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Abstract

It is well known that the most common errors in VLSI
circuits are unidirectional in nature. Many applications
need protection against up to t unidirectional errors, while
some other against burst unidirectional errors. Bose-Lin
codes are systematic t-unidirectional error detecting codes
while Bose codes are burst unidirectional error detecting
codes. In this paper we propose a modular method for
designing double output checkers for Bose-Lin and Bose
codes. The proposed checkers are Totally Self Checking
(TSC) with respect to a realistic fault model including
stuck-at, transistor stuck-open, transistor stuck-on, resistive
bridging faults and breaks. The method is applicable to
every code information length and the checkers are very
compact and fast.

Introduction

The most common errors in VLSI circuits are
unidirectional in nature [1, 2]. The optimal systematic code
that can detect all unidirectional errors is the Berger code
[3]. However, many applications need a code with
detection capability of up to t unidirectional errors. Some
of the known systematic t-Unidirectional Error Detecting
(t-UED) codes have been presented in [4-6]. In certain
applications the unidirectional errors tend to occur in a
burst, i.e., a cluster of adjacent bits up to a certain length is
affected. Burst Unidirectional Error Detecting (BURD)
codes have been proposed by Bose [7] and Blaum [8]. The
Blaum code for a specific number r, r>4, of check bits
detects burst unidirectional errors with longer length than
the codes given by Bose [7]. However encoding and
decoding in the Blaum codes is significantly more
complicated than in Bose codes. The suitability of a code
for use in a computer system, apart from its ability to cope
with errors, heavily depends on the existence of a simple
and fast encoder and decoder .

Self Checking Circuits (SCC) provide concurrent error
detection and thus can detect transient, intermittent as well
as permanent faults. Since transient faults have become
increasingly dominant in VLSI circuits [9], providing
protection against them has become very important. The
reliability of a SCC depends on the ability of its checker to
behave correctly despite the possible occurrence of

internal faults and this is achieved when the checker
satisfies either the Totally Self Checking (TSC) or the
Strongly Code Disjoint (SCD) [10] property. In this paper
we take into account the TSC property. A checker is TSC
if it is self-testing, fault-secure and code disjoint [11].

TSC checkers for Bose-Lin t-UED codes [5] and Bose
BUED codes [7] under the single stuck-at fault model were
proposed in [12-14]. The single stuck-at fault model is
inadequate for the CMOS technology [15]. CMOS is the
current dominant technology for manufacturing VLSI
circuits, thus new TSC checker designs are required that
will take into account a more realistic fault model,
including apart from stuck-at, transistor stuck-open,
transistor stuck-on, resistive bridging faults and breaks.
Such TSC checkers have been recently presented in [16].
However, they are limited to applications with short
information length due to their sensitivity in statistical
variations of the manufacturing process parameters.

In this paper a modular method for designing TSC
checkers for t-UED Bose-Lin codes and BUED Bose
codes is proposed. The checkers designed according to this
method are TSC with respect to stuck-at, transistor stuck-
on, transistor stuck-open, resistive bridging faults and
breaks and they are more efficient, with respect to area and
speed, than the corresponding already known TSC
checkers [5, 7, 12-14]. The checkers presented in [16]
require a little less area for their implementation and they
are slightly faster than the checkers of this paper but they
can be designed only for codes with very small information
length. On the contrary the proposed checkers can be
designed for every information length.

Throughout this paper the following notations are used :
I, L.,..., It (Cy, Cy...., C.) are information (check) bits.
WY(X) and W'(X) denote the number of zeroes and ones
respectively of the vector X.

VOHMTN (VOLMAX) is the minimum HIGH (maximum
LOW) voltage at the output of a circuit.

Vi (V) is the threshold voltage of nmos (pmos) transistor
KP, (KP,) is the Spice parameter for p,-Cox (1pCox).
Wi'Lgi (Wpi/Lyy) is the ratio of nmos (pmos) transistor i.
[x] denotes the integer part of x.

| A | denotes the cardinality of set A.

