
Defect Coverage-Driven Window-Based Test Compression
Xrysovalantis Kavousianos1, Krishnendu Chakrabarty2, Emmanouil Kalligeros3 and Vasileios Tenentes1

1 Dept. of Computer Science, University of Ioannina, Greece
2 Electrical Engineering Dept., Duke University, USA

3 Information and Comm. Systems Engineering Dept., University of the Aegean, Greece
e-mail: kabousia@cs.uoi.gr, krish@ee.duke.edu, kalliger@aegean.gr, tenentes@cs.uoi.gr

Abstract— Although LFSR reseeding based on test cubes for
modeled faults is an efficient test compression approach, it suf-
fers from the drawback of limited, and often unpredictable,
coverage of unmodeled defects. We present a new defect cover-
age-driven window-based LFSR reseeding technique, which
offers both high test quality and high compression. The efficien-
cy of the proposed encoding technique in detecting defects is
boosted by an efficient “output deviations” metric for grading
the calculated LFSR seeds. We show that, compared to stan-
dard compression-driven LFSR reseeding, higher defect cover-
age is obtained without any loss of compression.

Keywords-embedded testing; linear feedback shift register;
defect-oriented testing

I. INTRODUCTION
As defect screening is essential for ensuring the quality of

electronic products, more test patterns are needed to target
new defect types introduced in nanometer technologies. The
2007 ITRS document predicted that the test-data volume and
the test-application time for integrated circuits will be re-
spectively about 38 and 17 times higher in 2015 than in
2007. Test-data compression offers promising solutions to
these challenges [1-5, 7-16]. The most widely adopted com-
pression approach is LFSR reseeding [8]. The classical re-
seeding approach of [8] compresses each test cube into one
LFSR seed by solving a system of linear equations, consider-
ing the content of each LFSR cell as a binary variable. Clas-
sical LFSR reseeding fails to efficiently exploit the binary
variables and thus it suffers from limited compression. To-
day, it has been supplanted by other LFSR reseeding me-
thods that offer better exploitation of variables, and hence
higher compression [3, 7, 9-13, 15, 16]. A particularly effi-
cient approach is window-based reseeding [7], in which each
seed generates more than one test vectors.

Even though all the above methods offer high compres-
sion, they do not target unmodeled defects (i.e., defects that
are not explicitly targeted by the test data being compressed).
The first test compression method to target unmodeled de-
fects was proposed in [18] and it is based on the classical
LFSR reseeding approach [8]. This method improves the
defect coverage of the seeds using output deviations [19],
which offer an effective probabilistic means to evaluate test
vectors without being biased towards any particular fault
model. As shown in [17], unbiased testing provides higher
test quality than a test method that is biased by a fault model.

Despite its advantages, the method proposed in [18] suf-
fers from several serious drawbacks. At first, as every clas-
sical LFSR reseeding method, it suffers from limited com-
pression. In addition, it adopts an inefficient output-deviation
metric to evaluate seeds, which does not exploit all the po-

tential offered by output deviations for identifying the most
effective (in terms of defect coverage) seeds. On top of that,
it exploits only the free variables of each seed to improve the
defect coverage of the seeds. This provides just a limited
improvement in the output deviations and consequently in
the defect coverage of the resulting test vectors. Finally, it is
unsuitable for more efficient reseeding techniques, such as
window-based reseeding, that typically leave almost no free
variables after each seed is computed.

In this paper, we present a novel encoding method that
offers high compression and increased unmodeled defect
coverage at the same time. The encoding method is tailored
to the highly efficient window-based LFSR reseeding ap-
proach and exploits every single seed variable solely for mi-
nimizing the seed count. The defect-detection potential of the
generated seeds is enhanced using intelligent encoding of test
cubes and thus compression is not compromised. Unmodeled
defect coverage is further improved compared to [18] by
using a new effective output-deviation-based metric.

Simulation results on stuck-at test sets of the ISCAS’89
and IWLS’05 [20] benchmark circuits show that the proposed
defect coverage-driven window-based method offers higher
defect coverage than the original compression-driven win-
dow-based method, without any adverse impact on compres-
sion. In addition, due to the highly effective (in terms of com-
pression) encoding method and the efficient output-deviation
metric, the proposed method clearly outperforms [18] in
terms of both compression and defect coverage. Finally, by
grading the seeds and applying the most efficient seeds first,
faster coverage ramp-up is achieved, thus reducing the test-
application time in an abort-at-first-fail environment.

