
1640 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

Short Papers

Single and Variable-State-Skip LFSRs: Bridging the
Gap Between Test Data Compression and Test Set

Embedding for IP Cores

Vasileios Tenentes, Xrysovalantis Kavousianos, and
Emmanouil Kalligeros

Abstract—Even though test set embedding (TSE) methods of-
fer very high compression efficiency, their excessively long test
application times prohibit their use for testing systems-on-chip
(SoC). To alleviate this problem we present two new types
of linear feedback shift registers (LFSRs), the Single-State-Skip
and the Variable-State-Skip LFSRs. Both are normal LFSRs with
the addition of the State-Skip circuit, which is used instead of the
characteristic-polynomial feedback structure for performing successive
jumps of constant and variable length in their state sequence. By
using Single-State-Skip LFSRs for testing single or multiple identical
cores and Variable-State-Skip LFSRs for testing multiple non-identical
cores we get the well-known high compression efficiency of TSE with
substantially reduced test sequences, thus bridging the gap between test
data compression and TSE methods.

Index Terms—IP core testing, linear feedback shift registers (LFSRs),
test data compression (TDC), test set embedding (TSE).

I. Introduction

Many efficient test data compression (TDC) techniques have
been proposed for testing digital systems. Most of them exploit
the capabilities offered by the automatic test pattern generation
(ATPG) and fault simulation tools during the encoding process,
in order to offer high compression efficiency (see [2], [11],
[12], [19]). However, in many cases, digital systems embed IP
cores which hide their structure from the system integrator. For
such cores the utilization of ATPG and fault simulation tools
is not an option. Various compression methods have been pro-
posed for IP cores, which encode pre-computed test sets using
linear decompressors [1], [13], [14], [16], [21], [25], [26], or
various compression codes [3], [5], [8]. There are also methods
that do not belong in the above categories (see [18], [20]).

Test set embedding (TSE) techniques offer another very
effective means for compressing the test sets of IP cores. TSE
approaches require considerably less test data storage than
TDC methods, as they use long pseudorandom sequences gen-
erated on-chip, in order to embed the pre-computed test vectors
of IP cores [6], [7], [9], [17], [22]. Even though TSE tech-
niques are very attractive in terms of compression ratio, their
excessively long test application times make them impractical.

In this paper, two novel linear feedback shift register
(LFSR) architectures are presented, which drastically

Manuscript received August 31, 2009; revised December 11, 2009 and
March 4, 2010. Date of current version September 22, 2010. This paper was
recommended by Associate Editor R. D. (Shawn) Blanton.

V. Tenentes and X. Kavousianos are with the Department of Com-
puter Science, University of Ioannina, Ioannina 45110, Greece (e-mail:
tenentes@cs.uoi.gr; kabousia@cs.uoi.gr).

E. Kalligeros is with the Department of Information and Communication
Systems Engineering, University of Aegean, Samos 83200, Greece (e-mail:
kalliger@aegean.gr).

Digital Object Identifier 10.1109/TCAD.2010.2051096

shorten the test sequences of LFSR-reseeding-based TSE
techniques: the Single-State-Skip LFSRs (SSS−LFSRs) and
the Variable-State-Skip LFSR (VSS−LFSR). A SSS−LFSR
is an ordinary LFSR with the addition of a small linear
circuit, the State-Skip circuit, which offers the capability of
performing successive jumps of constant length in the LFSR
state sequence. SSS−LFSRs use this capability to drastically
shorten the test sequence of a test set embedding method by
traversing very fast its useless parts. A VSS−LFSR is more
flexible and achieves greater TSL reduction compared to a
SSS−LFSR, since it embeds multiple State-Skip circuits, and
thus it can perform jumps of variable lengths in the state
sequence. VSS−LFSR fully exploits the State-Skip property
for testing multiple IP cores in a system-on-chip (SoC), at
the expense of a moderate increase in the hardware overhead,
which is though comparable to that of most state of the art
compression schemes. Both State-Skip LFSRs offer very
short test sequences, very close to the test sequences of test
data compression methods, with significantly smaller test data
volumes (TDVs). Therefore, State-Skip LFSRs bridge the gap
between test data compression and TSE techniques, rendering
the latter an attractive testing approach for IP cores.