[ x | denotes the smallest integer greater than or equal to x



Il— Zy-1 a_
L= (k2 weight | Zr21 5,
e generator o . ty
I = * | a_ Two-Rail
%o Checker | —
Cr-l br-l 1
Cr-2 . br-2
C, d b,

Figure 1. Bose BUED Code checker
II. Preliminaries

In this section we will briefly describe the methods
given in [7] and [5] for designing BUED and t-UED codes
respectively.

Bose BUED Codes. This code can detect a burst
unidirectional error in up to 2" bits. The check symbol

CS=(Cy, Cy, ..., C,.) is obtained as CS = W1, L, ..., I)
mod 2" and the bits of the code word are arranged as
follows: I,1,..I .. C I .. .., [,C ,C ;..C,.

Bose-Lin t-UED Codes. Bose and Lin gave optimal t-
UED codes with t=2, 3 and 6 using 2, 3 and 4 bits
respectively. The check symbol CS for these codes is
derived as follows:

2-UED code with r=2: CS = W’(I,, L, ...I,) mod 4,

3-UED code with r=3: CS = W°(I,, I, ...I,) mod 8,

6-UED code with r=4: CS = (W°(I,, L, ...I,) mod 8) + 4

or equivalently CS=C;C,C,Cy where C;=D,, C,=D, ,
Ci=Dy, C¢=Dy and D,D;Dy is the binary representation of
W1, L, ...I,) mod 8.

For r > 5, Bose-Lin gave two methods of deriving the t-
UED codes [5]. For r>6 the codes designed by the second
method detect more unidirectional errors. However, the
encoder and decoder of the codes designed by the first
method is simpler and faster than the codes designed by
the second method. According to the first method the
check symbol is given as CS = (W°(I,, I, ...I) mod 2™") +
22 or equivalently CS= C,.;C,5C,3...Co where C,.;=D..
,Cur= D.,, Ci5=Dys, ..., Co=Dgand D,;,D.;5...Dg is
the binary representation of W°(I,, I, ...I) mod 2", This
code can detect up to 2"+r-2 unidirectional errors.

II1. Design Method

The checker for the Bose BUED code is shown in
figure 1. The (k, 2")-weight-generator receives k inputs I,
I,, ...Iy and produces the 1’s complement of the binary
representation of W(I;, I, ..., ) mod 2, that s,

727 4220 =2-1-W'(1,, L, ..., I,) mod 2" (D)
When the checker receives a Bose BUED code word then
Cr2+.. 4C2° = W1, L, ..., I) mod 2" and taking into
account the above relation we get C,..2"'+...+Co2"+ Z,..2"™
+...472° =21 that is, C,.;Cyos...Co and Z,.,Z,.»...Z,, are
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Figure 2. Bose-Lin code checker for r>4.

bitwise complementary, hence the output of the two rail
checker will be two-rail encoded.

When the received word is not a Bose BUED code
word then C,.2"'+...+C2°#W(L,...., I,) mod 2" and from
relation 1 we conclude that the two-rail checker receives at
least one non two-rail encoded input and hence gives a non
two-rail encoded output.

It is evident that the checker of figure 1 is also a
checker for the Bose-Lin codes with r=2 and r=3 check
bits. The checker for Bose-Lin codes with r > 4 is given in
figure 2. For the reasons presented in the introduction for
r>5 we give checkers for the codes designed by the first
method. The Two-Rail checkers of figures 1, 2 are
designed as proposed in [18] in order to be TSC under a
realistic fault model.

In the sequel we will give a method for designing (k,
2")-weight-generators. Consider a module, hereby denoted
(n, 2)-weight-generator, that receives a set of n inputs I,
I,,..., I, and gives one output Y= wo(,,..., I,) mod 2, as
well as a module, denoted (n, 4)-weight-generator, that
receives a set of n inputs I, L,,..., I, and gives two sets of
outputs Y,Y; and DyD;...Dy.;, where

2Y, +Y, = W(,,..., I,) mod 4, and

WD,,..., Doy) = [W(,...., 1,)/4].
We postpone the design of the (n, 4) and (n, 2)-weight-
generators until subsection C. However, we have to note
here that due to manufacturability problems, that will be
explained in subsection D, the value of n must be less than
or equal to 8. In the next subsection we will give a method
for designing (k, 4) and (k, 2) weight generators with k>8
using respectively (n, 4) and (n, 2)-weight-generators with
n<8, while in subsection B we will give a method for
designing (k, 2)-weight-generators using (k, 4) and (k, 2)-
weight-generators with k>8 and r>2.