II. MOTIVATION
In the sequel, the term "test cube" refers to a test pattern

with 'x' logic values, whereas the term "test vector" refers to
a test pattern without 'x' logic values. The decompression
architecture consists of an L-bit LFSR and a phase shifter
that drives m scan chains (m > L). The LFSR is reseeded by
the Automatic Test Equipment (ATE). In static reseeding,
the seed of the LFSR is its initial state and is considered as a
set of binary variables, a0, ..., aL-1, that are loaded from the
ATE. A seed is determined by solving a system of linear
equations, formed according to the specified bits of the test
cube and the feedback polynomial of the LFSR [8].

The main disadvantage of classical reseeding [8] is that
every new seed flushes the LFSR and thus any variables left
unspecified (free) during the seed-computation process are
wasted. To exploit the otherwise wasted free variables, the
method proposed in [18] utilizes the notion of output devia-
tions [19] for increasing the unmodeled defect coverage.

2010 19th IEEE Asian Test Symposium

1081-7735/10 $26.00 © 2010 IEEE

DOI 10.1109/ATS.2010.33

141

Output deviations are probability measures at primary out-
puts and pseudo-outputs that indicate the likelihood of error
detection at these outputs. Test vectors with high deviations
tend to be more effective for fault detection [19]. The authors
of [18] generate multiple candidate seeds for each test cube
by applying multiple random fillings on the free variables.
The seeds generating the vectors with the highest output dev-
iations are selected among all candidates.

 The major drawback of [18] is that it offers limited com-
pression. Window-based reseeding [7] offers much better
compression than [8] and [18] since it efficiently exploits the
seed variables. Specifically, each seed is expanded into w > 1
test vectors (w is referred to as the window size). Every posi-
tion of the window can be used for encoding a test cube, and
thus multiple incompatible as well as compatible test cubes
can be encoded at the same window.

The random filling of free variables proposed in [18] can-
not be applied to the window-based reseeding, which exploits
almost all variables for minimizing the seed count. Moreover,
[18] requires all candidate seeds for all test cubes to be com-
puted before the selection process begins. This cannot be
done in window-based reseeding, since the computation of
the candidate seeds for a specific seed depends on the pre-
viously selected seeds (we have to know which cubes have
been encoded by the previous seeds, in order to compute the
candidate seeds for the next one). To overcome this problem,
the proposed method generates multiple candidate seeds that
implement different unique encodings of the test cubes.
Therefore, the probability of generating a vector with high
output deviation values increases. In fact the variations of the
seeds in terms of output deviation values are more significant
than those in [18], as the encoding of different combination of
test cubes into a candidate seed affects the generated vectors
more than the random replacement of the free variables. At
the same time, high compression is ensured by intelligently
generating the candidate seeds in such a way that exploits the
variables for decreasing the seed volume.

III. GENERATION OF DEFECT COVERAGE-DRIVEN SEEDS

A. Generation of Candidate Seeds
As observed in [7], high compression is achieved if the

following properties are maintained throughout encoding:
1. The most-highly specified cubes are encoded first.
2. Among equally-specified test cubes, the one consuming

the fewest seed variables is selected.
3. Each seed encodes as many test cubes as possible (i.e., no

seed variable is left unspecified if it can be used to en-
code additional test cubes).
Even though these properties (denoted hereafter as com-

pression-maximization criterion) offer high compression,
they usually leave no free variables and thus they render [18]
unsuitable for increasing the defect coverage of the seeds.
We propose a new encoding method that enables the genera-
tion of multiple candidate seeds. The proposed encoding
method relaxes the application of the above compression-
based properties without compromising the exploitation of
seed variables for encoding test cubes. Specifically, it con-
siders different encoding alternatives that lead to the same or

very similar compression results (i.e., all free variables are
exploited for encoding test cubes in this case too). Such al-
ternatives can be different test cubes with the same specified-
bit volume, the same test cube encoded in different window
positions, etc. Besides high compression efficiency, the can-
didate seeds offer wide diversity and thus significantly dif-
ferent defect-coverage options.

The proposed encoding method generates at each step T
candidate seeds (T is a user-defined parameter) as follows:
we start by encoding the most-specified test cube (say t1) in
the first position of a window. Next, for initiating the genera-
tion of the T candidate seeds, we independently apply in that
window the compression-maximization criterion T times,
excluding each time all the previous decisions. In other
words, we identify the best T different test-cube encodings
that can be independently performed in the window that em-
beds t1 in its first position. As a result, T different windows
with t1 in their first position, and other test cubes in the re-
maining positions are determined.

