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Functional MRI (fMRI) is a valuable brain imaging technique. A significant problem,

when analyzing fMRI time series, is the finding of functional brain networks when the

brain is at rest, i.e., no external stimulus is applied to the subject. In this work we
present a probabilistic method to estimate the Resting State Networks (RSNs) using

a model-based approach. More specifically, RSNs are assumed to be the result of a

clustering procedure. In order to perform the clustering, mixture of regression models
are used. Furthermore, special care has been given in order to incorporate important

functionalities, such as spatial and embedded sparsity enforcing properties, through the
use of informative priors over the model parameters. Another interesting feature of the

proposed scheme is the flexibility to handle all the brain time series at once, allowing

more robust solutions. We provide comparative experimental results, using an artificial
fMRI dataset and two real resting state fMRI datasets, that empirically illustrate the

efficiency of the proposed regression mixture model.
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1. Introduction

fMRI is a brain imaging technique describing the function of the brain by using

task - based (or stimulus driven) paradigms. This is accomplished by measuring the

relative change of the MRI signal from the baseline (a.k.a. BOLD signal) during the

performance of a task or in response to a stimulus. Besides task-based paradigms,

fMRI technique can be used to examine the brain when the subject does not perform

any specific task (i.e. is at rest). This approach is called resting state fMRI and it

investigates the temporal correlation of fMRI time series between distinct spatially

regions in order to identify RSNs. A significant property of RSNs is that the most

valuable information of BOLD time series is concentrated on low frequencies. The
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importance of these low frequency fluctuations was first reported by 5.

Brain imaging studies have reveal consistent spatial patterns of human brain

using both fMRI 5 and positron emission tomography (PET)35. These patterns have

been termed as ”resting-state networks” (RSNs)15;2 or as ”intrinsic connectivity

networks”34. In the literature a large number of RSNs have been reported, where

the Default Mode Network (DMN) is the most significant. Studies have shown

that brain areas within the DMN play a significant role to the overall function of

the brain. More specifically, it has been observed that connections between brain

areas belonging in the same network are disrupted in pathological cases such as

Alzheimer disease 22. Several other RSNs have also been identified. They include

the somatosensory network, the visual network and the auditory network among

others 9. These networks have demonstrated high consistency and reproducibility

across subjects. Furthermore, they have been used to study Alzheimer’s disease16,

schizophrenia17, lateral sclerosis44 and Attention Deficit Hyperactivity Disorder

(ADHD)32.

The methods related to the analysis of resting state fMRI data are divided into

two general groups: model-driven methods and model-free (or data-driven) meth-

ods 20. At first, model-based methods have been applied to analyze the functional

connectivity of the brain through fMRI data. In 5 a method, using seeds from spe-

cific brain regions, was proposed to derive a model for data analysis. This method

defines a priori a voxel, or a region of interest (ROI) in order to to build a model

for time series analysis (used as a regressor in a linear correlation analysis, or as

a general linear model when confounding effects are used in the analysis). An ex-

tension was the adoption of the cross-correlation metric to deal with lags 7, as well

as the use of coherence 37 for capturing the properties of frequency domain. The

selection of a seed region presents a substantial drawback of seed-based approach

which may bias the results. However, careful selection of seed regions could provided

interesting results 15;34;40.

A commonly used model-free method to analyse fMRI data is the Independent

Component Analysis (ICA). ICA was first applied to fMRI data collected dur-

ing an experimental task 25 and later it was applied to resting-state fMRI data
18;2. The RSNs derived from ICA present consistency across participants and scan

sessions9, while the method has been widely used to study clinical populations (e.g.

Alzheimer’s disease16, schizophrenia17, lateral sclerosis44). The aim of ICA is to

decompose a two-dimensional data matrix into the time courses and the spatial

independent maps. ICA assumes that a fMRI data set consists of a mix of indepen-

dent signals from a number of spatially distributed sources, and decomposes the

data into several such independent components. ICA estimates component maps of

maximal spatial independence (from each other), however, this does not preclude

spatial overlap between components 2. A major drawback of ICA is the specification

of the number of components. Although methods for the estimation of this number

are provided with various ICA toolboxes, in practice this number is provided by the
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user 8;24. Furthermore, ICA analysis does not provide naturally an inference mecha-

nism. Although several ICA analysis methods have been proposed in the literature,

this issue remains an obstacle on the identification of brain models. Similar to ICA

approach, Dictionary Learning (DL) approaches factorize the data matrix by an

over-complete dictionary basis matrix and a reference weight matrix via an effec-

tive online dictionary learning algorithm 14;45;23. However, the difference between

the two approaches lay on the underlying assumption that govern the fMRI data.

