
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008 1333

TABLE VI
EXPERIMENTAL RESULTS

VI. CONCLUSION

Using structural information while transforming large industrial cir-
cuits into a CNF significantly reduces the size of the SAT instances for
ATPG. As a consequence, the SAT solver needs less resources, which
boosts the performance of the SAT-based ATPG approach. Further-
more, the integration of the SAT-based engine into the industrial ATPG
framework of NXP Semiconductors improves the overall performance
of the framework and leads to a fast and robust ATPG system.

REFERENCES

[1] P. Goel, “An implicit enumeration algorithm to generate tests for combina-
tional logic circuits,” IEEE Trans. Comput., vol. C-30, no. 3, pp. 215–222,
Mar. 1981.

[2] H. Fujiwara and T. Shimono, “On the acceleration of test generation
algorithms,” IEEE Trans. Comput., vol. C-32, no. 12, pp. 1137–1144,
Dec. 1983.

[3] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A highly
efficient automatic test pattern generation system,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 7, no. 1, pp. 126–137, Jan. 1988.

[4] I. Hamzaoglu and J. Patel, “New techniques for deterministic test pattern
generation,” J. Electron. Test.—Theory and Applications, vol. 15, no. 1/2,
pp. 63–73, Aug.–Oct. 1999.

[5] T. Larrabee, “Test pattern generation using Boolean satisfiability,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11, no. 1,
pp. 4–15, Jan. 1992.

[6] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Combinational
test generation using satisfiability,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 15, no. 9, pp. 1167–1176, Sep. 1996.

[7] J. Shi, G. Fey, R. Drechsler, A. Glowatz, F. Hapke, and J. Schlöffel,
“PASSAT: Efficient SAT-based test pattern generation for industrial cir-
cuits,” in Proc. IEEE Annu. Symp. VLSI, 2005, pp. 212–217.

[8] J. Shi, G. Fey, R. Drechsler, A. Glowatz, J. Schlöffel, and F. Hapke,
“Experimental studies on SAT-based test pattern generation for industrial
circuits,” in Proc. Int. Conf. ASIC, 2005, pp. 967–970.

[9] J. Marques-Silva and K. Sakallah, “GRASP: A search algorithm
for propositional satisfiability,” IEEE Trans. Comput., vol. 48, no. 5,
pp. 506–521, May 1999.

[10] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Proc. Des. Autom. Conf., 2001,
pp. 530–535.

[11] E. Goldberg and Y. Novikov, “BerkMin: A fast and robust SAT-solver,”
in Proc. Des. Autom. Test Eur., 2002, pp. 142–149.

[12] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proc. SAT, 2003,
vol. 2919, pp. 502–518.

[13] J. Marques-Silva and K. Sakallah, “Robust search algorithms for test pat-
tern generation,” Dept. Informatics, Tech. Univ. Lisbon, Lisbon, Portugal,
Tech. Rep. RT/02/97, Jan. 1997.

[14] P. Tafertshofer, A. Ganz, and K. Antreich, “IGRAINE—An implication
graph-based engine for fast implication, justification, and propagation,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 8,
pp. 907–927, Aug. 2000.

[15] E. Gizdarski and H. Fujiwara, “SPIRIT: A highly robust combinational
test generation algorithm,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 21, no. 12, pp. 1446–1458, Dec. 2002.

[16] J. Roth, “Diagnosis of automata failures: A calculus and a method,”
IBM J. Res. Develop., vol. 10, no. 4, pp. 278–291, Jul. 1966.

[17] R. T. Stanion, “Circuit synthesis verification method and apparatus,”
U.S. Patent 6 056 784, May 2, 2000.

[18] G. Fey, J. Shi, and R. Drechsler, “Efficiency of multi-valued encoding
in SAT-based ATPG,” in Proc. Int. Symp. Multiple-Valued Logic, 2006,
pp. 25–30.

[19] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A system for sequential circuit synthesis,” Univ. California, Berkeley, CA,
Tech. Rep. No. UCB/ERL M92/41, 1992.

[20] D. Tille, G. Fey, and R. Drechsler, “Instance generation for SAT-based
ATPG,” in Proc. IEEE Workshop Des. Diagnostics Electron. Circuits
Syst., 2007, pp. 153–156.

Test Data Compression Based on Variable-to-Variable
Huffman Encoding With Codeword Reusability

Xrysovalantis Kavousianos, Emmanouil Kalligeros,
and Dimitris Nikolos

Abstract—A new statistical test data compression method that is suitable
for IP cores of an unknown structure with multiple scan chains is proposed
in this paper. Huffman, which is a well-known fixed-to-variable code, is
used in this paper as a variable-to-variable code. The precomputed test
set of a core is partitioned into variable-length blocks, which are, then,
compressed by an efficient Huffman-based encoding procedure with a
limited number of codewords. To increase the compression ratio, the same
codeword can be reused for encoding compatible blocks of different sizes.
Further compression improvements can be achieved by using two very
simple test set transformations. A simple and low-overhead decompression
architecture is also proposed.