The concept of “state skipping” has been reported in [24]
in a built-in-self-test environment, but it exhibits fundamental
differences compared to the proposed scheme. Specifically,
[24] presents a method to design “state skipping” logic which
causes the circular chains to break out of the limit cycles
and correlations, while the proposed State-Skip circuits are
systematically designed to perform successive jumps of con-
stant length in the LFSR state sequence, in order to reduce the
length of a long deterministic TSE sequence.

II. Motivation

In classical LFSR reseeding [10], every seed encodes a
single test cube by solving a system of linear equations. This
system is constructed by considering the initial state of the
LFSR as a set of variables and by symbolically simulating
the LFSR. The solution of each system constitutes a seed of
the LFSR. The system with the maximum number of linear
equations corresponds to the test cube with the maximum
number of specified bits, smax, which in turn determines the
minimum required LFSR size. By using one seed for encoding
each test cube the achieved compression is moderate, since
usually in a test set there are many test cubes with fewer
specified bits than smax. As a result, a lot of variables remain
unspecified when the corresponding systems are solved, and
therefore much of the potential of LFSR encoding is wasted.

Various methods have been proposed for solving this
problem (see [9], [12]). A very attractive one is the window-
based LFSR encoding which utilizes the same seed for
encoding more than one test cube in a sequence of L
(L > 1) pseudorandom vectors [9]. In other words, each

0278-0070/$26.00 c© 2010 IEEE

TENENTES et al.: SINGLE AND VARIABLE-STATE-SKIP LFSRS: BRIDGING THE GAP BETWEEN TEST DATA COMPRESSION AND TEST SET EMBEDDING 1641

TABLE I

TDV, TSL: Classical(L = 1) and Window-Based (L > 1) Reseeding

seed is expanded into a window of L vectors, instead of
one. Table I presents the compression improvement achieved
by increasing the window size L for the largest ISCAS’89
benchmark circuits, assuming 32 scan chains. For all the
experiments uncompacted test sets generated by Atalanta
[15], for 100% coverage of stuck-at faults were used (note
that for the ISCAS circuits, the fill rates of uncompacted test
sets are in the range of 1%–5%, which resemble the low fill
rates of compacted test sets of large designs). As window
size L increases, TDV improves a lot, but the test sequence
length (TSL) grows rapidly and becomes prohibitively long.

III. Encoding Method

In the sequel, the term “test cube” refers to a test pattern
with “0,” “1,” and “x” (unspecified) logic values, and the term
“test vector” refers to a test pattern without “x” logic values.

An efficient method to reduce the TSL of LFSR reseeding
with L > 1 is the use of State-Skip circuits [23]. A State-Skip
circuit is integrated within the LFSR structure and offers the
potential to perform jumps of constant length in the LFSR
state sequence. Specifically, if we consider an LFSR with n
cells, c0, c1, . . . , cn−1, and assuming that the contents of cell
ci at clock cycle tj is ci(tj), we can derive n linear expressions
Fk

0 ,. . . , Fk
n−1that satisfy the following relations for every value

of i, k:

c0(ti+k) = Fk
0 (c0(ti), c1(ti), . . . , cn−1(ti))

... ∀i

cn−1(ti+k) = Fk
n−1(c0(ti), c1(ti), . . . , cn−1(ti)).

When k = 1, the above expressions represent the operation of
the LFSR according to its characteristic polynomial. The linear
expressions Fk

0 , . . . , Fk
n−1 are easily calculated by setting i = 0

and simulating the LFSR symbolically for k successive clock
cycles. After the kth clock cycle, the contents of the LFSR
cells c0(tk), ..., cn−1(tk) are linear expressions of the initial
contents c0(t0), ..., cn−1(t0) of the LFSR cells, and they
constitute the expressions Fk

0 , ..., Fk
n−1 (more details can be

found in [23]).
The SSS−LFSR can be constructed by integrating

Fk
0 , ..., Fk

n−1 in the LFSR structure. The modified LFSR op-
erates in two different modes, Normal and State-Skip. In
Normal mode, the sequence of the LFSR states is generated
according to the characteristic polynomial, whereas in State-
Skip mode, the state sequence is generated by the integrated
linear circuit implementing the Fk

0 , ..., Fk
n−1 functions. When

the LFSR operates in State-Skip mode, it performs a jump of

k states ahead at every cycle, skipping in this way the k − 1
intermediate states which would have been generated if the
LFSR had operated in the Normal mode. Therefore, in State-
Skip mode, the generated vector sequence is shortened by a
factor k, which is called hereafter speedup factor.