ICA assumes independence between components while DL assumes sparseness of

the components.

Another class of methods used to analyse resting state fMRI time series is clus-

tering approaches. Clustering is the procedure of dividing a set of unlabelled data

into a number of groups (clusters), in such a way that similar in nature samples

belong to the same cluster, while dissimilar samples become members of different

clusters 4. The aim of clustering is to maximize the level of similarity between data

points by grouping data points into non-overlapping clusters. Therefore, cluster-

ing results may be more comparable to traditional functional connectivity results,

as they can directly reflect functional connections among brain regions. In 41 a

clustering method based on graph theory was proposed. More specifically a connec-

tivity graph was constructed based on correlations between voxels, and then the

normalized-cut (spectral clustering) clustering method was used. This method was

applied to a group of subjects and the results were found to be consistent with those

reported in the literature. In 33 a summarization of original fMRI time series was

made by applying an anatomical prior template to the original fMRI data, followed

by an hierarchical cluster analysis. The results showed a hierarchical structure of

the brain, where at the highest level of the hierarchy six large RSNs were identified.

In 13 the well-known k-means clustering algorithm was used to analyse fMRI data.

The results revealed the division of human brain into two large systems. An ex-

tension of k-means, the fuzzy c-means algorithm, was used to identify resting state

networks in 19. Also, in 43 a comparison of the k-means algorithm with the spectral

clustering was presented for discovering the functional connectivity of the brain.

Finally, in 31 a regression mixture model was proposed for clustering of resting

state fMRI data on a slice-by-slice experimental design.

In this paper we propose a compact framework for discovering RSNs of the

brain based on regression mixture modeling and simultaneous multi-stage data

processing. It substantially improves and extends our previous work presented in
31. More specifically, the contribution of our work lies mainly on four aspects:

� We perform a 4D data analysis where we collect all brain voxels and

construct fMRI time series across all slices. Clustering is then applied to

all these sequential data and thus the estimated cluster regions have 3D

geometrical structure.

� Besides single subject analysis, we perform a group analysis using data

from two fMRI datasets.
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� The proposed regression mixture model incorporates efficient functions

as derived by the enforcement of prior distributions on model parameters

which act as constraints. These include regularized capabilities through the

use of a sparse students’t prior over the model regression coefficients, as

well as smooth properties via Markov random field (MRF) prior over the

voxels’ labels.

� We introduce a new non-parametric prior for capturing spatial charac-

teristics of fMRI data. This is based on a softmax procedure and provides

a simple and low-cost mechanism for estimating the mixing probabilities-

labels, which acts as a mean filter on the lattice-based structure of brain.

� Cluster analysis is performed on a regression mixture platform. This has the

advantage of creating probabilistic generative models for every cluster

and therefore for every RSN of brain. Generative models can be seen very

powerful in explaining how observed data are generated by the underlying

(neuronal) system.

A maximum a posteriori expectation maximization algorithm (MAP-EM) 10,
26 is applied to iteratively estimate the regressions model parameters and fit the

input fMRI data. This leads to update rules of all model parameters in closed form

during the M -step and improves data fitting. This results into division of data into

a number of K clusters and thus the identification of the RSNs of brain. Each clus-

ter is probabilistically described with a regression mechanism (generative model)

that can be used for further analysis. We evaluate the performance of the proposed

methodology by clustering a set of fMRI time series using a variety of artificial

and real data sets. Comparative results demonstrate improvements on the perfor-

mance and indicate that our method offers both flexibility and robustness obtaining

superior modeling solutions. Since the ground truth is already known for all artifi-

cial datasets, we have used the percentage of correct classification (purity) and the

normalized mutual information (NMI) quantities for evaluating the performance of

each method.

The remaining of this paper is organized as follows: In section 2 we present

the general framework of the regression mixture model, while in section 3 the pro-

posed probabilistic framework is described along with its spatial and regularized

properties. To assess the performance of the proposed methodology we present in

section 4 numerical experiments. The experiments are divided into two categories.

In the first category, artificial 4-D data sets, that simulated brain’s function, are

used, while, in the second category of experiments real fMRI time series from two

datasets are used to evaluate the proposed method. Finally, in section 5 we provide

conclusions and suggestions for future research.

