
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011 787

Generation of Compact Stuck-At Test Sets
Targeting Unmodeled Defects

Xrysovalantis Kavousianos, Member, IEEE, and
Krishnendu Chakrabarty, Fellow, IEEE

Abstract—This letter presents a new method to generate
compact stuck-at test sets that offer high defect coverage. The
proposed method first selects the most effective patterns from
a large N-detect repository, by using a new output deviation-
based metric. Then it embeds complete coverage of stuck-at faults
within these patterns, and uses the proposed metric to further
improve their defect coverage. Results show that the proposed
method outperforms a recently proposed competing approach
in terms of unmodeled defect coverage. In many cases, higher
defect coverage is obtained even than much larger N-detect test
sets for several values of N. Finally, results provide the insight
that, instead of using N-detect testing with as large N as possible,
it is more efficient to combine the output deviations metric with
multi-detect testing to get high-quality, compact test sets.

Index Terms—Defect-oriented testing, multi-detect testing.

I. Introduction

The most widely used fault model is the single stuck-at
fault model; it is simple, requires low computational effort for
test generation, and test patterns for single stuck-at faults also
detect many physical defects. However, it does not offer high
defect coverage. This inadequacy has led to the development of
new fault models which reflect the behavior of many realistic
defects more accurately. A drawback of these models is that
they lead to prohibitively high pattern counts, thereby leading
to high test application times. Moreover, many new defects
cannot be modeled using existing fault models [17].

An alternative approach that increases defect coverage, and
benefits from the low complexity of simple fault models, is
multi-detect testing, also referred to as N-detect testing [1]–
[6], [8], [10]–[16]. The main idea of N-detect testing is to
apply N > 1 different test patterns for each stuck-at fault.
By detecting each stuck-at fault multiple times, with different
test patterns each time, the probability that arbitrary defects are
activated at the target fault site increases. The major drawback
of N-detect testing is that the size of the test set increases
linearly with N. An alternative method was proposed in [7] that
exploits the unspecified values (“X”) of single detect stuck-at
test sets in order to embed multi-detection of stuck-at faults
within these single-detect test sets.

In this letter, we propose a new method to generate high-
quality compact test sets with test lengths similar to that of

Manuscript received July 31, 2010; revised October 30, 2010; accepted
December 9, 2010. Date of current version April 20, 2011. The work of K.
Chakrabarty was supported in part by Semiconductor Research Corporation,
under Contract 1588. A preliminary version of this paper was presented at
DATE 2009. This paper was recommended by Associate Editor A. Ivanov.

X. Kavousianos is with the Department of Computer Science, University of
Ioannina, Ioannina 45110, Greece (e-mail: kabousia@cs.uoi.gr).

K. Chakrabarty is with the Department of Electrical and Computer Engineer-
ing, Duke University, Durham, NC 27708 USA (e-mail: krish@ee.duke.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2101750

single-detect stuck-at test sets. The proposed method embeds
single-detection of stuck-at faults within a small number of the
most-efficient test patterns which are appropriately selected
from an N-detect repository to guarantee high un-modeled
defect coverage. In most of the cases these patterns also detect
the vast majority of the stuck-at faults while the detection of
the remaining stuck-at faults is embedded within their “X”
values and with a few additional top-off patterns.

The proposed method utilizes a new output deviation-based
metric to identify the most effective test patterns from the
repository. Output deviations [18] offer an effective means to
successfully identify the most effective test patterns, without
being biased toward any particular fault model. The pro-
posed metric is more effective than the metric proposed in
[18] because: 1) it achieves a weighted distribution of high
deviation values at circuit outputs, and 2) it favors those
outputs which exhibit increased potential to detect defects. In
addition, it evaluates test patterns for both timing-dependent
and timing-independent unmodeled defects at the same time,
and outperforms the metric proposed in [9], which generates
different test sets to target each kind of these defects.

Simulations results for the ISCAS and IWLS benchmark
circuits [20] show that, despite their compact size, the test
sets generated by the proposed method provide significantly
higher coverage of transition-delay faults and comparable
coverage for bridging faults, when compared to the baseline
single-detect test sets and the test sets obtained using [7].
Moreover, they offer higher coverage of transition-delay
faults than larger N-detect test sets for several values of N.
Finally, we show that instead of simply increasing the value
of N for N-detection, which is currently common industry
practice, a better approach is to combine N-detection with
pattern selection based on output deviations.

II. Output-Deviation Based Metric

In this section, we present the proposed metric. Hereafter,
a test cube is a pattern with 0, 1 and don’t-care (“X”) logic
values, and a test vector is a test pattern without X values.