SSS−LFSRs can be combined with efficient encoding meth-
ods, like [9], in order to provide a unified solution with small
test data volume and short TSL. To this end, we propose a
unified seed computation and test sequence reduction process
consisting of four steps. During step 1, the test cubes are
encoded using the window-based LFSR reseeding proposed
in [9], which is very efficient in terms of compression ratio
(other encoding methods can be also used). According to this
method every seed is computed so as to encode as many test
cubes as possible in the sequence of L successive test vectors
(L is the vector-window size). Even though [9] achieves high
compression results, usually, most of the test vectors of a seed
do not encode any test cubes. These pseudorandom test vectors
can be omitted by using the State-Skip mode. To this end,
during step 2 we partition the test sequence generated by each
seed into useful and useless parts as follows: we first partition
the window of test vectors into L/S segments of size S, where S
is a designer-defined parameter in the range [1, L]. During step
3 we determine if each segment is useful or useless. A segment
is useful if it embeds at least one test cube not embedded in
any other useful segment; otherwise it is a useless one. This
reduces the number of useful segments when sparsely specified
test cubes fortuitously appear in multiple segments.

The test sequence of every seed can be further shortened
if the generation of the test vectors of the seed is terminated
immediately after the generation of the last useful segment.
To this end, during step 4 the groups are sorted in ascending
order of their useful segment (i.e., group 1 contains all the
seeds with one useful segment, group 2 contains all the seeds
with two useful segments, etc.). The seeds are applied in
this order and thus the decompressor uses only a counter to
indicate the current group (this counter is incremented every
time the first seed of each group is loaded in the LFSR). At
the same time, every seed belonging to group i comprises
exactly i useful segments. The decompressor keeps track of
the number of useful segments applied to the core under test
(CUT) for every seed, and when the last (i.e., the ith useful
segment) is applied, it immediately terminates the generation
of the test vectors of the current seed and initiates the loading
of the next seed from the automatic test equipment (ATE).

IV. SSS−LFSRs: Architecture And Limitations

The SSS−LFSR architecture [Fig. 1(a)] consists of three
units: the Vector Generation unit, the Controller unit, and the
Segment Type unit.

Vector Generation unit consists of the LFSR, the phase
shifter and the State-Skip circuit. Controller unit controls the
operation of decompression and specifically the generation of
all segments. The Group Counter is initialized to the value “1”
and is incremented by one at the beginning of every new group
of seeds. For each group, the seed counter is initialized to “0”
and increases whenever a new seed of the group is loaded

1642 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

Fig. 1. (a) SSS−LFSR decompression architecture. (b) VSS−LFSR decompression architecture.

in the LFSR. Every time a new seed is loaded in the LFSR,
Useful Segment Counter is loaded with Group Counter’s value
and thus it is set equal to the number of useful segments of
the seed (note that every seed of group i consists of exactly
i useful segments). At the same time, the Segment Counter
is initialized to “0.” For every new generated segment, the
Segment Counter is incremented by one and the Segment Type
unit determines if this segment is useful or not. For every
generated useful segment, Useful Segment Counter decreases
by one. When the Useful Segment Counter reaches “0,” Seed
Counter is incremented and the next seed is loaded in the
LFSR from the ATE.

The Segment Type unit consists of the Mode Select block
and the Decoder block. The Mode Select block receives the
decoded outputs of the Segment, Seed and Group Counter and
determines if the next segment is a useful or a useless one. It
generates the Mode signal that puts the Vector Generation unit
in Normal Mode (the segment is useful and is generated using
the characteristic polynomial of the LFSR), or in SSS mode
(the segment is useless and it is skipped using the State-Skip
circuit). The overhead of this combinational circuit depends
mainly on the total number of useful segments, which are
only a very small portion of the total segments.