The above procedure implies that we initially target win-
dows that embed two different test cubes. Note that this does
not necessarily mean that the T chosen windows embed T
different pairs of cubes (i.e., t1 along with another cube). Test
cube t1 can be combined with the same test cube, ti, more
than once, if ti can be encoded in different positions of the
window and the corresponding solutions are among the T
best solutions according to the compression-maximization
criterion. Hence, among the T chosen windows, there may be
more than one embedding t1 and ti, with ti encoded in a dif-
ferent window-position every time. However, if all possible
windows that embed t1 with a second test cube are fewer in
number than T, then we increase the volume of the already
chosen windows by encoding in them a different third test
cube. Two new different windows embedding three (n) test
cubes can be derived from one window which embeds two (n
－1) test cubes, by separately encoding in the latter either
two different test cubes (one for each new window), or the
same cube in two different positions. The same procedure is
repeated until we get T different windows, corresponding to
the T candidate seeds. At this point, the set of candidate
seeds has T members; therefore, we continue by encoding as
many test cubes as possible in the window of each candidate
seed by using only the compression-maximization criterion.
The T generated candidate seeds are evaluated using the pro-
posed metric (see Section III.B), and the best one is selected.
The cubes encoded by the selected seed are dropped from the
set of test cubes. We provide insights into the above process
with the following example.

Example 1. Let t1, t2, ..., t10 be 10 test cubes sorted in des-
cending order of volume of specified bits, w=4 be the win-
dow size, and T=5 be the number of candidate seeds. In Fig.
1, we present each window as a column with 4 cells, one for
each window position. Each encoded test cube is reported
inside the corresponding cell and the newly encoded test
cubes are highlighted at each step. Initially, we encode t1 (the
most specified cube) in window position 1 (Fig. 1a). Let us
assume that the systems of equations for test cubes t2, t4, t8,
and t10 are independently solvable in the same window with
t1 (t2 is the first cube selected by the compression-

142

maximization criterion, t4 is the next selection, i.e., if we
exclude t2, and so on). We initiate the generation of four new
candidate seeds (Fig. 1b) by encoding each one of these test
cubes separately into the window that we previously encoded
t1 (i.e., each one of the four seeds encodes one of the follow-
ing pairs of test cubes: t1 and t2, t1 and t4, t1 and t8, t1 and t10).
Then, we encode a third test cube in the windows generated
so far (Fig. 1c). After encoding test cube t4 first, and then t8,
in the window embedding t1 and t2 (the compression-
maximization criterion is again used for these selections), we
reach the limit of 5 candidate seeds. The generation of new
windows now terminates and we continue by encoding in
each of the T windows only the test cubes that maximize
compression (Fig. 1d). Finally, the 5 candidate seeds are eva-
luated using the proposed metric (note that the leftmost seed,
provides the best compression). ■

As mentioned earlier, in contrast with [7], we examine
various encoding options, apart from the one that maximizes
compression (i.e., t1 along with t2 and t4 in Example 2) for
maximizing defect coverage. Also, by trying different encod-
ings early on in the encoding process (i.e., after the selection
of just the first cube for every window) we guarantee that the
T candidate seeds will be sufficiently different (and hence
they will potentially provide sufficiently different defect
coverage). By selecting these different encodings using the
compression-maximization criterion, we ensure that com-
pression is not compromised.

One advantage of window-based reseeding is that the size
of the window (w) offers a tradeoff between compression and
test sequence length. Specifically, large values of w offer very
high compression at the expense of relatively increased test
sequence length, whereas small values of w offer short test
sequence length at the expense of relatively reduced compres-
sion [15]. In the degenerate case of w=1, every seed generates
only one test vector. The test-application time is minimized,
but only compatible test cubes can be encoded by each seed.
This restriction limits the encoding ability of the T candidate
seeds' generation process described in the previous section,
and consequently it adversely affects both the encoding abili-
ty and the defect-screening potential of the resulting seeds.
However, the use of uncompacted test cubes combined with
the defect coverage-driven compression-maximization crite-
rion presented in this section, almost eliminates these adverse
effects and also offers the potential for a wide range of encod-
ing options. This is the significant difference between the
classical and the window-based reseeding approach as for
w=1; in classical reseeding, as proposed in [8] (and adopted in

[18]), only one test cube is encoded by each seed, whereas in
window-based reseeding for w=1, the utilization of the defect
coverage-driven compression-maximization criterion offers
an efficient way to combine more than one compatible test
cubes in the same encoded pattern. Thus, as it will be shown
in Section IV, the volume of the defect coverage-driven seeds
is low and their quality is high for w=1 as well.