Index Terms—Embedded testing techniques, Huffman encoding, intel-
lectual property (IP) cores, test data compression.

Manuscript received October 12, 2007; revised January 22, 2008. This paper
was recommended by Associate Editor K. Chakrabarty.

X. Kavousianos is with the Department of Computer Science, University of
Ioannina, 45110 Ioannina, Greece (e-mail: kabousia@cs.uoi.gr).

E. Kalligeros is with the Department of Information and Communication
Systems Engineering, University of the Aegean, 83200 Samos, Greece (e-mail:
kalliger@aegean.gr).

D. Nikolos is with the Department of Computer Engineering and Informat-
ics, University of Patras, 26500 Patras, Greece (e-mail: nikolosd@cti.gr).

Digital Object Identifier 10.1109/TCAD.2008.923100

0278-0070/$25.00 © 2008 IEEE

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on January 26, 2010 at 16:11 from IEEE Xplore. Restrictions apply.

1334 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

I. INTRODUCTION

The high complexity of contemporary systems-on-a-chip (SoCs)
makes their testing an increasingly challenging task. The quantity of
test data rapidly increases, while, at the same time, the inner nodes of
dense SoCs become less accessible from the external pins. The testing
problem is further exacerbated by the use of intellectual property (IP)
cores, since their structure is often hidden from the system integrator.
In such cases, no modifications can be applied to the cores or their scan
chains, whereas neither automatic test pattern generation nor fault sim-
ulation tools can be used. Only precomputed test sets are provided by
the core vendors, which should be applied to the cores during testing.

Several methods have been proposed to minimize the test data
volume of unknown-structure IP cores. The approaches in [3] and
[23] embed the precomputed test vectors in long on-chip generated
pseudorandom sequences, significantly reducing, this way, the test
data volume. To minimize both test data volume and test application
time, many methods directly encode the test sets by using various
compression codes [4]–[7], [9], [12], [14]–[16], [26], [27], [29], [30].
Compression can be also performed on the difference vectors, but
expensive cyclical shift registers should be incorporated in the system,
or the scan chains of other cores must be reused [13]. The test
application time can further be reduced by exploiting the multiple scan
chains of the cores [1], [2], [8], [18]–[22], [24], [25], [28], [30]–[32].
There are also techniques that are based on dictionaries, whereas
other techniques require the preexistence of various modules in the
SoC (e.g., arithmetic modules and embedded processors). Due to the
high hardware overhead of the former techniques and the embedded-
module requirement of the latter techniques, we do not consider them
further in this paper.

A statistical compression method that is based on the Huffman en-
coding of variable-length test set blocks is proposed in this paper. The
encoding is performed in a selective manner, i.e., some blocks of the
test set are left unencoded. Apart from the variable-to-variable nature
of the proposed approach, the generated codewords are reusable in the
sense that they can encode compatible blocks of different sizes. Two
simple transformations are also presented to improve the statistical
properties of the test set before compression. The proposed decom-
pression architecture generates the decoded variable-length blocks in
parallel, exploiting, this way, the test-application-time advantages
that are offered by the existence of multiple scan chains in a core.
Moreover, the decompressors are properly designed, so their hardware
is kept low.

The remainder of this paper is organized as follows. Section II
describes the proposed method, Section III presents the decompres-
sion architecture, and Section IV provides experimental results and
comparisons. This paper is concluded in Section V.

II. PROPOSED METHOD

A. Encoding–Decoding Method

Let T be the test set of an IP core. T , which is of size |T | (in bits), is
partitioned into |T |/l blocks of size l, hereafter called test set parts or,
simply, parts. Each test set part consists of specified (0, 1) and unspec-
ified bits (x) and is compatible with a number of fully specified blocks
that are generated by substituting its x bits with all possible combina-
tions of 0s and 1s. According to the selective Huffman coding [14],
the m fully specified blocks that are compatible with most of the test
set parts are Huffman encoded. We call these m fully specified blocks
distinct blocks. Each test set part is either encoded by the codeword
of a compatible distinct block or remains unencoded. If a test set part
is compatible with more than one of the m encoded distinct blocks,
the codeword of the most frequently occurring block is used for its
encoding.