2. fMRI data analysis using probabilistic mixture models

Clustering is an active and challenging research problem with many applications

in various scientific fields. For this reason a large number of methodologies have
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been used to address this problem. From all these methodologies special attention

has attract the probabilistic mixture modeling which is a model-based approach for

clustering that offers many advantages, such as a platform to qualitative evaluate

the clustering solution 4,26. However, the fMRI data are time - series and this

property must be taken into account when the clustering procedure is executed. In

the case of clustering time series the data have one or both of the following two

features: first they are of very large dimension, and thus conventional clustering

methods may found difficulties, and second they are not of equal length and thus

conventional clustering methods cannot straightforwardly be applied. To avoid the

above difficulties, we can assume a parametric model for the data and then perform

the clustering based on that model.

In our case, we have followed a 4D analysis by considering fMRI time-series

from all slices of the brain. In particular, let y
(s)
n be a sequence of values measured

at T successive time instances xl, i.e. y
(s)
n = fy(s)

nl gl=1;��� ;T . This corresponds to

the n-th position of the s-th slice. Thus, we define the total N fMRI time-series of

all S slices as: Y = fy(1)
1 ;y

(1)
2 ; � � � ;y(1)

N1
;y

(2)
1 ;y

(2)
2 ; � � � ;y(2)

N2
; :::;y

(S)
1 ;y

(S)
2 ; � � � ;y(S)

NS
g,

where N = N1 + N2 + � � � + NS . The set Y determines the input to our method

and the task is to discover 3D brain regions with the same functionality among all

slices’ positions.

A compact generative scheme for modeling fMRI time series is the linear regres-

sion models described by the next equation:

y(s)
n = Xw(s)

n + e(s)
n , (1)

where w
(s)
n is the vector of the (unknown) linear coefficients. The term e

(s)
n describes

the noise and it is assumed to be zero mean Gaussian with variance �2(s)
n , i.e. e

(s)
n �

N (0; �2(s)
n I). Finally, X is the design matrix where its choice plays an important role

for the data analysis. In the literature, many design matrices have been proposed.

For example when polynomial or splines models are used then Vandermonde or

B-splines matrices are appropriated. Also, when evidence suggests that the time

series can be described well from specific basis functions such as sines or wavelets,

then dictionaries based on the Fourier Transform or the Wavelet Transform can

be used to construct the design matrix. Finally, another approach is to assume a

kernel design matrix using an appropriate kernel basis function over time instances

fxlgTl=1. A common choice is to consider Gaussian kernel matrix

[X]lk = K(xl; xk;�) = exp
�
� (xl � xk)2

2�

�
,

where � is a scalar parameter. In addition, the design matrix may contain informa-

tion about the experimental paradigm of fMRI experiment 27.

Following the regression function of Eq.(1), the conditional probability density

of the fMRI sequence y
(s)
n is also Gaussian

p(y(s)
n j�(s)

n ) = N (Xw(s)
n ; �2(s)

n I) ,
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where �
(s)
n is the set of model parameters, i.e. �

(s)
n = fw(s)

n ; �2(s)
n g.

The motivation behind the mixture models is that the available data may include

unobserved groups and by incorporating such structure we could obtain more accu-

rate predictions. The clustering problem is referred to uncover that group structure

of data, called clusters. In model-based approaches we assume that each cluster is

described by a generative model and the aim of clustering is focused on discovering

an optimal set of such models in order to best fit the data. Mixture models provide

an efficient and flexible architecture that is suitable for clustering which is used as a

data-generating process for the observed data. In particular it is assumed that the

data in each group or cluster is generated by a specific distribution and the com-

bined data stems from a convex combination of distributions. Clustering is then

done by learning the parameters of these models and the associated probabilities.

Through the clustering procedure, each data is then assigned to the mixture com-

ponent that most likely generated it. The probability density function, describing

the data generation process, is given by:

f(y(s)
n jΘ) =

KX
j=1

�jp(y
(s)
n j�j) , (2)

where �j are the weights (prior probabilities) of every cluster that satisfy the con-

straints: �j � 0 and
PK
j=1 �j = 1, while Θ is the set of all mixture model parame-

ters, i.e Θ = f�j ; �jgKj=1.