B. Evaluation of Candidate Seeds
We assume that each seed s is expanded into w test vec-

tors (w is the size of the window) and each one of them is
applied using two capture cycles r1 and r2 (launch-on-
capture). The Maximum Expected Deviation value MED(i,
rk, v) for output i at capture cycle rk (k=1, 2) and fault-free
response v (v=0, 1) is an estimate of the maximum deviation
value expected throughout the seed-computation process at
output i, when its fault-free response is v at capture cycle rk.
Such an estimate is needed for discarding outputs that do not
get high deviation values, when evaluating the candidate
seeds. Note that the actual maximum deviation value at an
output is known only after all the candidate seeds for all test
cubes are generated, that is when the whole encoding process
is over. However, we still need a means for assessing the
quality of the candidate seeds when performing the encoding.
That is the purpose of MED(i, rk, v), which is calculated as
follows: initially, for every test cube, a predetermined num-
ber of single-vector seeds (i.e., seeds encoding only one test
cube, as those used in [18]) are generated by randomly filling
the free variables. For each output i, the generated test vec-
tors are partitioned into four groups: those producing fault-
free responses 0 and 1 at both capture cycles r1 and r2. The
output-deviation values of all generated test vectors are cal-
culated (please refer to [19] for details on output-deviation
calculation) and the greatest value for every output i and
fault-free response v = 0, 1 at capture cycle rk, constitutes
MED(i, rk, v). After calculating the MED values, the generat-
ed single-vector seeds are discarded.

Let D(s, j, i, rk, v) be the deviation value at output i for
the j-th test vector in the window of candidate seed s (j∈[1,
w], where w is the window size), which produces fault-free
response v at that output at capture cycle rk. The value D(s, j,
i, rk, v) is considered to be near-maximum if it is very close
to MED(i, rk, v) for the same output, or equivalently, if:
 D(s, j, i, rk, v) ≥ F1·MED(i, rk, v), v = 0, 1 (1)
For selecting seeds with near maximum output deviation
values, F1 should be close to 1. We verified that a value of F1
∈ [0.99, 0.995] provides high-quality seeds.

Another characteristic that is incorporated in the pro-
posed metric is that each output contributes to the metric
according to its potential of observing errors due to defects.
To do so, every output i is assigned a set of weights wo(i, rk,
v), for k=1, 2 and v=0, 1, which are initially all set equal to
the number of lines in the logic cone of the corresponding
output. These weights are indicative of the volume of unde-
tected defects that can be possibly detected for fault-free
response v at output i during capture cycle rk (the more the
lines in the logic cone of an output, the highest the probabili-
ty to detect more unmodeled defects at that output).

The weights wo(i, rk, v) and the output deviation values

(c)

(d)

1:
2:
3:
4:

1:
2:
3:
4:

1:
2:
3:
4:

t11:
2:
3:
4:

t1

t2

t1 t1 t1

t4

t8

t10

(a)

(b)

t1

t2

t1 t1 t1

t4

t8

t10

t1

t4

t2

t8

t1

t2

t1 t1 t1

t4

t8

t4

t1

t4

t2

t8 t8

t10t10

Fig. 1. An example to illustrate the generation of T candidate seeds.

143

are used during the evaluation of the candidate seeds for de-
termining the proposed metric WS(s), which is a weight for
every candidate seed s. Let j be one of the w window posi-
tions, i.e., j∈[1, w]. For test vector j, we define the sets MS[s,
j, rk, v] which consist of all circuit's outputs i, for which the
deviation value D(s, j, i, rk, v) satisfies inequality (1) [i.e.,
sets MS contain all the outputs, which get near-maximum
deviation value during the application of vector j]. We can
now calculate WS(s) as a sum of output weights (wo), ac-
cording to the following formula:

k

k
k 1,2 v 0 ,1 j [1,w] i MS [s , j ,r ,v]

WS(s) wo(i,r ,v)
= = ∈ ∈

= ∑ ∑ ∑ ∑ (2)

This formula means that, for either fault-free response 0 or 1,
only the weights of the outputs that get near-maximum dev-
iation values for capture cycles rk (i.e., of the outputs belong-
ing to MS[s, j, rk, v]) participate into the final weights sum
WS(s). Note that the first response targets timing-
independent defects and the second response targets timing-
dependent defects. The seed with the highest WS value is
selected as the one with the best potential to detect timing-
independent and timing-dependent unmodeled defects.