Assuming that m remains constant, the effectiveness of the selective
Huffman coding is affected by block size l in two contradictory
ways. As l increases, the test set is partitioned into fewer and larger
parts, and, thus, the total number of codewords that are required for
encoding the original test set decreases. As a result, better compression
can be achieved. At the same time, however, the compression ratio
is negatively affected by the fact that more test set parts remain
unencoded (since, as block size l increases, fewer parts are compatible
with the m encoded distinct blocks). Decreasing block sizes lead to
exactly opposite behaviors. Consequently, to maximize the efficiency
of the selective Huffman coding, the volume of the unencoded test set
parts must be minimized, while, at the same time, the total number of
codewords (and, hence, the total size of the encoded data) must be kept
low. To achieve this goal, we can take advantage of the well-known
characteristic that, in every test set, there are regions with many defined
bits (i.e., densely specified) and regions with many x bits (i.e., sparsely
specified). Densely specified regions are the main sources of unen-
coded data, and, therefore, their compression is favored by the usage
of small distinct blocks. On the other hand, sparsely specified regions
are more efficiently compressed using large distinct blocks, since, this
way, many test set parts, despite their big size, are compatible with the
encoded distinct blocks due to the great number of x bits that they
contain. From the above analysis, we deduce that compression can
be improved if the test sets are partitioned into variable-length parts,
which means that variable-length distinct blocks should be encoded.

In the proposed approach, as a test set part, we consider a whole slice
or a slice portion (the test bits that correspond to the ith scan cell of
every scan chain constitute the ith slice of a test cube). Each Huffman
codeword encodes a distinct block of a specific size. When a codeword
is decoded, the corresponding distinct block is generated in parallel
(after codeword identification), exploiting, this way, the parallelism
that is offered by the multiple scan chains of a core. Note that, to select
the m distinct blocks that will be encoded, the x values of the test
set should first be replaced by constant binary values (i.e., 0s and 1s).
To determine the proper x-bit assignment so that the occurrence fre-
quencies of the encoded distinct blocks will be as skewed as possible,
we use an extension of the second algorithm (Alg2) that was proposed
in [14]. According to the original algorithm in [14], the two most
frequently occurring test set parts that are compatible are merged,
forming a more specified and frequently occurring part than its pre-
decessors. The same procedure is iteratively repeated until no further
merging is possible. If, after the parts’ merging, there are any remain-
ing x bits, they are filled with random values. This way, the various
test set parts are gradually transformed into fully specified blocks, and
the m most frequently occurring ones are selected for encoding (i.e.,
they are the encoded distinct blocks). The extensions on the original
algorithm will shortly become clear.

Initially, the test set is partitioned into slices according to the scan-
chain structure of the core (slices are also called P0-parts). All P0-parts
are considered for the selection of the first distinct blocks that will be
encoded (i.e., P0-blocks of size equal to the number of scan chains
Nsc). The first selected P0-block is the block that is compatible with
most of the P0-parts, the second selected P0-block is the block that is
compatible with most of the P0-parts that have not been encoded by
the first P0-block, etc., (the selected P0-blocks are derived by merging
the most frequently occurring P0-parts, as explained above). When a
number of P0-blocks have been selected, each of the unencoded P0-
parts is partitioned into two portions of equal size, which are called
P1-parts. Again, a number of distinct P1-blocks are selected, the
unencoded P1-parts are partitioned into P2-parts, some P2-blocks are
selected, the unencoded P2-parts are partitioned into P3-parts, and so
on. Finally, each of the P0, . . . , Pmax-blocks is compatible with some
P0, . . . , Pmax-parts, respectively, where the max value is determined

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on January 26, 2010 at 16:11 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008 1335

Fig. 1. Proposed encoding example.

by the designer (Pmax-parts are called primitive parts). The size of Pi-
parts is either �Nsc/2i� or �Nsc/2i� bits (i.e., if Pi−1-parts cannot be
partitioned into two equal Pi-parts, then half of the Pi-parts are 1 bit
shorter than the rest).

The above-described procedure implies that, during the encoding of
Pi-parts by Pi-blocks, the most sparsely specified parts are encoded,
whereas the most densely specified ones are partitioned into Pi+1-
parts (since densely specified parts have small occurrence frequencies
and are not selected during the parts-merging procedure). As a result,
the large blocks, which are derived by the merging of large test set
parts, contain many x values. Instead of randomly replacing these
values as in [14], we initially leave them unspecified, and we utilize
them later to increase the selected blocks’ encoding ability (and, hence,
to further skew their occurrence frequencies). This is done by using the
codewords of the already-selected blocks for encoding smaller test set
parts (codeword reusability). More formally, a Pj-part is allowed to be
encoded by the codeword of a larger Pi-block (i < j), provided that
the first (�Nsc/2j� or �Nsc/2j�) bits of the Pi-block are compatible
with the Pj-part (i.e., the smaller parts are always compared against
the upper segments of the already-selected larger blocks). Thus, the
upper segments of the selected Pi-blocks are initially left partially
unspecified and will be defined later during the encoding of Pi+1,
Pi+2, . . . , Pmax-parts. It is obvious that, during the decoding process,
only the necessary bits of the Pi-block will be generated, whereas the
rest will be discarded.