The task of clustering lies on the estimation of the model parameters that

is usually obtained through the maximum likelihood (ML) framework and the

Expectation-Maximization (EM) algorithm 10, where the log-likelihood function

is:

l(Θ) = log p(YjΘ) =

SX
s=1

NsX
n=1

log
n KX
j=1

�jp(y
(s)
n j�j)

o
. (3)

Assignment of the data to the K groups is then achieved according to the maximum

of the posterior probabilities of component membership:

z
(s)
nj =

�jp(y
(s)
n j�j)

f(y
(s)
n jΘ)

. (4)

cluster(s)
n = arg max

j
fz(s)
nj g (5)

The above ML-based mixture modeling presents two major drawbacks: At first,

spatial correlations of data that exist naturally, cannot be taken into account. Sec-

ondly, the order of the regression model that is related to the complexity of method,

is not automatically determined as it is desired. In next section we describe a com-

pact scheme that incorporates the above issues to the body of classical regression

mixture models.
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3. Regression mixture analysis with advanced properties

In order to avoid the drawbacks of ML approach, and in addition to weakened the

effect of noise in the clustering results, local spatial interactions among neighboring

fMRI time series must be taken into account. Spatial interactions can be introduced

by using a spatial Gaussian filter. However, this approach makes the assumption

that spatial interactions are the same among all time series and this assumption can

produce blurred results. This means that spatial properties among a small group

of fMRI time-series can be lost or may extended beyond their actual boundaries

affecting the time-series outside this group. A more advanced approach to spatial

regularization is through the use of Markov Random Field (MRF) prior 12 which

models the conditional spatial dependence between fMRI time series.

Due to brain spatial organization, fMRI time series contain spatial interactions

between them. The above statement is supported by the fact that adjacent voxels

tend to have similar activity. Furthermore, fMRI studies have shown that spatial

interactions can be observed among remote brain regions. Spatial interactions can

be incorporated into our model through the mixing probabilities. More specifically,

we assume that any sequence y
(s)
n has a set of labels �

(s)
nj associated with the degree

of belongingness to any cluster j, j = 1; : : : ;K. We treat these parameters as

random variables that have also the constraints �
(s)
nj � 0 and

PK
j=1 �

(s)
nj = 1.

Imposing spatial smoothness is a significant key to certain image processing

applications since it is an important a priori known property of images. Examples

of such applications include denoising, restoration, inpainting and image segmenta-

tion problems 12;21. In a probabilistic framework, smoothness is expressed through

a prior imposed on image features. This is achieved by Markov Random Filelds

(MRFs) as inspired by the Ising model, that utilized them as a powerful tool to

impose spatial coherence on mixture models and image segmentation. A common

method using MRF is to impose spatial smoothness directly on the hidden variable,

which indicates the label of image pixels. Due to the coupling of model parameters,

Hidden Markov Random Field (HMRF) is not computationally feasible, simula-

tion and variational methods are used to make it tractable, such as mean-field
21. However the computational cost of these methods remains quite high. Another

commonly used spatial mixture model based on MRF is Spatially Variant Mixture

Model (SVMM) 6;46 that imposes spatial constraint on the prior probability indi-

cating the label of pixels. More specifically, MRF introduces a prior distribution

that takes into account the neighborhood dependency or relationship among the

neighboring pixels. Then, the posteriori density function consists of two terms: a

likelihood term which is exclusively based on the intensity distribution of the data

and captures the pixel intensity information, and a biasing term that uses the MRF

component capturing the spatial location information. Thus, through the applica-

tion of a suitable prior density function a mechanism is introduced that models the

local correlation in the parameter estimation process.

A well - known approach to introduce MRFs related to image models is to
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define them on a lattice. In an MRF the sites are related to one another via a

neighborhood system. It can characterized by a Gibbs distribution according to

an energy function which is a sum of clique potentials over all possible cliques of

the lattice. A clique is defined as a subset of sites in which every pair of distinct

sites are neighbors depending on the local configuration. More specifically, MRF

assumes that the data are related to each other via a neighborhood system defined

asN = fNn; n = 1; � � � ; Ng, whereNn is the set of neighboring sites of n. According

to the Hammersley-Clifford theorem 21, an MRF can equivalently be characterized

by a Gibbs distribution. Thus,

P (x) =
1

Z
expf�U(x)g (6)

where

Z =
X
x2X

expf�U(x)g (7)

is a normalizing constant called the partition function, and U(x) is an energy func-

tion of the form

U(x) =
X
c2C

Vc(x) (8)

which is a sum of clique potentials Vc(x) over all possible cliques. For more detail

on MRF and Gibbs distribution see 21.