When multiple non-identical IP cores exist in a SoC, the
TSL reduction potential of State-Skip circuits cannot be fully
exploited by the SSS−LFSR architecture. This is attributed to
the design of an SSS−LFSR, which has to be based on a single
set of values for S, L, k. It is highly unlikely that the TSL of
every core will be drastically shortened using the same values
of S, L and k. Therefore, for minimizing the overall TSL, the
system integrator has either to use a separate decompressor
for each core, or to share a single decompressor among all
cores, limiting though the maximum TSL reduction than can
be achieved.

V. Variable-State-Skip LFSRs

VSS−LFSRs consist of multiple State-Skip circuits that
implement different speedup factors, and thus they are able to
perform jumps of variable lengths. We confine our study to the
case of VSS−LFSRs that incorporate two State-Skip circuits,
one with a small (k) and one with a large (K) speedup factor.
The reason for this choice is that we observed that two speedup
factors are sufficient to achieve very high TSL reduction.

A VSS−LFSR with two State-Skip circuits operates in two
State-Skip modes: 1) K-mode which enables the VSS−LFSR

to perform a long jump of K cycles ahead; and 2) k-mode
which enables the VSS−LFSR to perform a short jump of
k cycles ahead. Let A be the number of useless segments
between two useful segments Si, Sj (j = i + A + 1). The
total length (in clock cycles) of these A useless segments is
C = A·S·r(S is the segment size, and r the length of the longest
scan chain of the CUT). Then an ordinary LFSR requires
C cycles for traversing these useless segments. By using the
VSS−LFSR, these segments can be traversed much faster. At
first K-mode is used (the LFSR performs long jumps of length
K) for C1 = �C/K� successive cycles. Then the VSS−LFSR
switches to k-mode (the LFSR performs short jumps of length
k) for C2 = �(C − C1·K)/k� cycles. Finally, Normal mode
is used for C3 = C − C1 · K − C2 · k cycles. Thus, instead of
C cycles, only C1 + C2 + C3 << C cycles, are required for
traversing the useless segments.

The VSS−LFSR architecture is shown in Fig. 1(b). Except
for the Look-Ahead unit, which will be described in detail,
the remaining units are similar to the units of SSS−LFSR.

The Look-Ahead unit consists of the Segment Look-Ahead
counter and the Jump Select Block. The Look-Ahead unit has
two different modes of operation: 1) the C-calculation mode
for locating the next useful segment; and 2) the C-skipping
mode for controlling the Vector Generation unit so as to
traverse the intermediate useless segments in K-mode, k-mode,
or Normal mode. The Look-Ahead unit enters the first mode at
the beginning of the generation of every useful segment, say Si.
Then, during the generation of useful segment Si, it calculates
the value of C, i.e., the number of cycles than must be skipped
after the generation of useful segment Si, in order to reach the
next useful segment, let say Sj . This calculation is done on
the fly, concurrently with the generation of the test vectors
of Si. Specifically, while the test vectors of segment Si are
applied to the core, the next segments (Si+1, Si+2, . . .) are ex-
amined one by one by increasing the value of Segment Look-
Ahead counter (i+1, i+2, . . .) until the next useful segment Sj

is found (the Mode Select unit monitors the Segment Look-
Ahead counter and activates signal FoundUsefulSegment when
Sj is found). For every useless segment found, the value S·r
(i.e., its size in cycles) is added to Cycle counter. Conse-
quently, when the next useful segment is found, this counter
contains the number C of intermediate clock cycles between Si

and Sj . After the calculation of C, and upon completion of the
generation of the test vectors of useful segment Si, the Look-
Ahead unit enters the second mode (the C-skipping mode).

TENENTES et al.: SINGLE AND VARIABLE-STATE-SKIP LFSRS: BRIDGING THE GAP BETWEEN TEST DATA COMPRESSION AND TEST SET EMBEDDING 1643

TABLE II

Comparisons With Both TDC and TSE

Then, the value of Cycle counter is compared against K, and
while it is greater than or equal to K, the K-mode is used and
the counter is decremented by K (i.e., at every clock cycle,
K states of the LFSR sequence are skipped). When the value
of Cycle counter drops below K, the above process continues
with comparisons against k and the counter is decremented
by k. When Cycle counter drops below k, then the Normal
mode is used and the counter is decremented by 1 until it
reaches 0. At this point the LFSR is already at the first state
of useful segment Sj , and thus its generation begins.