Given that the codeword of a P0, P1, . . . , Pmax−1-block can be
used for encoding test set parts of various sizes, every such codeword
must uniquely specify the actual encoded test set part during the decod-
ing process. To keep the compressed data volume low, no information
is stored about the size of the part encoded by a block’s codeword.
Instead, the encoding process is constrained according to the following
condition.
Condition 1: “A Pi-block codeword can be used for encoding a

smaller Pj-part (where j > i), if the Pj-part is not the first part of
a larger test set part.”

For example, the codeword of a P0-block can be used for encoding
a P0-part (i.e., a whole slice; all of its bits will be generated during
decoding). It can be also used for encoding the second P1-part that
has resulted from the partitioning of a P0-part (the first half of the P0-
block will be decoded). Similarly, it can be used for the encoding of the
second P2-part of a P1-part (the first quarter of the P0-block will be
decoded), and so on. Note, however, that a P0-block cannot be utilized
for the encoding of the first P1-part of a P0-part or of the first P2-part
of a P1-part, even if its corresponding segments are compatible with
those parts.

To improve compression, every test set part is encoded before it is
partitioned into smaller parts, or, in other words, every selected distinct
block is used for the encoding of as many large test set parts as possi-

ble. This is why P0-parts are encoded first, followed by P1-parts, P2-
parts, etc. Furthermore, we do not allow the encoding of a Pi+1-part,
where i ∈ [0,max−1], by the codeword of a larger P0, P1, . . . , Pi-
block before the beginning of the encoding process of Pi+1-parts. For
example, the encoding of a P3-part by a P0-block codeword before the
selection of P1 and P2-blocks is not allowed. The reason is that this
encoding may prevent a possible subsequent encoding of a (larger) P1

or P2-part that includes the aforementioned P3-part.
The encoding process of Pi-parts stops, and that of Pi+1-parts

begins when the total number of bits of the Pi-parts (TestBitsi) that
are compatible with the next Pi-block that will be selected is fewer
by a factor F than the bits of the Pi+1-parts (TestBitsi+1) that can be
encoded by: 1) the codewords of the already-chosen P0, P1, . . . , Pi-
blocks and 2) the codeword of the first Pi+1-block that will be
selected (i.e., when TestBitsi+1 ≥ F · TestBitsi). Factor F is used for
achieving a balanced selection between large and small blocks [17].
The F value that maximizes the compression ratio for each circuit
(which is a small positive integer greater than 1) can easily be tracked
down, since the runtime of the encoding method is very short, and the
set of possible F values is very small.

When all P0, P1, . . . , Pmax-blocks have been selected, some of the
Pmax-parts remain unencoded. Such parts are labeled as failed, and
a separate Huffman codeword is assigned to all of them. In the com-
pressed test set, these Pmax-parts are embedded unencoded, preceded
by the aforementioned codeword. The Huffman tree is constructed
when all Pi-blocks (where 0 ≤ i ≤ max) have been selected so that all
occurrence frequencies are known. We illustrate the above-described
process with an example.
Example 1: Consider a circuit with Nsc = 8 scan chains and let

max = 2. The 64-bit test set, as shown in Fig. 1(a), is initially parti-
tioned into P0-parts, i.e., whole slices [ignore, for now, the partitioning
in Fig. 1(a)]. Since all P0-parts appear only once in the test set, the first
two P0-parts that are compatible (i.e., 0x1x0xx0 and x01xx01x, which
are the first and third P0-parts, respectively) are merged. The resulting
part (i.e., 001x0010) cannot be merged with any of the rest P0-parts,
and, thus, it constitutes the first P0-block. Assume now that factor F
has been set to such a value, that the encoding of P0-parts (i.e., the
selection of P0-blocks) has to stop, and the encoding of P1-parts (i.e.,
the selection of P1-blocks) has to begin. Thus, the unencoded P0-parts
are partitioned into P1-parts [see Fig. 1(a)]. Before selecting the first
P1-block, all P1-parts that are compatible with the first half of the
selected P0-block and, at the same time, satisfy Condition 1 (i.e., the
second P1-parts of all P0-parts) are encoded using this block [these
P1-parts are boldfaced and underlined in Fig. 1(a)]. Note that, by using
the first half of P0-block 001x0010 for encoding P1-part 0x10, the
x bit of the P0-block is set to 0. Then, the first P1-block has to be
selected. Since all the remaining P1-parts appear only once, the first
two P1-parts that are compatible (i.e., 1111 and x11x) are merged. The

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on January 26, 2010 at 16:11 from IEEE Xplore. Restrictions apply.