For the standard GMM the degree of belief that the n-th time series of s-

th slice belongs to the j-th cluster is express through z
(s)
nj (Eq. 4). However, in

this expression spatial correlations do not exist. This is achieved by inserting an

appropriate prior distribution over the mixing probabilities, considering that there is

an influence of neighboring positions for estimating the cluster labels of observation

y
(s)
n . In particular, we consider a Gibbs distribution over mixing labels parameters,

that establishes spatial dependencies and offers smoother solutions. We assume a

Gibbs potential function of the following formulation:

#
(s)
nj =

X
m2N (s)

n

z
(s)
nj z

(s)
mj . (9)

This function acts as a spatially variant smooth filter to the posterior values (es-

timations) and it works like a voting system i.e. a particular voxel will take the

class label of the majority of voxels found in its neighborhood. It must be noted

that we consider as neighborhood N (s)
n the set containing voxels that are vertically,

horizontally and diagonally adjacent to voxel n (3� 3� 3 grid area).

The quantity #
(s)
nj can be seen as a metric that describes our belief that the

n-th time series belongs to j-th cluster. This is expressed as a weighted average of

z
(s)
nj , using as weights the probabilities of neighborhood z

(s)
mj ;m 2 N

(s)
n (see Eq.9).

Furthermore, we can observe that the following inequality holds:

0 � #(s)
nj � jN

(s)
n j .
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There are two marginal cases: If z
(s)
mj ! 0, m 2 N (s)

n then #
(s)
nj ! 0. This happens

when there is totally disagreement with the cluster probabilities of neighboring

sites. In the second case, z
(s)
mj ! 1 leads to #

(s)
nj ! jN

(s)
n j. This means that we have

perfect agreement between the examined position its neighborhood. Finally, the

updated rule for the mixing probabilities �
(s)
nj is given by the softmax operation:

�
(s)
nj /

exp (#
(s)
nj )PK

k=1 exp (#
(s)
nk )

(10)

Note that the above formulation meets the constraints of �
(s)
nj (positivity and

summation to one). Another advantages of softmax is its simplicity and its non-

parametric nature. The softmax operation is a normalized exponential and it rep-

resents a smoothed version of the max function. Also, this operation holds another

one useful property with respect to the mixing probabilities. In general, for the

derivatives with respect to the mixing coefficients, we need to take account of the

constraints (sum to one) which follow from the interpretation of the mixing co-

efficients as prior probabilities. However, in our case, this can be done easily by

expressing the mixing coefficients with the softmax transformation.

When a regression model is used, a serious problem is how to determine its

order M , i.e. the number of linear regression coefficients wj . Accurate estimation

of the order is crucial since models of small order may lead to under-fitting, while

large values of M may become responsible for data over-fitting. Hence, the cluster-

ing performance may be undermined by the improper model order. Reguralization

approaches provides a solution to this problem. Among them, the Bayesian regular-

ization framework is the most notable, giving us a elegant solution to this problem
39;4. Within this framework a large value of order M is assumed. However, a heavy

tail prior distribution is used over the regression coefficients. This particular prior

put in action a procedure where the most important coefficients are kept while

zeroing the remaining coefficients.

To impose sparse properties over the regression coefficients, an hierarchical

model, with two - levels of hierarchy, is used39. At the first level, we consider a

zero-mean Gaussian distribution over the regression coefficients:

p(wj j�j) = N (wj j0;A�1
j ) =

MY
l=1

N (wjlj0; ��1
jl ) , (11)

where Aj is a diagonal matrix containing the M components of the precision (in-

verse variance) vector �j = (aj1; : : : ; ajM ). Then, at a second level, precision can

be seen as hyper-parameters that follow a Gamma prior distribution:

p(�j) =

MY
l=1

Γ(�jljb; c) /
MY
l=1

�b�1
jl exp�c�jl . (12)

Note that both Gamma parameters b and c are a priori set to zero so as to achieve

uninformative priors. The above hierarchical prior is a sparse prior, and more specif-



May 30, 2019 15:6 WSPC/INSTRUCTION FILE output

10 Authors’ Names

ically is a Student’s-t distribution. An important property of this prior is that en-

forces most of the values �jl to be large and thus eliminating the effect of the

corresponding coefficients wjl by setting to zero. As we see, the order M for ev-

ery cluster is automatically selected and, hence, over-fitting is avoided. Sparsity

is a property that has widely been used in fMRI data analysis with great success
11;30;29;28;3.

The clustering procedure becomes now a Maximum-A-Posteriori (MAP) esti-

mation problem, where the MAP log-likelihood function is given by

lMAP (Θ) =

SX
s=1

NsX
n=1

logf
KX
j=1

�
(s)
nj p(y

(s)
n j�j)g+

KX
j=1

�
log p(wj j�j) + log p(�j)

	
. (13)

where Θ = f�j = (wj ;�j ; �
2
j )gKj=1.