The weight WS(s) enables the selection of seeds that gen-
erate vectors with the maximum deviation values at the out-
puts of large cones of the CUT. However, maximizing the
deviations only at a subset of outputs may result in low defect
coverage, even when this subset consists of the outputs of the
largest logic cones. To this end, for every selected seed, every
output i which satisfies equation (1) is identified, and the re-
spective weight wo(i, rk, v) is divided by a constant factor F2.
Thus, this output's weight has small impact on the selection of
the next seeds. Note that, if seed s provides a high deviation at
output i for fault-free response v at capture cycle rk, then it is
likely that many defects at the fan-in cone of i will be detect-
able at output i when s is applied. Consequently, test vectors
that maximize the deviation at output i for the same fault-free
response and the same capture cycle will be less effective for
increasing the defect coverage during the application of the
next seeds. We verified experimentally that a value of F2 in
the range [2, 10] is sufficient to maximize the deviations at all
outputs.

We have to note that, contrary to the proposed metric, the
metric presented in [18] is unsuitable for window-based re-
seeding, as it requires the generation of all candidate seeds
for all test cubes before the evaluation process begins. This is
also the case for the more efficient output deviation-based
metric that was proposed in [6]. Moreover, both metrics in
[6] and [18] evaluate test vectors for either timing-
independent or timing-dependent defects, whereas the pro-
posed metric improves the detection of both timing-related
and timing-independent defects at the same time.

Even though the best candidate seed is selected each
time, this can still be inferior compared to seeds selected at
later iterations. For example, the encoding of a combination
of sparsely specified test cubes at a later step may produce a
seed with higher weight than a seed produced by encoding a
combination of densely specified test cubes at an earlier step.
Thus, high defect coverage ramp-up cannot be guaranteed if
the seeds are applied in the order they are selected. To alle-
viate this problem, we rank the selected seeds as a final step.

Specifically, the selected seeds are evaluated using a process
that is similar to the T candidate seeds evaluation procedure,
which is now applied to the selected seeds and not to candi-
date seeds. Since all seeds are known at this step, the actual
maximum deviation value MD(i, rk, v) for each output i and
fault-free response v=0, 1 at capture cycle rk can be easily
computed (it is the largest among the output-deviation values
of all test vectors generated by all computed seeds). Equation
(2) is applied in this case too, but the set MS[s, j, rk, v] is
calculated by replacing values MED(i, rk, v) with values
MD(i, rk, v) in inequality (1).

IV. SIMULATION RESULTS
We conducted experiments using the largest ISCAS’89

and a subset of the IWLS’05 circuits [20]. The number of
scan chains was set equal to 30 for the ISCAS, 50 for the
medium sized IWLS, and 100 for the large ethernet IWLS
circuit. We have implemented the following techniques: a)
the classical reseeding method [8], b) the defect coverage-
driven classical reseeding method of [18], c) the compres-
sion-driven window-based reseeding method for w=1 and
w=5 denoted as "Cmp", and d) the proposed defect coverage-
driven window-based reseeding for w=1 and w=5, denoted as
"Cmp & Def". In order to minimize the seed count and the
test sequence length (TSL) for the classical reseeding me-
thods, we used compacted test sets. For maximizing the ef-
fectiveness of window-based LFSR reseeding methods we
used uncompacted test sets (in all cases the same commercial
ATPG engine was used). For each benchmark circuit, a dedi-
cated LFSR with a characteristic primitive polynomial of
near minimum size was selected. For the proposed "Cmp &
Def" method, T, F1 and F2 were set equal to 30, 0.995 and 8
respectively.

Table I presents the test-data volumes in Kbits (1Kbit
=103 bits) for the window-based and the classical reseeding
approaches. The first column lists the names of the bench-
mark circuits. The next column presents the sizes of the
stuck-at test sets used for the evaluation of both [8] and [18].
The third column shows the volumes of the compressed
stuck-at test data for these two methods. Note that the test-
data volumes are the same for the two methods, as [18] dif-
fers from classical LFSR reseeding only in the way that the
free variables are filled. The next two pairs of columns
present the test data volumes for w=1 and w=5, in their com-

TABLE I. TEST-DATA VOLUME (IN KBITS)