1336 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

resulting part (i.e., 1111) can be also merged with P1-part 1x1x. Thus,
1111 constitutes the first selected P1-block, and the P1-parts that are
encoded using this block are highlighted in Fig. 1(a). Assume, again,
that, after this step, inequality TestBitsi+1 ≥ F · TestBitsi is true, and,
as a result, the encoding of P1-parts stops, and the encoding of P2-
parts begins. After partitioning all unencoded P1-parts into P2-parts
[see Fig. 1(b)], all P2-parts that satisfy Condition 1 and are compatible
with the first quarter of the selected P0-block (i.e., 00) and the first half
of the selected P1-block (i.e., 11) are encoded using the corresponding
blocks [they are boldfaced and underlined in Fig. 1(b), whereas every
already encoded part is shown in light gray]. Then, P2-part 01, which
appears three times, is merged first with P2-part xx that appears twice,
and next with P2-part x1. The resulting part (i.e., 01) is the first
selected P2-block, and the P2-parts that are encoded by this block are
highlighted in Fig. 1(b). One P2-part (i.e., 10) is left unencoded, as
shown in Fig. 1(b), and is labeled as failed. Note that, when the encod-
ing process is complete, the test set has been partitioned into a total
of 20 P0, P1, and P2-parts. In Fig. 1(c), the selected distinct blocks,
their occurrence frequencies, and the respective Huffman codewords
that are generated by constructing the corresponding Huffman tree are
reported. Finally, in Fig. 1(d), the encoded test set is shown, where the
last bit of each codeword is underlined, and the unencoded test set part
(i.e., 10) is boldfaced and italicized. �

For decoding the test data, a counter s with a size that is equal
to max bits is used. s counts from 0 to 2max − 1 and points to the
next primitive part of a slice that has not yet been decoded (every
slice consists of 2max primitive parts, and its decoding begins from
the first, i.e., 0, primitive part and continues with primitive parts
1, 2, . . . , 2max − 1). During codeword decompression, the largest pos-
sible test set part that can be decoded, independently of the received
codeword, is first determined. This is a PL-part if s is exactly divided
by 2max−L but is not divided by 2max−L+1, or, equivalently, if the
volume of consecutive least significant bits of s that are 0 is equal to
max−L. In addition, the size of the distinct Pi-block that corresponds
to the received codeword is determined. If it is equal or smaller than
the size of the aforementioned PL-part, then the actual test set part
that will be decoded is identical to the whole Pi-block. Otherwise, the
upper segment of the Pi-block whose size is equal to that of the PL-
part is decoded. When a whole slice has been generated, it is loaded
into the scan chains.

B. Statistical Improvement of Test Data

In this section, we propose two simple and low-overhead test set
transformations, which can optionally be applied before compressing
the test data, to improve their statistical properties (no structural
information of the core is required). This is achieved by increasing the
difference between 0s and 1s in the test set. Specifically, all the bits of
selected scan chains (transformation T1) and/or the values of selected
scan cells (transformation T2) can be inverted. The transformed test
set is, then, compressed, and, during decompression, the original
test set is restored by removing, on the fly, the transformations. For
example, suppose that, for a test set, the 0-bit volume is higher than the
1-bit volume. According to T1, the scan chains with more 1s than 0s,
considering all test vectors, can be inverted to favor the 0s count. Sim-
ilarly, T2 can be used for inverting a predefined number of scan cells
with the highest difference of 0-bits from 1-bits for all test vectors.

III. PROPOSED ARCHITECTURE

The proposed decompression architecture is presented in Fig. 2. The
Input Buffer receives the encoded data in parallel from the automatic
test equipment (ATE) with the ATE_CLK frequency and serially
shifts them into the Huffman FSM (finite-state machine) with the

Fig. 2. Proposed decompression architecture.

system clock frequency. Upon the recognition of a codeword by the
Huffman FSM, V alid Code is set to 1, whereas the value of bus
CodeIndex indicates which codeword has been received. When the
received codeword corresponds to an unencoded test set part, signal
Failed is also set to 1. The flow control between the buffer and the
Huffman FSM is performed via signals Ready and Send, whereas
ATE synchronization can be achieved using a first-in first-out buffer
between the decoder and the ATE [10].

The Distinct Block unit receives CodeIndex and returns the proper
portion of the distinct block that is encoded by the current codeword.
Specifically, if the part that will be decoded has a size that is equal
to that of 2q primitive parts (this size is provided by bus Size of the
Part Size/Enable unit), then, at the outputs of the Distinct Block unit,
2max−q copies of the first 2q · |Pmax| bits of the encoded distinct block
are generated (|Pmax| is the primitive-parts size in bits). The enable
signals that were activated by the Part Size/Enable unit ensure that only
the proper bit positions of the register will be loaded with the generated
data. Similarly, in case of a failed Pmax-part, its bits, which are directly
received from the ATE (through the Input Buffer), are repeated 2max

times at the outputs of the Distinct Block unit and are loaded in the
proper bit positions of the register.

