 0,653 0329 0,140 0,078
——skaK 0,089 0,147 0,265 0,373 ——sKaK 0,557 0,166 0,055 0,033
——KCaK 0,091 0,148 0,262 0374 —¥—KCaK 0,544 0,181 0,060 0,033
—e—BCaK 0,088 0,144 0,257 0,367 —e—BCAK 0,521 0,121 0,036 0,021
——KB4K 0,093 0,169 0,204 0,411 ——KB4K 0534 0,184 0,058 0,031
Query Time of CFCA(N) @ GERMANY Relative Error of CFCA(N) @ GERMANY
6,000 1,200
5,000 _ 1,000
= g
s S
g 4,000 5 0,800
T H \
E 3,000 2 0,600
: N\
§ 2,000 & 0,400
2
£ 1000 0,200 ~
0,000
0000 N=1 N=2 N=4 N=6 N=1 N=2 N=4 N=6
—t—R3K 0,981 1,824 3,477 5,045 —4—R3K 1,016 0,384 0,118 0,055
—8—SR3K 0,825 1,727 3373 5,010 —8—5R3K 0970 0274 0,065 0,028
—5K3K 0,819 1,587 3,129 4,669 —=SK3K 1,062 0352 0,100 0,044
—e—BC3K 0,733 1,568 3,158 4,787 —o—BC3K 0911 0,269 0,068 0,029

Exploring Outliers of Relative Error in BERLIN (KPPWZ (2017))

0,128% - 0,256%
0,32% - 0,64%
1,6% - 3,2%

8% - 16%

B N=6 mN=4
EN=2 HEN=1

0,064% - 0,128%
0,16% - 0,32%
0,8% - 1,6%

8%:248% 2,28%

0,032% - 0,064%
0,08% - 0,16%
0,4% - 0,8%

2% - 4%

0,016% - 0,032%
0,04% - 0,08%
0,2% - 0,4%

1% - 2% 5,31%

0,008% - 0,016%
0,02% - 0,04%
0,1% - 0,2%
0,5% - 1% 5,08%

0% - 0,008%
0% - 0,02%
0% - 0,1%
0% - 0,5%

9,24%

(exact)
(exact)
(exact)

(exact)

Exploring Outliers of Relative Error in GERMANY (kerwz 2017))

0,48% - 0,96% [] 0,81%
1,12% - 2,24% | 1,21% BEN=6 HN=4
4,32% - 8,64% f§ 0,82% EN=2 EN=1
14,56% - 29,12% | 0,33%

0,24% - 0,48% W 0,82%
0,56% - 1,12% 1,64%
2,16% - 4,32% 2,47%
7,28% - 14,56% 1,60%

0,12% - 0,24% [0,72%
0,28% - 0,56% |1 1,49%

1,08%- 2,16% 4,00%
3,64% - 7,28% 4,76%

0,06% - 0,12% | 0,59%
0,14% - 0,28% | 1,25%
0,54% - 1,08%
1,82% - 3,64%

8,78%

0,03% - 0,06%
0,07% - 0,14%
0,27% - 0,54%

0,91% - 1,82% 9,73%

0% - 0,03%
0% - 0,07%
0% - 0,27%

0% - 0,91% 24,85%

(exact)
(exact)
(exact)
(exact)

94,13%

Related Literature

o
2]
o

© 06 0 ©

(Dreyfus (1969)) S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,
17(3):395--412, 1969.

(OR (2000)) A. Orda, R. Rom. Shortest-path and minimum delay algorithms in networks with
time-dependent edge-length. J. ACM, 37(3):607--625, 1990.

(Dean (2004)) B. C. Dean. Shortest paths in FIFO time-dependent networks: Theory and algorithms.
Technical report. MIT, 2004.

(DOS (2010)) F. Dehne, O. T. Masoud, J. R. Sack. Shortest paths in time-dependent FIFO networks.
ALGORITHMICA., 62(1-2):416--435, 2012.

(FHS (2011)) L. Foschini, J. Hershberger, S. Suri. On the complexity of time-dependent shortest paths.
ALGORITHMICA. 68(4), pp. 1075--1097, 2014.

(KZ (2014)) S. Kontogiannis, C. Zaroliagis. Distance oracles for time dependent networks. In
ALGORITHMICA.

(KMPPWZ (2016)) S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D.
Wagner, C. Zaroliagis. Engineering Oracles for Time-Dependent Road Networks. Algorithm
Engineering and Experiments (ALENEX 2016), SIAM, 2016.

Q (KPPWZ (2017)) S. Kontogiannis, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C. Zaroliagis.

Improved Oracles for Time-Dependent Road Networks. Submitted for publication.

(KWZ (2016)) S. Kontogiannis, D. Wagner, C. Zaroliagis. Hierarchical Oracles for Time-Dependent
Road Networks. In ISAAC 2016. Invited to ALGORITHMICA (2017).

	Problem Statements & Examples
	Shortest Paths in & Networks
	The Challenge of Scale
	Time Dependent Shortest Path Examples
	Problem Statements

	Algorithms for TDSP on FIFO, Continuous, Pwl Instances
	Input/Output Data
	Complexity Results
	Lower Bound on Number of Breakpoints
	Upper Bound on Number of Breakpoints
	An Exact (output-sensitive) Algorithm for Arr[o,]
	Poly-time Approximation Algorithms for D[o,d] and D[o,]

	Distance Oracles
	Preliminaries
	FLAT TD Oracle
	HORN Oracle
	Experimental Evaluation