We have to note that the Mode Select unit depends on the
test set and it should be re-implemented for every core in a
multi-core environment, whereas the rest of the units are com-
mon for all cores. Additionally, the ATE-SoC synchronization
problem can be avoided by inserting small first-in first-out
(FIFO) memory between the LFSR and the ATE channels
(see [4]).

VI. Comparisons

We have conducted extended experiments (which are omit-
ted due to lack of space) and we verified that for SSS−LFSRs,
the improvement increases when speedup factor k increases
and/or segment size S decreases. The TSL reduction is high
for relatively small values of k and improves as k increases,
but the improvement saturates for large values of k. At the
same time, the hardware overhead of the State-Skip circuit
increases almost linearly with k. Based on these observations
we used values of k in the range [12, 24], which offer high
TSL reduction and small hardware overhead of State-Skip
circuit (between 60 and 100 gate equivalents on average—
one gate equivalent or g.e. corresponds to a 2-input NAND

gate). Similar observations were made for VSS−LFSRs, with
the addition that the overhead of the State-Skip circuit exhibits
significant fluctuations (i.e., ups and downs) for large values of
K. Therefore, we chose high speedup factors (between 54 and
318) near to local minimums. Such speedup factors achieve
high performance and low State-Skip circuit area overhead at
the same time (between 50 and 250 g.e.). In all cases, segment
sizes in the range [2, 10] were used.

In Table II we compare the proposed methods against the
most efficient TSE and TDC methods, which are suitable
for IP cores of unknown structure. The TSL (reported in
vectors) and TDV (reported in Kbits, with 1 Kbit = 103 bits)
comparisons of the proposed SSS−LFSRs (labeled as SSS)
and VSS−LFSRs (labeled as VSS), for L = 200, against
the TSE approaches of [9] and [17] are presented in the
shaded columns. Both SSS−LFSRs and VSS−LFSRs exhibit

very short test sequences compared to both [9] and [17]. The
approach of [17] has very small ATE-memory requirements,
but extremely long TSL. Moreover, in [9] it is shown that the
hardware overhead required for implementing this method is
prohibitively large (between 1300 and 9800 g.e. for 32 scan
chains, and 4500–12 500 g.e. for 64 scan chains, for the larger
ISCAS’89 circuits).

Table II compares also the proposed SSS−LFSRs and
VSS−LFSRs for L = 200, against the most efficient TDC
methods that are suitable for IP cores of unknown structure
and report results for the ISCAS benchmarks (not shaded
columns). Furthermore, comparisons are provided against a
version of dynamic reseeding that we implemented using ring
generators [19] instead of LFSRs. Contrary to the dynamic
reseeding of [19], the fault simulation step was omitted in
this implementation, in order to comply with the testing
requirements of IP cores (note that, as expected, the omission
of the fault simulation step adversely affects the TDV). In all
but one case (s38417) the proposed method performs better
than the compared TDC methods, in terms of TDV. We have
to note though that in the case of s38417, the specified-bits
volume of the utilized test set is very high (93 123 specified
bits) and this negatively affects the achieved compression.
With respect to the TSL results, we have to note that the
proposed method offers much shorter test sequences than the
rest TSE techniques, but longer test sequences than the TDC
methods. Much shorter test sequences can be achieved by
using smaller window sizes (e.g., 100, 50, etc.).