According to the proposed approach, even if a codeword
corresponds to a Pi-block, it may be utilized for encoding
Pi+1, Pi+2, . . . , Pmax-parts. The proper decoded-part size is deter-
mined in the Part Size/Enable unit by a small combinational logic
that examines the value of counter s (see Section II). If the volume of
consecutive least significant bits of s that are 0 is equal to q, then the
largest part that can be decoded is a Pmax−q-part. If the received code-
word encodes a Pi-block and max−q ≤ i, then the whole Pi-block is
decoded. Otherwise, the first bits of the Pi-block that form a Pmax−q-
part are decoded. When s reaches 2max − 1, a whole slice has been
loaded in the Register, and, then, it is transferred into the scan chains.

When transformations T1 and/or T2 are used, the Invert unit is
placed between the Distinct Block unit and the Register. It consists
of at most Nsc gates (i.e., one for each scan chain), which can be
either inverters (for inverting all bits that enter a scan chain, i.e., T1)
or XOR/XNOR gates (for selectively inverting specific bits that enter a
scan chain, i.e., T2). If T2 is applied, the invert unit also incorporates
a slice number decoding logic.

IV. EVALUATION AND COMPARISONS

The proposed compression method was implemented in the C
programming language, and experiments were performed using the
dynamically compacted Mintest test sets [11] for stuck-at faults. The
runtime for each experiment is a few seconds.

In Table I, we present the test data compression results (in bits) of
the proposed method for 16 and 128 scan chains, 24 selected distinct
variable-length blocks, and primitive-parts size that is equal to 8 bits.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on January 26, 2010 at 16:11 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008 1337

TABLE I
RESULTS OF THE PROPOSED ENCODING (IN BITS)

TABLE II
COMPARISONS AGAINST METHODS FOR CORES

WITH MULTIPLE SCAN CHAINS

A few values of F were examined for each circuit (i.e., 1 ≤ F ≤ 15),
and the best result is shown in Table I (a thorough parameter analysis
is provided in [17]). In almost all cases, compression improves as the
number of scan chains increases. In addition, compared to the “No
Transformations” case (i.e., the “No Transf.” columns), almost always,
we get better compression when transformations T1 and T2 for 50
cells are applied (“T1 + 50 T2”); whereas, most of the times, a further
increase in the number of cells that are inverted by T2 does not provide
significant improvements.

We next compare the proposed approach against methods that target
unknown-structure IP cores with multiple scan chains. Note that we do
not compare against: 1) the approach in [8], since several conditions
have to be satisfied by a core that is near the circuit under test so that
the former can be used as a decompressor, and 2) methods that provide
results for different test sets from those used in our experiments. In
Table II, comparisons against the selective Huffman approach [14]
[reimplemented here for multiple (i.e., 64) scan chains], [18], [24], and
[28] are presented. For the selective Huffman approach, the number of
selected fixed-length distinct blocks was set to 24, and three different
block sizes that are equal to 8, 16, and 32 bits were examined. The best
result for every circuit is reported in the second column in Table II.
The third, fourth, and fifth columns present the best results of [18],
[24], and [28], respectively. Note that, for the approach in [28], aside
from the test data that are shown in column 4, an additional significant
quantity of control data should be stored in the ATE. However, these
data have not been reported by the authors in [28]. In the sixth column,
we provide the best results of the proposed method. Finally, the seventh
to tenth columns report the reduction percentages of the proposed
method over the other methods. As we can see, in all cases, except for
one (i.e., s38417 in [28], for which no control data have been reported),
the proposed technique performs better than the other methods.

In Table III, we present the compressed-data reduction percentages
of the proposed method against techniques that are applicable to cores
with a single scan chain. The compression that was achieved by the
proposed approach is higher than the compression of the rest of the
methods, except for the s38584 case in [15] and the s38417 case in
[16], which are marginally higher.

To assess the hardware overhead of the proposed method, we
synthesized three different decompressors for the test set of s9234 by

TABLE III
PROPOSED METHOD VERSUS METHODS FOR SINGLE-SCAN-CHAIN

CORES (REDUCTION %)

TABLE IV
HARDWARE OVERHEAD OF MULTIPLE-SCAN-CHAIN METHODS

(NUMBER OF GATE EQUIVALENTS)

applying: 1) no transformations; 2) T1 and T2 for 50 selected cells;
and 3) T1 and T2 for 100 selected cells. We also synthesized the
decompressor of the implemented parallel selective Huffman approach
with (fixed) block size (BS) that is equal to 8, 16, and 32 bits. In all
experiments, the number of scan chains was set to 64, and the number
of selected distinct blocks to 24. The results are shown in the first
six columns in Table IV in gate equivalents (where a gate equivalent
corresponds to a two-input NAND gate). Compared to the well-known
selective Huffman approach, the proposed method imposes slightly
higher hardware overhead. The hardware overhead in [18] for 24
selected cells is 582 gate equivalents (see the seventh column), and,
thus, it is very close to the hardware overhead of the proposed
method. As far as the approaches in [24] and [28] are concerned, their
hardware overhead is low, but, as shown earlier, their compression
ratios are much smaller than those of the proposed method. Finally,
the hardware overhead of the single-scan-chain methods in [4], [6],
[9], [14], [15], and [30] is between 125 and 769 gate equivalents. How-
ever, these techniques require much longer test application times and
much greater test data storage.