A. Design of (k, 4) and (k, 2)-weight-generators
using (n, 4) and (n, 2)-weight-generators, n=<k.
Consider that we have k inputs X;, X,..., Xi. We split

the set of inputs {X;, X,,..., Xy} into ¢, =l k/n] subsets A |,

A}, ..., A_ such that each subset A; has less than or

equal to n elements, or in other words | Al |<n. It is well
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Figure 3. (k, 4)-weight-generator module
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known that W°(Xy, ..., X,) mod 4= (W°(Al) mod 4 +
WY(A}) mod 4+...+W (A ) mod 4) mod 4 )
Therefore each term W( A!) mod 4 is calculated by one
M! (| A!'| 4)-weight-generator with outputs D ={ DM |
DM .. }and Y™ ={Y™ YM} Then WY(A!) mod 4 =
2W+W: WOYM YM yM) and from relation 2
we get WO(Xy,....X,) mod 4= (WOCYM YM yM)+  +
WOy, Y™ Y™ ) mod 4=

WOOYM LY MY My Y™ v ) mod 4.

In the same way we split the set { YM,YM yM .
Y oYM Y, into cp=[3-cy/n] subsets A%, A2, ...,
A? and we drive the lines of each A subset to the inputs

C.

of one M? (| A?
procedure s

, 4)-weight-generator. The above
repeated until we get a set
Ad={yMT yMT yMT 3 with | AYl< n. Then
WX, ..., Xi) mod 4=W°(A%) mod 4. Therefore using
the M¢(| A¢ | 4)-weight-generator, with inputs the lines

belonging to the set A¢, we get the 1s complement of the

binary representation of W°(X;, ..., Xi) mod 4. Figure 3
presents the design of the (k, 4)-weight-generator. The (k,
2)-weight-generator can be designed in the same way using
(n, 2)-weight-generators.

In the following we use the notation:

e D': the union of the D™ sets of all modules M; of
level t, that is D' :UDM: ,ie[l, ¢

e D: the union of the D'sets of all levels 1...t, or
equivalently D=| D' , te[1, d].
t

We have proved that the zeroes weight of the values of the
outputs belonging to the set D of the (k, 4)-weight-
generator, is equal to [W(X,, ..., X )/4].

Figure 4. (k, 2")-weight-generator, r>2

B. Design of a (k, 2)-weight-generator, r>2, using
(k, 4) and (k, 2)-weight-generators.

We can easily see that WO(II, ...,L[)mod 2"=

((4[W°(1,,..., L)/4]) mod 2" + (W°(I,,..., I,) mod 4)) mod 2"
Then taking into account that
(4x) mod 2* = 4(x mod 2*?) with x, ac {1, 2, ...,0}, a>2 (3)
we get W'(1I,,...,I,) mod 2" =
4W°(1,,....I)/4] mod 2™%) +W°(1,...., I) mod 4 4)
The term WO(I], ..., Iy) mod 4 can be calculated by the N;
(k, 4)-weight-generator, with inputs I, ..., Iy and outputs
DM ={D;",D", ... yand Y ={ Y™, Y;"). Then
2YN +YN =wW(,,....I,) mod 4 and
WD )= [W(,,..., L)/4] and from relation (4) we get
Wo(I,...,I) mod 2" =4(W°(D™ ) mod 2")+2 Y + YU (5)
In the same way we get W°(D™') mod 2" =
((4-[W°(D™ )/4]) mod 2™+ (W(D™) mod 4)) mod 2™
and from relation 3 we get W°(D™' ) mod 2% =
4(W°(DN )/4] mod 2)+W°(D™ ) mod 4 (6)
The term W°(D™) mod 4 can be calculated by the N,
(] D™ |, 4)-weight-generator, with inputs D™, the output
set of the N, circuit, and outputs D™ ={D}>,D*, ... }