Next, we present the hardware overhead of the proposed
decompressors. We focus on s13207, since the results for
all circuits are similar, as, apart from the LFSR and the
Mode Select unit, the hardware overhead of the remaining
decompressor units does not depend on the test set. For
SSS−LFSRs, the overhead of the State-Skip circuit is between
52 and 119 g.e. for k ≤ 24. The average hardware overhead of
the remaining decompressor units, for various values of L and
S, excluding the Mode Select unit, is 320 g.e. The overhead of
the Mode Select unit, is between 44 and 262 g.e., for 50 ≤ L

≤ 500 and 2 ≤ S ≤ 50. Note that only the Mode Select
unit has to be implemented separately for each core under test
(the rest of the logic is shared among all cores). In the case of
VSS−LFSR for the same circuit, the overhead of the Variable-
State-Skip circuit for k = 46 and K = 230 is equal to 203 g.e.,
and the total overhead of the LFSR, Phase Shifter, Controller
unit, Look-Ahead unit, and the Decoder of the Segment Type
unit, for L = 200 and S = 5, is 627 g.e. All the above units
need to be implemented only once in a SoC. The only unit
that has to be implemented separately for every core is the

1644 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 29, NO. 10, OCTOBER 2010

TABLE III

Variable Versus Single State Skipping for Multiple Cores

Mode Select unit, whose hardware overhead lies between 44
and 262 g.e., for 50 ≤ L ≤ 500 and 2 ≤ S ≤ 50.

In our next set of experiments, we used the SSS−LFSRs
as well as the VSS−LFSRs on a hypothetical multi-core SoC
consisting of the largest ISCAS’89 benchmarks. In both cases
a common decompressor was used and only the Mode Select
unit was implemented separately for each core. Table III
presents the TSL and area overhead (HO) results for three
segment sizes, 2, 5, 10, and for LFSR size = 85. The HO is
reported as the percentage of the HO of the decompresssor
to the total HO of the five cores. It is obvious that the
TSL gain offered by VSS−LFSRs is very high compared
to SSS−LFSR and reaches 84.1%, at the expense of small
additional hardware overhead.

In order to demonstrate the effectiveness of the proposed
technique on large compacted test sets, we applied the classi-
cal, the dynamic and the window-based LFSR reseeding tech-
niques to the IWLS’05 Ethernet benchmark circuit [27], which
consists of 10.6K scan cells and 136.2×103 gates (11.71 Mbits
test data). The TDVs of the classical and the dynamic LFSR
reseeding were equal to 1222 Kbits and 689 kbits, respectively,
whereas the TDV of the window-based LFSR reseeding, for L
= 50, was equal to 211 Kbits. The TSL of the window-based
reseeding was equal to 9600 vectors, while the TSLs of the
other two methods were both equal to 1111 vectors. By using
an SSS−LFSR with k = 4 and a VSS−LFSR with K = 221
and k = 4, the TSL of window-based reseeding was reduced
to 2254 vectors and 1449 vectors, respectively. Thus, we
conclude that the proposed method achieves considerable TDV
reduction compared to the classical and dynamic reseeding
methods with similar TSL.

VII. Conclusion

Two new types of LFSRs, the SSS and VSS LFSRs were
introduced, which drastically shorten the test sequences of
LFSR-reseeding-based test set embedding methods. Both types
of LFSRs bridge the gap between TDC and TSE, by offering
the high compression efficiency of TSE with test sequences
reduced to such an amount (up to 98.8%) that their length ap-
proaches that of TDC methods. In this way, test set embedding
becomes an attractive approach for testing IP cores.

References

[1] G. K. Balakrishnan, S. Wang, and S. T. Chakradhar, “PIDISC: Pattern
independent design independent seed compression technique,” in Proc.
VLSID, 2006, pp. 811–817.

[2] B. Keller and B. Koenemann, “OPMISR: The foundation for compressed
ATPG vectors,” in Proc. ITC, 2001, pp. 748–757.

[3] A. Chandra and K. Chakrabarty, “Test data compression and test
resource partitioning for system-on-a-chip using frequency-directed run-
length (FDR) codes,” IEEE Trans. Comp., vol. 52, no. 8, pp. 1076–1088,
Aug. 2003.

[4] P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Synchronization overhead
in SoC compressed test,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 13, no. 1, pp. 140–152, Jan. 2005.

[5] A. Jas, J. Ghosh-Dastidar, M. Ng, and N. Touba, “An efficient test vector
compression scheme using selective Huffman coding,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 6, pp. 797–
806, Jun. 2003.