V. CONCLUSION

In this paper, we have proposed an efficient compression method
that is suitable for multiple-scan-chain IP cores of an unknown struc-
ture. Huffman was used as a variable-to-variable code for compressing
variable-length blocks. To increase the compression ratio, codeword
reusability and two transformations that improve the statistical proper-
ties of the original test set were introduced. Finally, a simple and low-
overhead architecture was proposed to perform the decompression.

REFERENCES

[1] N. Badereddine et al., “Power-aware test data compression for embedded
IP cores,” in Proc. ATS, 2006, pp. 5–10.

[2] K. Balakrishnan, S. Wang, and S. Chakradhar, “PIDISC: Pattern inde-
pendent design independent seed compression technique,” in Proc. 19th
VLSID, 2006, pp. 811–817.

[3] K. Chakrabarty, B. Murray, and V. Iyengar, “Deterministic built-in test
pattern generation for high-performance circuits using twisted-ring coun-
ters,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 5,
pp. 633–636, Oct. 2000.

[4] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression
and decompression architectures based on Golomb codes,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 3, pp. 355–368,
Mar. 2001.

[5] A. Chandra and K. Chakrabarty, “Test data compression and decompres-
sion based on internal scan chains and Golomb coding,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 6, pp. 715–722,
Jun. 2002.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on January 26, 2010 at 16:11 from IEEE Xplore. Restrictions apply.

1338 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

[6] A. Chandra and K. Chakrabarty, “A unified approach to reduce SOC test
data volume, scan power and testing time,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 22, no. 3, pp. 352–363, Mar. 2003.

[7] A. Chandra and K. Chakrabarty, “Test data compression and test re-
source partitioning for system-on-a-chip using frequency-directed run-
length (FDR) codes,” IEEE Trans. Comput., vol. 52, no. 8, pp. 1076–1088,
Aug. 2003.

[8] R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for embedded testing,”
in Proc. ITC, 2001, pp. 530–537.

[9] P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Variable-length input
Huffman coding for system-on-a-chip test,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 22, no. 6, pp. 783–796, Jun. 2003.

[10] P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Synchronization overhead
in SOC compressed test,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 13, no. 1, pp. 140–152, Jan. 2005.

[11] I. Hamzaoglu and J. Patel, “Test set compaction algorithms for combina-
tional circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 19, no. 8, pp. 957–963, Aug. 2000.

[12] V. Iyengar, K. Chakrabarty, and B. Murray, “Deterministic built-in pattern
generation for sequential circuits,” J. Electron. Test.—Theory and Appli-
cations, vol. 15, no. 1/2, pp. 97–114, Aug./Oct. 1999.

[13] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan
chains and its application to testing core-based designs,” in Proc. ITC,
1998, pp. 458–464.

[14] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. Touba, “An efficient test vec-
tor compression scheme using selective Huffman coding,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 6, pp. 797–806,
Jun. 2003.

[15] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel Huffman cod-
ing: An efficient test-data compression method for IP cores,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 6, pp. 1070–
1083, Jun. 2007.

[16] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Optimal selective
Huffman coding for test-data compression,” IEEE Trans. Comput.,
vol. 56, no. 8, pp. 1146–1152, Aug. 2007.

[17] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Test-data compres-
sion based on variable-to-variable Huffman encoding with codeword
reusability,” Dept. Comp. Sci., Univ. Ioannina, Greece, Tech. Rep.
[Online]. Available: http://charon.cs.uoi.gr/~tech_report/hci/publications/
tech_rep__01.pdf

[18] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel-Huffman test-
data compression for IP cores with multiple scan chains,”IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., to be published.

[19] C. Krishna and N. Touba, “Reducing test data volume using LFSR reseed-
ing with seed compression,” in Proc. ITC, 2001, pp. 321–330.

[20] C. Krishna and N. Touba, “Adjustable width linear combinational scan
vector decompression,” in Proc. ICCAD, 2003, pp. 863–866.

[21] J. Lee and N. Touba, “Low power test data compression based on LFSR
reseeding,” in Proc. ICCD, 2004, pp. 180–185.

[22] J. Lee and N. Touba, “Combining linear and nonlinear test vector com-
pression using correlation-based rectangular encoding,” in Proc. 24th
VTS, 2006, pp. 252–257.