and Y™ ={ Y, Y ). Then 2 Y"* +Y,: =W’(D" ) mod
4 and WO(D™) = [W(D™ )/4] and taking into account
relation 6, relation 5 becomes WO(II, ...,h[)mod 2" =
16(W'(D™ ) mod 2" +8 YN +4 Y 12 YN +Y ) (7)
Lets assume that r is an even number, then we apply the
above procedure 1/2 times and at step i we append the N;

circuit which is a (| DN |, 4)-weight-generator, with
inputs DY, and outputs D™ ={D}:,D, ... } and
YYo=y, YY) where D™ = {I,, ..., I,}. After the i"
step relation (7) becomes,



Vvdd Vdd

£

Figure 5. m-ones threshold circuit

W, ..., I,) mod 2° = 4(W'(D™ ) mod 27%)+220-D y N 4

220 W +LA8YN 4 Y 42 W + Y_(f“ where i<r/2.

After the r/2-1 step, that is i=r/2-1 the above relation becomes

Wo(I,, ..., I) mod 2" = 4" (Wo( D> ) mod 4)+
27 YN Y N 4 Y 42 Y Y
and using at the 1/2 step the N,,-weight-generator, we get

WD )ymod 4 =2Y"2 +Y," | s0 the above relation

becomes W(I,, ..., [,) mod 2" = 27" Y\» 4272y N2 +

270 YN 42ty N 4 A Y 2 YN Y)Y
It is obvious that the output vector Y, ">, Y, ", Y, ">,

Yo, ., YN, Y)Y is the 1s complement of the binary
representation of WO(I L .., i) mod 2",

When r is an odd number, we repeat the procedure [r/2]
times and at the last repetition we use the N, weight
generator which is a (| D™ |, 2)-weight-generator.

Figure 4 presents a (k, 27)-weight-generator for the case
that r is an even number. In the case that r is odd module
N, 27 is a (k, 2)-weight-generator with only one output.

C. (n, 4) and (n, 2)-weight-generators, with n<8.

Definition 1. A circuit with n inputs, X;, X,, ..., X, and
one output, OUT, is called m-ones threshold circuit, if it
operates as follows: when WI(X], X5, ..., X,) = m then
OUT is High else OUT is Low.

In [17] we have proved that the circuit of figure 5 is an
m-ones threshold circuit if the following relations are
satisfied: W, /L, =W /L =..=W_ /L and
(m-1)Q - W, /L, <W,/L, <mQ,-W, /L, (8)
where Q, = KB, /KP,2(Vy ~ Vo) Vorn— Ve (Vig + V, ]
Qz = KRl / KF;') '(2(\éd _vm)VOLMAX_ VSLMAX)/ (vdd + vtp)z .

The ones-weight, TW'(C ), of an m-ones threshold circuit
is by definition equal to m.

Definition 2. A circuit with n inputs, X;, X,, ..., X, and
one output, OUT, is called m-zeroes threshold circuit, if it
operates as follows: when W'(X,, X,, ..., X,) > m then
OUT is Low else OUT is High.

Following the method given in [17] we can easily see
that the circuit of figure 6 is an m-zeroes threshold circuit

ouTt

xX—p

X—P
.

X—p

Figure 6. m-zeroes threshold circuit

if the following relations are satisfied:

w, /L, =W /L =--=W_ /L  and
(m-1)-1/Q,-W, /L, <W,/L <m-1/Q-W, /L, (9
The zeroes-weight, TW(C ), of an m-zeroes threshold
circuit is by definition equal to m.

Definition 3. A circuit C with ntz inputs X, X,, ..., X,
and Yy, Y, ..., Y, and one output OUT, is called an (V;,
V,, ..., V,) aggregate-ones threshold circuit, with Vy, V,,
..., V, € N"if for each vector Y=(Y, Y5 ... Y,) the circuit
operates as follows: OUT is High when WI(XI,XZ,. ey X)>
Y,V, +Y,V, +---+Y,V, else OUT is Low.