Employing the EM algorithm to MAP estimation requires at each iteration the

conditional expectation values z
(s)
nj of the hidden variables to be computed first

(E-step):

z
(s)
nj =

�
(s)
nj p(y

(s)
n j�j)PK

k=1 �
(s)
nk p(y

(s)
n j�k)

. (14)

Also, during the M- step the following updated rules are obtained:

wj =
h� SX

s=1

NsX
n=1

zsnj

� 1

�2
j

XTX + Aj

i�1

� 1

�2
j

XT
� SX
s=1

NsX
n=1

z
(s)
nj y(s)

n

�
, (15)

�jl =
1 + 2c

w2
jl + 2b

, (16)

�2
j =

PS
s=1

PNs

n=1 z
(s)
nj ky

(s)
n �Xwjk2

T
PS
s=1

PN
n=1 z

(s)
nj

. (17)

The above equations are applied iteratively until convergence. Furthermore, �
(s)
nj are

calculated by using Eq. (10). At the end, we assign cluster labels to each sequence

y
(s)
n according to the maximum posterior probability (Eq. 14). A schematic repre-

sentation of the overall data analysis procedure can be seen in Fig. 1. After image

acquisition and data preprocessing, the step of statistical analysis is taken place in

order to find the RSNs (decision step). In our approach the statistical analysis step

includes the estimation of model parameters. After that a simple rule is applied on

posterior probabilities znj to find the clusters, and hence the RSNs.
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Fig. 1. A four - step schematic representation of the overall procedure for fMRI time series analysis.
The proposed iterative algorithm is taking place to the step ”Statistical Analysis of time series”.

4. Experimental results

The proposed regression mixture model has been evaluated using a variety of ar-

tificial datasets and real benchmarks. For initializing the EM algorithm we have

executed 100 two-EM-steps runs with random initialization and keep the best one

according to the log-likelihood function. After that the EM is normally executed

until convergence. In the simulation data the number of components equals to the

preselected signal sources. In the human data, we visually compared the results

with the standard resting state networks of the normal brain after multiple trials

with different number of components.

This section is organized as follows: first, we present the experiments with simu-

lated data. Also, at this stage of experiments, a comparison with various clustering

algorithms is performed. Then, we present experiments using two real resting - state

fMRI datasets. In the case of real datasets, our method was also compared with

the temporally concatenated ICA approach using the FSL Melodic ICA toolkit a.

4.1. Experiments with simulated data

The purpose of making experiments with simulated dataset is to examine the capa-

bility of our method to detecting and differentiating the true sources of signals and

their spatial profile. During the experiments with simulated fMRI data, we have

ahttps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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Fig. 2. Axial, Coronal and Saggital view of 8 clusters

created 4-D datasets of time series using linear regression models with known design

matrix and regression coefficients. To create the spatial patterns in 3D space, we

build a 3D brain model by using the Automated Anatomical Labeling (AAL) digital

brain atlas. The spatial patterns are constructed by merging various brain regions

from above atlas. A graphical representation of them is provided in Fig. 2. In the

experiments with simulated data the number of clusters was set to 8 (K=8). and

for each SNR level we execute 50 Monte Carlo simulations. Finally, we compared

the proposed method with:

� the classical k - means algorithm

� the rGMM ML method. This a simplified model of our proposed method

without using spatial and sparse properties. This method is described in

section 2.

� the classical GMM ML method with a diagonal covariance4.

Since we are aware of the ground truth, the quality of each clustering approach

was measured using two evaluation criteria:

� the classification accuracy, calculated as the percentage of correctly labelled

time series, and

� the normalized mutual information (NMI), which is an information theo-

retic measure based on the mutual information between of the true labelling

(Ω) and the clustering (C) normalized by their entropies:

NMI(Ω; C) =
I(Ω; C)

(H(Ω) +H(C))=2
, (18)
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where

I(Ω; C) =
X
k

X
j

P (!k; cj) log
P (!k; cj)

P (!k)P (cj)
,

H(Ω) = �
X
k

P (!k) logP (!k) , H(C) = �
X
k

P (ck) logP (ck) .

The quantities P (!k), P (cj) and P (!k; cj) are the probabilities of a se-

quence being in class !k, cluster cj and in their intersection, respectively,

and are computed based on set cardinalities (frequencies).