Circuit
Classical

Reseeding
Window-Based Reseeding
w=1 w=5

TS Size [8], [18] Cmp Cmp & Def Cmp Cmp & Def
s5378 28.7 16.1 8.0 8.0 6.2 6.3
s9234 41.0 23.2 16.9 18.4 14.2 14.3

s13207 188.3 78.0 12.0 12.8 8.2 8.0
s15850 99.0 47.0 18.6 19.0 13.6 14.0
s38417 238.0 117.3 64.6 65.4 58.2 59.7
s38584 270.8 148.0 34.0 34.0 27.2 26.9

ac97_ctrl 148.7 68.6 11.0 10.9 7.2 7.3
mem_ctrl 720.0 373.9 113.9 117.8 79.7 86.6
pci_bridge 1160.6 343.2 111.4 110.3 100.2 99.7

tv80 281.6 151.4 99.8 102.5 54.3 55.7
usb_funct 252.7 129.2 57.5 57.4 48.9 49.4
ethernet 11.8x103 1.7 x103 203.8 225.5 162.5 165.1

144

pression-driven versions ("Cmp"), as well as in their pro-
posed defect coverage-driven versions ("Cmp & Def").

As can be seen in Table I, the window-based reseeding
approach clearly outperforms the classical static reseeding
approaches ([8] and [18]), while the highest compression is
always achieved by window-based reseeding for w=5. More-
over, the proposed defect coverage-driven encoding (col-
umns labeled "Cmp & Def"), for both window sizes w=1 and
w=5, provide nearly the same compression as the original
compression-driven encoding (columns labeled "Cmp") for
the respective window sizes. In a few cases, the proposed
encoding provides even better compression, which is due to
the heuristic nature of the encoding algorithm.

Table II presents the TSL of the examined reseeding me-
thods, in terms of the test vectors applied to each circuit.
Column 2 presents the TSLs of the classical reseeding ap-
proaches (which are the same for both [8] and [18]). The
next two pairs of columns present the TSLs of the w=1 and
w=5 "Cmp" and "Cmp & Def" cases. As expected, the clas-
sical and window-based reseeding for w = 1 offer short and
comparable, in many cases, TSLs, while the TSLs of win-
dow-based reseeding increases when w increases to 5. How-
ever, we have to note that the long TSLs in the window-
based reseeding, are mainly attributed to the very small
LFSRs used. Larger LFSRs can be well exploited by win-
dow-based reseeding to offer considerably smaller number of
seeds with minimal impact on compression.

For evaluating the defect detection potential of the pro-

posed defect coverage-driven reseeding method, we consider
the coverage of unmodeled faults by means of surrogate fault
models (i.e., fault models which are not considered during
ATPG). Specifically, we compute the transition and bridging
fault coverage obtained by applying to the circuit under test
the test vectors generated by the computed seeds (note that
seeds compress test cubes which target only stuck-at faults).
As is common in industry, we use the launch-on-capture
scheme, to apply test-vector pairs. In the case of [18], which
considers only one response of every vector pair, we chose to
evaluate the generated seeds using the second response of
each vector pair (i.e., timing-dependent defects are favored).

First we evaluate the proposed encoding with respect to
the achieved transition-fault coverage. The corresponding
results are shown in Table III. It is obvious that the proposed
output-deviation metric increases the transition fault cover-
age significantly. Even though the method described in [18]
achieves higher transition-fault coverage than [8], it is still
much less effective than the proposed defect coverage- dri-
ven window-based reseeding for w=1 and w=5, in nearly all
cases. Additionally, the defect coverage achieved by the pro-
posed method for w=5 is higher than the defect coverage
achieved by the proposed method for w=1. This is mainly a
result of the increased diversity of the candidate seeds in case
of w=5. This diversity can be attributed in part to the fact that
many seeds encode incompatible test cubes when w>1. Note
that the increased TSL in the case of w=5 contributes also to
the increased defect coverage, compared to the other cases.

TABLE III. TRANSITION-FAULT COVERAGE (%)

Circuit
Classical

Reseeding
Window-Based Reseeding
w=1 w=5

[8] [18] Cmp Cmp & Def Cmp Cmp & Def
s5378 61.11 63.49 62.90 66.38 65.66 70.32
s9234 40.69 49.63 43.04 53.08 53.94 58.41

s13207 61.95 69.48 62.94 68.28 64.31 70.32
s15850 52.75 55.25 53.58 56.95 57.58 58.31
s38417 79.16 80.24 85.42 87.93 88.85 90.60
s38584 61.45 62.21 65.03 66.32 68.10 69.07

ac97_ctrl 42.71 45.60 47.18 56.42 52.40 63.95
mem_ctrl 41.09 44.24 42.69 46.01 44.03 47.36

pci_bridge32 65.17 69.50 77.39 85.80 82.96 87.50
tv80 53.78 59.31 60.16 64.76 61.97 64.90

usb_funct 63.24 64.49 71.40 75.53 74.53 79.39
ethernet 47.60 49.56 53.94 63.79 71.37 83.14