The sum ?]V, +Y,V, +-~-+Y_ZVZ is called the

aggregate-ones-weight, AW/.(V,Y), of the circuit for the

vector Y. It can be easily proved that the circuit C of
Figure 7 is an (Vy, V,, ..., V,) aggregate-ones threshold
circuit, if the following relations are satisfied:

W, /qu =W, /qu =-=W, /an and fori=1, ..., z
(V,-1/z) W, /L, -Q <W, /L, <V.-W, /L, -Q,  (10)
Figures 5, 6 and 7 show also the symbols for an m-ones
threshold circuit, an m-zeroes threshold circuit, and a (V,,
V., ..., V,) aggregate-ones threshold circuit respectively,
that will be used throughout this paper.

The (n, 4)-weight-generator is shown in figure 8, where
m;=[n/4], m ,= [n/2]-[n/4], m ;= [n/2], m 4= n-[n/2]. From
definitions 1, 2 it is very easy to see that T;=0 when W°(I,,
..., I) > i, with i€[1, n]. From definition 3 we have that
Y,=0 if and only if
Gnd-1+T, 1+ Ty -1+ +T,, - 1<W(T,, T, Ty, )

or equivalently (T_2 —T_4)+ ("176 - T_8)+ et (T4i72 - T_Ah)+ ..>0.
In Tables 1 and 2 for any value of WO(I],..., I,) we give

the values of T; (as they are derived from definitions 1 and

2). From Table 1 we get Y;=0 if and only if

WoL,,... I)e {2, 33u{6, TYu...u{4i-2, 4i-1}u...  (11)

In the same way, Y,=0 if and only if

(0 -1 )+ (1 =T, )+ ..+ (T, - T )+.> 0.

Now from Table 2 we get Y¢=0 if and only if

W1, ..., 1)ef1,3,5,7, ..., 2i-1, .} (12)

Table 3 summarises relations 11, 12. We get 2?] +Y_0 =

WO(II,...,IH) mod 4 hence (Y, Yy) is the 1’s complement

of the binary representation of WO(II,. ..,I;) mod 4.
Theorem 2. The zeroes weight of the set {T,, Tg, T3,
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Table 1.
W, o I)| Tan | Ta (TH _ﬁ)
[0, 4-i-2) 1 1 0
[4-i-2, 4-i) 0 1 1
[4-1, n] 0 0 0
Table 2.
Wl oo l) | T | T | [T, -T,)
[0, 2+i-1) 1 1 0
2:-1 0 1 1
[2, n] 0 0 0
Table 3.
w'd,...1,) Y. Y
0,4,8, 1 1
1,5,9, .. 1 0
2,610, ... 0 1
3,7, 11, ... 0 0

""T4m1} of the (n, 4)-weight-generator of Figure 8 is
equal to [W(I,, ..., 1,)/4].

Proof. When W(I,, ..., I,) > 4-i then T,;=0celse T, =1,
thus we have T,;=0and T, =1 ifand only if
4i<W°(1,,...,1,)<4-(i+1) or equivalently [W°(I,,...,I,)/4]=i.
We also have that T,;= 0 for all je[l, i] and T,;= 1 for

j>i, hence W*{ Ty, Tg, Ts, ..., T,  }=i therefore,
WO{ Ta, Tg, Tya, ---,T4 . }= [WO(Ila o 1y)/4] u

Based on theorem 2, we see that the set D={DyD,...D ;} of
outputs of the (n, 4)-weight-generator is the set { T,, Ts,
-» Ty, 3. The (n, 2)-weight-generator is derived from the

(n, 4)-weight-generator if we remove module A.