4.1.1. Experiments with Gaussian time series

In the first series of experiments we have created time series according to a known

regression model, i.e. known design matrix and regression coefficients. In particular,

we have used a discrete cosine transform (DCT) matrix of size NxN , where N

the length of time series (in our case N = 128). In these time series, we have

added white Gaussian noise of various SNR levels. To conclude, each time series

y is created by linear regression model where the design matrix, the regression

coefficients and the Gaussian distribution of noise is known i.e. y = Xb + e. The

product Xb represents the mean of the cluster. The results, with respect to the

aforementioned performance measures, are shown in Fig. 3 in terms of errorbars.

We can observed that the proposed method clearly outperforms all other approaches

in terms of accuracy and NMI. Also, by examining the performance of the proposed

method, the GMM ML and the rGMM ML we can see the usefulness of adopting

a regression model for modeling the time - series. The classical GMM ML method

presents the worst performance over all mixture based methods. This is expected

since the regression based mixtures model more accurately the structures that can

be found inside a time series such as temporal correlations. Overall, the constraints,

that are imposed by the regression model, to the mean and the covariance of each

mixture’s component provide us with more accurate modeling of the time series,

which is reflected into better performance.

4.1.2. Experiments with non-Gaussian time series

In the non Gaussian case we have followed the same strategy as previous. The

only difference is that the mean of each cluster is transform by sinh function, i.e.

y = sinh(Xb) + e. The results are shown in Fig. 3 in terms of errorbars. We

can observe that the proposed method presents, clearly, outperforms, in terms of

accuracy and NMI, all other methods in the case of 10,5,0,-5 dB SNR, while in

the case of -10dB SNR, the proposed method and the k-means present similar

performance. Finally, we can see that the performance of each method is degraded

when non Gaussian time series are used. It is worth to point here that in very

noisy environments (below -5 dB) we observed a significant deterioration in the
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(a)

(b)

Fig. 3. Results on simulated datasets (a) Gaussian time series and (b) non-Gaussian time series.

performance of rGMM ML method. This is expected since this method is based

on ML principle and it is overfitted in the noisy data. Concluding this section, we

can observed that a regression based mixture model with spatial properties is very

useful in cases where spatial correlation between the time series are expected.

4.2. Experiments using real fMRI time series

Our experiments in the previous section have shown that the proposed Gaussian

Mixture model presents much better performance from many variants of mixture

modelling idea so in this section we use only our method from mixture modelling

approaches. We provide comparisons of our method with the k-means and the ICA

approach. The k-means method is used as an alternative clustering approach and

it can be considered as the baseline method for any clustering procedure. The com-

parison with the ICA approach is based on the fact that this method is widely used

for the identification of brain networks in resting state fMRI data. In the first series

of experiments we perform single subject analysis and group analysis by using our

method and the k-means. Also, a qualitative comparison between the two methods
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is performed. These series of experiments have the goal to check if our method

produces brain networks consistent with those reported in the literature. Then,

in the second series of experiments, a more thorough quantitative and qualitative

comparison of our method with the ICA approach is performed. In addition to the

above, we examine the behaviour of our method across different fMRI datasets.

Experiments were made using real fMRI data. We downloaded two resting -

state fMRI datasets from the ’1000 Functional Connectomes’ Project. The name

of the first dataset (Dataset1) is ’Berlin Margulies’b. This dataset contains resting

state fMRI data from 26 healthy subjects, where we have used the first ten sub-

jects for performing our study. Also, we have downloaded the Neuroconc dataset1

(Dataset2) from ’1000 Functional Connectomes’ Project. This dataset contains rest-

ing state fMRI data from 27 PD patients and 16 age-matched normal controls. For

the resting-state scan, subjects were instructed to close their eyes and think nothing

in particular without falling asleep. In order to perform our analysis we selected

the first 3 subjects belonging to the control group.

Before analyzing the fMRI data, several standard preprocessing steps were made

using the SPM package d. These include: realignment, co-registration, segmenta-

tion, normalization and spatial smoothing. After that, a mask, based on Harvard

Oxford Atlas, was applied in order to exclude regions that do not contain activa-

tion. Furthermore, the time series have been filtered to keep the frequency contents

from 0.001Hz to 0.09Hz. In addition, when we perform a group analysis the time

series of subjects have been concatenated into one large dataset. Also, in group

analysis case, each time series has been downsampled by a factor of 4 in order to

reduce the size of the data. A downsampling factor below this value will affect the

low frequency components related to resting state time series. Finally, the number

of clusters was set to be K = 7. This number has been selected after applying our

algorithm many times with different number of clusters and compared the results

with well - known resting state networks.