45%

47%

49%

51%

53%

55%

57%

59%

61%

63%

65%

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Number of vector pairs

ac97_ctrl pci_bridge

75%

77%

79%

81%

83%

85%

87%

32 38
4

73
6

10
88

14
40

17
92

21
44

24
96

28
48

32
00

35
52

39
04

42
56

46
08

49
60

53
12

Number of vector pairs

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

ethernet

60%

65%

70%

75%

80%

85%

32
83

2
16

32
243

2
323

2
403

2
48

32
56

32
64

32
72

32
80

32
88

32
963

2
10

43
2
11

232

Number of vector pairs

Tr
an

si
tio

n
Fa

ul
t C

ov
er

ag
e

Fig. 2. Transition fault coverage ramp-up for window-based reseeding (w=5).

TABLE II. TEST-SEQUENCE LENGTH (# OF VECTORS APPLIED)

Circuit
Classical

Reseeding
[8], [18]

Window-Based Reseeding
w=1 w=5

Cmp Cmp & Def Cmp Cmp & Def
s5378 134 199 199 770 785
s9234 166 282 307 1185 1195

s13207 269 300 320 1030 1005
s15850 162 310 316 1130 1170
s38417 143 808 818 3635 3730
s38584 185 485 485 1945 1920

ac97_ctrl 66 274 273 895 910
mem_ctrl 603 876 906 3065 3330
pci_bridge 330 1238 1226 5565 5540

tv80 757 1663 1708 4525 4645
usb_funct 136 959 956 4075 4115
ethernet 1111 2912 3222 11610 11790

145

However, according to the results shown in Table III, this
contribution is less significant than the contribution of the
proposed encoding method (note that in most cases, the
compression-driven window-based reseeding for w=5 offers
lower transition fault coverage than the defect coverage-
driven window-based reseeding for w=1, even though the test
sequences in the former case are longer).

Fig. 2 illustrates the transition fault coverage ramp-up
achieved by the window-based reseeding method for w=5,
for selected circuits (the complete set of charts for w=1 and
w=5 can be found on [21]). The x-axis presents the number
of the applied vector pairs and the y-axis the transition-fault
coverage. The seeds for the compression-driven window-
based reseeding method have been sorted: a) randomly
("Cmp(Rnd)"), and b) in descending order of their stuck-at-
fault coverage ("Cmp(Stuck)"). The proposed method exhi-
bits higher coverage ramp-up than the other methods, with
the "Cmp(Stuck)" being better than the "Cmp(Rnd)". Espe-
cially for the largest benchmark ethernet, which consists of
136.2K gates and 10.5K scan cells and is representative of
real-life industry circuits, the improvement is striking.

Finally, we evaluate the proposed method, [8] and [18], in
terms of bridging-fault coverage. 100K pairs of lines were
selected randomly for each circuit and for each pair, four
bridging faults were simulated by considering both lines as
aggressors and victims, and both logic values 0 and 1 at the
aggressors. Table IV presents the results. In all cases, the pro-
posed encoding "Cmp & Def" achieves higher coverage of
bridging faults than the original "Cmp" method. In contrast, in
the method described in [18], the improvement is small com-
pared to the classical reseeding [8]. Moreover, the proposed
encoding method offers higher bridging fault coverage than
[18]. The main reason for this observation is that [18] consid-
ers only one of the two responses of each LOC vector-pair
(either the first or the second) for calculating the output devia-
tions. In our experiments, we considered only the second re-
sponse, as stated earlier, to enhance the detection of timing
related defects. However, bridging faults are detected by the
first response. This is another weakness of [18], compared to
the proposed method, which is able to consider both res-
ponses of each pair. Thus, we conclude that the proposed me-
thod improves the bridging fault coverage, which is also a
significant advantage over [18].

V. CONCLUSIONS
We have presented a defect-driven window-based LFSR

reseeding technique, which offers high unmodeled defect
coverage using stuck-at test sets. Unmodeled defect coverage
has been evaluated using transition and bridging faults as sur-
rogate fault models. Results show that the proposed method
achieves higher defect coverage and faster coverage ramp-up
than the compression-driven window-based reseeding, with-
out compromising compression.

ACKNOWLEDGMENT
The work of K. Chakrabarty was supported by SRC under
contract no. 1588.