D. On the manufacturability of the (k,2')-weight-
generator

In subsections A and B we have seen that the (k, 2°)-
weight-generator can be designed using as building blocks
the (n, 4) and (n, 2)-weight-generators with n<8. Therefore
the manufacturability of a (k, 2)-weight-generator depends
on the manufacturability of the (n, 2) and (n, 4)-

L —
' T, T,
1 —l>0—
0o 0o Inv,
| | LN ) |
L 1, I
o, L o™
= T 4T, T,
00 O Tnv, L1l |
| | veoe | o) 000..-00 v
LR A M1, 1) —‘l>o—‘»
Ll
I — . | | I Inv,
L= me T T L T T4m12
. /2] [n2] [n2]
.
. [e]e] [o] Iny
2|
1,— [T oo ]
I 1, I
L —
] T T
Twal [ [l _
_T_ T, T, T T,
. | |1 ]
T "1 Y g 0 0000
0, Y,
I 1, I B 1,1,..,1) b
L - .
n2]+2 [wial 4 L Thn _l _l l _l Inv,
2 TTT T
| | ceo | In¥ 0,
Lo,
Ll
*
L, T, T“
1 —l>0—
| | par | Tnv,
I L I, Module L

Figure 8. (n, 4)-weight-generator module

weight-generator. If these circuits can be manufactured,
then the (k, 2")-weight-generator can be manufactured for
every value of k and r. The (n, 2) and (n, 4)-weight-
generators are ratioed circuits. A problem of a ratioed
circuit is that its correct operation depends on the
conductance values of nmos and pmos transistors as well
as other circuit parameter’s values. It is well known that
fluctuations in integrated circuit manufacturing processes
cause deviations on the actual values of the parameters
from their nominal values. Designing the (n, 2) and (n, 4)-
weight-generators, we choose the values of W, L,, W,
Lg, W, and L so that the values of W/L, W,/L, and

W, / L, to be in the middle of the ranges given by

relations (8), (9) and (10) respectively. Then due to
statistical variations of the device characteristics the range
can be shortened or shifted to the left or to the right but the
value of the ratio will remain within the range, therefore
the manufactured IC will operate correctly. As the value of
n becomes greater, the ranges defined by relations (8), (9)
and (10) become shorter and the circuit is more sensitive
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to the statistical variations of the device parameters. This is
the reason that we have kept n<8. The (n, 2) and (n, 4)-
weight-generators of figure 8 consist of threshold circuits
with weights less than or equal to [n/2] n/2 [-4.

We have run Monte Carlo simulations for the (n, 2) and
(n, 4)-weight-generator with n<8 as well as for (k, 2")-
weight-generators with k<64 and r<3 for circuit parameter
deviations up to 10% and verified the correct operation of
the circuits. Apart from the above we have verified that for
all cases the noise margins are above 0.7 volts.

E. General design guidelines.

In figure 3 practically there are many ways (without
taking into account the ordering) to split the f inputs of

level i of figure 3, into groups A}, A}, ... of inputs with

i/ <n for j=1, 2, ... For testability issues the outputs Y,
|Al| <n for j=1, 2, ... For testabil the outputs Y
and Y, (we count it twice) of the (|A§|, 4)-weight-
generator must be assigned to different sets Aijl”, Aijz”,

with j;#j,. This is not possible at the last level of each tree
where we have a single set. For that reason we modify
slightly the (n, 4)-weight-generator of the last level as it is
shown in Appendix.

For testability issues in figure 4 all N;, with 2],
must be designed using (n, 4)-weight-generators with n<7
while the last Nj,»1 module can be designed using (n, 2) or
(n, 4)-weight-generators with n<8.

With respect to the speed of a (k, 4)-weight-generator
we have to note that the (a, 4)-weight-generator is faster
than the (b, 4)-weight-generator if a<b, while among two
(k, 4)-weight-generators, the one with the smaller number

of levels is faster. In Figure 9 we present the (32, 16)
weight generator.

IV. Testability Analysis

All the stuck-at, transistor stuck-on and transistor stuck-
open faults of the (n, 4) weight generator are detectable
except of the following:

1. qor p ort; transistor of module L;, i[1, n] stuck-on.

2. pmos transistor of Inv; or Inv, or Invg stuck-on.

3. p; ort; transistor of modules A or B stuck-on.