[6] D. Kagaris and S. Tragoudas, “On the design of optimal counter based
schemes for test set embedding,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 18, no. 2, pp. 219–230, Feb. 1999.

[7] E. Kalligeros, X. Kavousianos, and D. Nikolos, “Efficient multiphase
test set embedding for scan-based testing,” in Proc. ISQED, 2006, pp.
433–438.

[8] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Test data compression
based on variable-to-variable Huffman encoding with codeword reusabil-
ity,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27,
no. 7, pp. 1333–1338, Jul. 2008.

[9] D. Kaseridis, E. Kalligeros, X. Kavousianos, and D. Nikolos,
“An efficient test set embedding scheme with reduced test data
storage and test sequence length requirements for scan-based
testing,” in Inf. Pap. Dig. IEEE ETS, 2005, pp. 147–150 [Online].
Available: http://www.icsd.aegean.gr/lecturers/kalliger/Papers/ETS05−
published.pdf

[10] B. Koenemann, “LFSR-coded Test Patterns for Scan Design,” in Proc.
ETC, 1991, pp. 237–242.

[11] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and
D. Wheater, “A SmartBIST variant with guaranteed encoding,” in Proc.
ATS, 2001, pp. 325–330.

[12] C. Krishna, A. Jas, and N. Touba, “Test vector encoding using partial
LFSR reseeding,” in Proc. ITC, 2001, pp. 885–893.

[13] C. Krishna and N. Touba, “Reducing test data volume using
LFSR reseeding with seed compression,” in Proc. ITC, 2002,
pp. 321–330.

[14] C. V. Krishna and N. A. Touba, “Adjustable width linear com-
binational scan vector decompression,” in Proc. ICCAD, 2003,
pp. 863–866.

[15] H. K. Lee and D. S. Ha, “Atalanta: An efficient ATPG for combinational
circuits,” Dept. Electr. Eng., Virginia Polytech. Inst. and State Univ.,
Blacksburg, Tech. Rep. 93-12, 1993.

[16] J. Lee and N. Touba, “Low power test data compression based on LFSR
reseeding,” in Proc. ICCD, 2004, pp. 180–185.

[17] L. Li and K. Chakrabarty, “Test set embedding for deterministic BIST
using a reconfigurable interconnection network,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 23, no. 9, pp. 1289–1305, Sep.
2004.

[18] L. Li, K. Chakrabarty, S. Kajihara, and S. Swaminathan, “Effi-
cient space/time compression to reduce test data volume and test-
ing time for IP cores,” in Proc. 18th Int. Conf. VLSI Des., 2005,
pp. 53–58.

[19] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deter-
ministic test,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, no. 5, pp. 776–792, May 2004.

[20] S. Reda and A. Orailoglu, “Reducing test application time through test
data mutation encoding,” in Proc. DATE, 2002, pp. 1–5.

[21] L. Schäfer, R. Dorsch, and H.-J. Wunderlich, “RESPIN++: Deterministic
embedded test,” in Proc. ETW, 2002, pp. 37–44.

[22] S. Swaminathan and K. Chakrabarty, “On using twisted-ring counters
for test set embedding in BIST,” JETTA, vol. 17, no. 6, pp. 529–542,
Dec. 2001.

[23] V. Tenentes, X. Kavousianos, and E. Kalligeros, “State skip LFSRs:
Bridging the gap between test data compression and test set embedding
for IP cores,” in Proc. DATE, 2008, pp. 474–479.

[24] N. A. Touba, “Circular BIST with state skipping,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 10, no. 5, pp. 668–672, Oct. 2002.

[25] Z. Wang, K. Chakrabarty, and S. Wang, “Integrated LFSR reseeding,
test-access optimization, and test scheduling for core–based system-on-
chip,” IEEE Trans. Very Large Scale Integr. Syst., vol. 28, no. 8, pp.
1251–1264, Aug. 2009.

[26] S. Ward, C. Schattauer, and N. A. Touba, “Using statistical transforma-
tions to improve compression for linear decompressors,” in Proc. DFT,
2005, pp. 42–50.

[27] IWLS’05 Benchmark Circuits [Online]. Available: http://www.iwls.org/
iwls2005/benchmarks.html