4.2.1. Single Subject analysis

At first, we perform a single subject analysis by using fMRI data of the first two

subjects from Dataset1. RSNs for the first subject using our method and the k-

means algorithm are shown in Figs 4 and 5, respectively. While the RSNs for the

second subject using our method and the k-means algorithm are shown in Figs 6,

7, respectively.

The obtained clusters of our method for subject 1 are shown in Fig. 4. More

specifically, we can observe that cluster 1 contains the middle temporal gyrus (BA

21), the temporopolar area (BA 38), the superior temporal gyrus (BA 22) and the

bhttp://fcon 1000.projects.nitrc.org/fcpClassic/FcpTable.html
chttp://fcon 1000.projects.nitrc.org/indi/retro/parkinsons.html
dSPM web page http://www.fil.ion.ucl.ac.uk/spm
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Pars triangularis (BA 45). It can be recognized as a frontal temporal network. Clus-

ter 2 contains the Primary Motor Cortex (BA 4), the Supplementary Motor Area

(BA 6), the Primary Somatosensory Cortex (BA 1,2 and 3), the Somatosensory

Association Cortex (BA 5) and the Frontal Eye fields (BA 8). It is a sensorimotor

network. Cluster 3 contains the anterior/dorsolateral prefrontal cortex (BA9/10),

parts of cingulate cortex (BA 23/26), and the precuneus (BA 7). It can be recog-

nized as the DMN. Cluster 4 contains the auditory cortex (BA 42) and the superior

temporal gyrus. This network is an auditory network. Cluster 5 contains the cin-

gulate cortex (BA 24 and 29), parts of the frontal lobe (BA 46,BA 44, BA 8 and

BA 9), and parts of the Somatosensory Association Cortex (BA 7) . It is a salience

processing network. Cluster 6 can be recognized as the Visual network. Cluster

7 contains parts of the orbitofrontal area and the inferior temporal gyrus. It is a

frontal-temporal network.

The obtained clusters of kmeans algorithm for subject 1 are shown in Fig. 5.

Cluster 1 can be recognized as the visual network. Cluster 2 contains parts of frontal

lobe (BA 8, 9 44,45 and 46) and parts of Somatosensory Association Cortex (BA

7 and 5). It is an executive processing network. Cluster 3 contains the Inferior

temporal gyrus (BA 20), the orbitofrontal area (BA 11), the Pars orbitalis (BA

47), the temporopolar area (BA 38) and the middle temporal gyrus (BA 21). It

is a frontal temporal network. Cluster 4 contains the auditory cortex (BA 42)

and the superior temporal gyrus (BA 22). It is an auditory network. Cluster 5

contains the Primary Motor Cortex (BA 4), the Supplementary motor area (BA

6), the Somatosensory Association Cortex (BA 5) and the Primary Somatosensory

Cortex (BA 1,2 and 3). It is a sensorimotor network. Cluster 6 contains parts of

prefrontal cortex (BA 9 and10), parts of cingulate cortex (BA 32 and 23) and the

Precuneus (BA 5 and 7). It can be recognized as the DMN. Cluster 7 contains parts

of cingulate cortex (BA 29,24 and 23 ), parts of auditory cortex (BA 41), and parts

of the prefrontal cortex (BA 9 and 46). It is a salience processing network.

The obtained clusters of our method for subject 2 are shown in Fig. 6. We see

that cluster 1 contains the inferior temporal gyrus (BA 20), the middle temporal

gyrus (BA 21), the temporopolar area (BA 38) and the orbitofrontal area (BA 11).

It is a frontal - temporal network. Cluster 2 contains parts from Motor Cortex (BA

1,2,3,4 and 5) and parts from Primary Visual Cortex (BA 17). It is a Visual - Motor

network. Cluster 3 contains the Precuneus (BA 7), the Anterior prefrontal cortex

(BA 10) and parts of cingulate cortex (BA 32 and 23). It can be recognized as the

DMN. Cluster 4 contains the Associative visual cortex, the secondary visual cortex

and the remaining parts of primary visual cortex (BA 17). It can be recognized

as the Visual Network. Cluster 5 contains parts of Cingulate cortex (BA 23, 24

29) and the Somatosensory Association Cortex (BA 7). It is a salience processing

network. Cluster 6 contains Brocas area (BA 44), parts of Auditory Cortex (BA

42), parts of Supplementary Motor Areas (BA 6) and parts of frontal lobe (BA 8

- Includes Frontal eye fields). It is a motor - auditory network. Cluster 7 contains