After the occurrence of any one of the undetected faults,
the checker remains code disjoint. Furthermore if they are
followed by one of the other considered faults, the
resulting fault is detectable. All the inverters are designed
with n-dominate logic.

We have to note here that the testability analysis of the
modified (n, 4)-weight-generator (Appendix) is the same
with the testability analysis of the normal (n, 4)-weight-
generator except the undetected stuck open fault on
transistor p;; of module L, and stuck at 1 fault on input I
of module L;. This modified module is used only at the last
level of each tree.

The self-checking capability with respect to resistive
bridging faults (RBFs) between two transistor terminals or
between two inputs has been evaluated with extensive
circuit-level simulations. All RBFs with connecting
resistance R € [0,R,] are detected, where R,,,, depends
on the sizing of the transistors and the information length.
The proposed checkers are also Self Testing for all break
faults on device terminals.

All the (n, 2) and (n, 4)-weight-generator modules of a
(k, 2")-weight-generator, receive all possible binary
combinations at their inputs, therefore receive their test set.
Therefore, any detectable fault of any one of the (n, 2) and
(n, 4) modules is detected. This was also verified with the
use of a specific simulator developed in our lab.

Since n<8, we have [W°(,, ..., Iy)/4] = W(D,, D).
According to the design of the (k, 2)-weight-generator
with r>2, the i™ tree receives as inputs the D output set of
the (i-1)™ tree. The problem of this approach is that the
pair (Do, D;) does not receive the value (1, 0) so there are
some undetected faults in the i tree. For that reason we
limit the value of n to be less than or equal to 7 for all
trees, except the last one. In that way each (n, 4)-weight-
generator produces only the {Dy} output which receives all
possible values (0 and 1). We have verified with extensive
simulations that if we apply the above rule, each tree N;
(i>1) (figure 4) receives its test set and it is completely
tested, therefore the (k, 2")-weight-generator is completely
tested for all values of k and r.



Table 4. Improvement of proposed over Piestrak[14].

(k,r) | Delay Area
8,4 | 25,8% 62%
(16,4)| 11,8% 67,8%
(32,8)] 14% 66%

V. Comparisons and Conclusions.

In this paper we presented a novel method for designing
modular TSC checkers for BUED Bose and t-UED Bose-
Lin codes. The proposed checkers are TSC under a
realistic fault model including stuck-at, transistor stuck-on,
transistor stuck-open, resistive bridging faults and breaks
and they are applicable for all possible values of k and r.
The corresponding already known from the open literature
checkers [12-14] have been proved to be TSC under the
stuck-at fault model. Among them, the checkers given in
[14] are the most efficient with respect to the area required
for their implementation and the delay. TSC checkers
under a realistic fault model were recently proposed in
[16]. They are the most efficient with respect to area and
speed among all the already known checkers, but their
applicability is limited to short information lengths due to
their sensitivity to statistical variations of the circuit
parameters during the manufacturing process. To this end
we compare our checkers to the checkers given in [14].
We have implemented some of the proposed TSC checkers
as well as the corresponding checkers given in [14] with
A=lpm technology. The comparison results are given in
Table 4. We have to note that the area has been estimated
as the sum of WxL of the transistors, that is, the routing
has not been taken into account. We can easily see that the
routing in the proposed design is less than the routing
required for the implementation of the checkers given in
[14]. From Table 4 we can easily see that the proposed
checkers are significantly more efficient, with respect to
the area required for their implementation and the speed
than the checkers given in [14].

Appendix.

The (n, 4)-weight-generator module of figure 8 is
designed to receive n independent inputs. When some of
the inputs are not independent, for example I;, I; are driven
by the same line, lets say Ij;, then some testability
problems may arise. For that reason we modify the L;, L,,
...L, modules in the following way: instead of having two
transistors g, q; (figure 5) and p;, p; (figure 6) driven by the
input I;;, we use one q;; and one p; jrespectively, with

W, /Lq, = Wo /Lg + Wy /L, and

WP-,J /Lpu =W, /L, +ij /ij

driven by the input ;. In that way we modify all the
modules Ly, L,, ...L, and the functionality of the circuit
remains the same.
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