[23] L. Li and K. Chakrabarty, “Test set embedding for deterministic BIST
using a reconfigurable interconnection network,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 23, no. 9, pp. 1289–1305,
Sep. 2004.

[24] L. Li, K. Chakrabarty, S. Kajihara, and S. Swaminathan, “Efficient
space/time compression to reduce test data volume and testing time for
IP cores,” in Proc. 18th Int. Conf. VLSI Des., 2005, pp. 53–58.

[25] S. Lin, C. Lee, and J. Chen, “Adaptive encoding scheme for test volume/
time reduction in SOC scan testing,” in Proc. ATS, 2005, pp. 324–329.

[26] A. El-Maleh and R. Al-Abaji, “Extended frequency-directed run-length
code with improved application to system-on-a-chip test data compres-
sion,” in Proc. ICECS, 2002, vol. 2, pp. 449–452.

[27] M. Nourani and M. H. Tehranipour, “RL-Huffman encoding for test
compression and power reduction in scan applications,” ACM Trans. Des.
Autom. Electron. Syst., vol. 10, no. 1, pp. 91–115, Jan. 2005.

[28] S. Reda and A. Orailoglu, “Reducing test application time through test
data mutation encoding,” in Proc. DATE, 2002, pp. 387–393.

[29] P. Rosinger, P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Simultaneous
reduction in volume of test data and power dissipation for systems-on-a-
chip,” Electron. Lett., vol. 37, no. 24, pp. 1434–1436, Nov. 2001.

[30] M. Tehranipour, M. Nourani, and K. Chakrabarty, “Nine-coded com-
pression technique for testing embedded cores in SoCs,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 6, pp. 719–731,
Jun. 2005.

[31] Z. Wang and K. Chakrabarty, “Test data compression for IP embed-
ded cores using selective encoding of scan slices,” in Proc. ITC, 2005,
pp. 1–10.

[32] S. Ward, C. Schattauer, and N. Touba, “Using statistical transformations to
improve compression for linear decompressors,” in Proc. IEEE Int. Symp.
DFT, 2005, pp. 42–50.

State-Sensitive X-Filling Scheme for Scan
Capture Power Reduction

Jing-Ling Yang and Qiang Xu

Abstract—Based on the operation of a state machine, this paper
elucidates a comprehensive frame for probability-based primary-input-
dominated X-filling methods to minimize the total weighted switching
activity (WSA) during the scan capture operation. Experimental results
demonstrate that the proposed approach significantly reduces both aver-
age and peak WSAs.

Index Terms—Scan test, sequential circuits, switching activity (SA),
test generation.

I. INTRODUCTION

Full scan is the most utilized test strategy in the semiconductor in-
dustry. Applying a scan test, however, results in the switching activity
(SA) of a circuit under test (CUT) during test mode that is far beyond
that during normal operational mode [1], [2]. Various techniques such
as scan chain reordering, scan chain segmentation, clock gating, and
low-power automatic test pattern generation (ATPG) have been devel-
oped to reduce scan shift power dissipation (e.g., [3]–[7]). Some tech-
niques, including circuit modification [8], ATPG algorithm [9], and
X-filling techniques [10]–[13], focused on scan capture power reduc-
tion. Among these scan capture power reduction methods, X-filling
techniques do not require a modification in the CUT and do not need
to rerun the time-consuming ATPG process and, hence, are widely
accepted.

As well as having no effect on CUT and ATPG, X-filling techniques
are compatible with those shift power reduction techniques that use or
do not use X-bits. Procedures for generating X-bits for all the steps of
the scan test (which are, namely, scan in, scan capture, and scan out)
can be found in [10]. Examples of X-filling capture power reduction
techniques that are compatible with non X-filling shift power reduction
techniques can be found in [13].

Sankaralingam and Touba [10] introduced unspecified values
(X-bits) in the scan vector and reassigned them to reduce scan peak
power, which may be caused by scan-in, scan capture, and/or scan-out
problems. To decrease scan peak power, first, X-bits are introduced
in the scan vector and then reassigned to minimize the number of
state changes in the scan flip-flops (SFFs) between two consecutive
operation steps. For scan capture peak power reduction, incremental
fault-free simulations are used in the procedure.

Manuscript received February 27, 2007; revised August 23, 2007,
November 11, 2007, and March 1, 2008. This paper was recommended by
Associate Editor S. Vrudhula.

The authors are with the Department of Computer Science and Engineer-
ing, The Chinese University of Hong Kong, Shatin, Hong Kong (e-mail:
jlyang@cse.cuhk.edu.hk; qxu@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TCAD.2008.923418

0278-0070/$25.00 © 2008 IEEE

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on January 26, 2010 at 16:11 from IEEE Xplore. Restrictions apply.