REFERENCES
[1] A. Chandra, K. Chakrabarty, "Test data compression and test resource

partitioning for system-on-a-chip using frequency-directed run-length
codes" IEEE Trans. on Comp, vol. 52, pp 1076-1088, 2003.

[2] P. Gonciari, B. Al-Hashimi and N. Nicolici, "Variable-length input
Huffman coding for system-on-a-chip test", IEEE Trans. on CAD, vol.
22, pp. 783-796, June 2003.

[3] S. Hellebrand et al., "Built-in test for circuits with scan based on
reseeding of multiple-polynomial linear feedback shift registers", IEEE
Trans. on Comp., vol. 44, pp. 223-233, Feb. 1995.

[4] A. Jas, et. all, "An efficient test vector compression scheme using
selective Huffman coding", IEEE Trans. on CAD, vol. 22, pp. 797-
806, June 2003.

[5] X. Kavousianos et al., "Test Data Compression Based on Variable-to-
Variable Huffman Encoding With Codeword Reusability", IEEE
Trans. CAD, vol. 27, pp. 1333-1338, July 2008.

[6] X. Kavousianos and K. Chakrabarty, " Generation of Compact Test
Sets with High Defect Coverage" Proc. of DATE, pp. 1130-1135, 2009

[7] E. Kalligeros et al., "Efficient Multiphase Test set embedding for scan-
based testing", in Proc. ISQED, 2006, pp. 433-438.

[8] B. Koenemann, "LFSR-coded test patterns for scan design", in Proc
ETC, 1991, pp. 237-242.

[9] B. Koenemann, et al., "A SmartBIST variant with guaranteed
encoding", in Proc. ATS, 2001, pp. 325-330.

[10] C. Krishna and N. Touba, "Reducing test data volume using LFSR
reseeding with seed compression", in Proc. ITC, 2002, pp. 321-330.

[11] C. Krishna, A. Jas, and N. Touba, "Test Vector Encoding Using Partial
LFSR Reseeding", in Proc. ITC, 2001, pp. 885-893.

[12] S. Mitra and K. Kim, "XPAND: An efficient test stimulus compression
technique", IEEE Trans. on Comp., vol. 55, pp. 163-173, Feb. 2006.

[13] J. Rajski et al., "Embedded deterministic test", IEEE Trans. on CAD,
vol. 23, pp. 776-792, May 2004.

[14] L. Schäfer, et al., "RESPIN++ – deterministic embedded test", in Proc.
ETW, 2002, pp. 37-44.

[15] V. Tenentes et al., "State Skip LFSRs: Bridging the Gap between Test
Data Compression and Test Set Embedding for IP Cores", in Proc.
DATE 2008, pp. 474-479.

[16] E. Volkerink, and S. Mitra, "Efficient seed utilization for reseeding
based compression", in Proc. VTS 2003, pp. 232-237.

[17] L. Wang et al., "On the Decline of Testing Efficiency as Fault
Coverage Approaches 100%", in Proc. VTS, pp.74-83, 1995

[18] Z. Wang, et al., "Deviation-based LFSR reseeding for test-data
compression", IEEE Trans. on CAD, vol. 29, pp. 259-271, 2009.

[19] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization using
output-deviation-based reordering of test patterns”, IEEE Trans. on
CAD, vol. 27, pp. 352-365, February 2008.

[20] IWLS’05 circuits: http://www.iwls.org/iwls2005/benchmarks.html
[21] Web site: http://www.cs.uoi.gr/~kabousia/window-reseeding.htm.

TABLE IV. BRIDGING-FAULT COVERAGE RESULTS (%)

Circuit
Classical

Reseeding
Window-Based Reseeding
w=1 w=5

[8] [18] Cmp Cmp & Def Cmp Cmp & Def
s5378 94.14 94.35 94.85 95.19 95.72 96.26
s9234 86.56 86.58 87.95 88.29 88.70 89.00

s13207 91.99 92.14 92.08 92.95 92.92 93.57
s15850 93.47 93.59 94.38 94.51 94.71 94.89
s38417 97.13 97.15 97.88 98.15 98.26 98.44
s38584 89.85 89.91 90.89 91.09 91.67 91.98

ac97_ctrl 97.02 97.02 98.75 98.87 99.10 99.23
mem_ctrl 74.60 74.61 75.08 75.44 75.78 76.10

pci_bridge32 96.78 96.82 98.14 98.28 98.45 98.55
tv80 89.26 89.33 90.86 91.23 91.57 91.74

usb_funct 95.15 95.19 96.73 97.16 97.17 97.45
ethernet 90.63 90.77 93.59 94.18 95.57 95.71

146