Output deviations [18] are probability measures at primary
outputs and pseudo-outputs that reflect the likelihood of error
detection at these outputs. They are based on a probabilistic
fault model, in which a probability map, the confidence-
level vector, is assigned to every gate in the circuit. Signal
probabilities pi,0 and pi,1 are associated with each line i for
every input pattern, where pi,0 and pi,1 are the probabilities for
line i to be at logic 0 and 1, respectively. The confidence level
Ri of a gate Gi with m inputs is a vector with 2m components,
defined as Ri = (r0...00

i r0...01
i . . . r1...11

i), where each component
of Ri denotes the probability that the gate output is correct for
the corresponding input combination. For example, let y be the
output of a NAND gate Gi, with inputs a and b. We have

py,0 = pa,1pb,1r
11
i + pa,0pb,0

(
1 − r00

i

)

+pa,0pb,1
(
1 − r01

i

)
+ pa,1pb,0

(
1 − r10

i

)

py,1 = pa,0pb,0r
00
i + pa,0pb,1r

01
i + pa,1pb,0r

10
i

+pa,1pb,1
(
1 − r11

i

)
.

0278-0070/$26.00 c© 2011 IEEE

788 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

For any logic gate Gi in a circuit, let its fault-free output
value for any given input pattern tj be d, with d ∈ {0, 1}. The
output deviation �Gi,j of Gi for tj is defined as pGi,d

, where d

is the complement of d. Intuitively, the deviation for an input
pattern is a measure of the likelihood that the gate output
is incorrect for that pattern. Deviation values are indicative
of the probability arbitrary defects to be detected at circuit
outputs. Output deviations can be determined without explicit
fault grading; hence the computation (linear in the number of
gates) is feasible for large circuits and large test sets.

The proposed metric evaluates each test vector according
to its potential to detect both timing-independent and timing-
dependent defects. Timing-independent defects are detected
by the immediate response (denoted hereafter as R1) of each
stuck-at test vector. For timing-dependent defects, we assume
that each stuck-at test vector is applied at the circuit using the
launch-on-capture (LOC) technique. According to the LOC
technique, the second response (denoted as R2) of each stuck-
at test vector is used to detect timing-dependent defects.

The first objective of the metric is to identify all vectors
that offer high output deviation values at the first and/or
second response. Let us consider a circuit with Q observable
outputs, and the set L of stuck-at test vectors. Each test
vector t ∈ L is applied at the circuit and two responses are
captured in the scan chain: the immediate response tR1 and the
second response tR2 which is generated according to the LOC
technique. Let tR1

Oi
, tR2

Oi
be the fault free values, and D(tR1

Oi
),

D(tR2
Oi

) be the deviation values at output Oi, (i ∈ [1, Q]) at
the first (R1) and second (R2) response of t, respectively. The
metric calculates the maximum deviation value MDR(Oi, v) at
Oi when the fault free logic value is equal to v at response R
(hereafter R will be either R1 or R2 or both) using the formula

MDR(Oi, v) = max{D(tROi
) : t ∈ L, tROi

= v}
for R = R1, R2 i ∈ [1, Q] v = 0, 1. (1)

This formula calculates four maximum deviation values
for each output Oi, which correspond to both fault free
logic values 0, 1 at this output for both responses R1, R2.
Calculating four maximum deviation values for each output
reflects the fact that: 1) different defects are observable at the
responses R1, R2, at each output, and 2) different defects are
usually observable at the same output and the same response
by patterns that produce different fault free logic values at this
output. Thus, 4xQ maximum deviation values are calculated.

The maximum deviation values are used to establish the
boundary between high and low output deviation values (low
output-deviation values are discarded). Specifically, any value
D(tROi

) is high if D(tROi
) ≥ Thr·MDR(Oi, t

R
Oi

) where 0 <<

Thr ≤ 1. Thr is a real-valued quantity used as the threshold
value between low and high output deviation values. The
value of Thr should be set close to 1 in order to select only
vectors that offer close to maximum output deviation values.
We verified that a value of Thr in the range [0.99, 0.995]
provides high-quality vectors, and thus we set Thr = 0.995.

The second objective of the metric is to evaluate the volume
of defects that can be detected at each circuit output. This
volume is likely to be higher at a circuit output which is
driven by a large logic cone than the corresponding volume

at the circuit output which is driven by a small logic cone.
We can measure the volume of defects that can be detected
at any circuit output as the number of lines in the logic
cone driving this output. To this end, we consider a weight
woR(Oi, v) for every (R, i, v)-tuple (v = 0, 1) which is
initially set equal to the number of lines in the logic cone
driving output Oi. In accordance with the calculation of four
different maximum deviation values at each output we also
assume four different weights for each output, one for each
pair of response, error-free logic value (as it will be apparent
shortly, during the selection of test vectors these weights
are independently adjusted according to the output-deviation
values of the selected test vectors to reflect the potential of
each output to detect defects). Then, for each vector t ∈ L, a
weight WT R(t) is calculated for both responses R1, R2 as the
sum of the weights woR(Oi, tROi

) of all outputs Oi, 1 ≤ i ≤ Q,
with high deviation values (note that tROi

= 0 or 1). Thus

WT R(t) =
∑

i∈[1, Q]: D(tR
Oi

) ≥Thr·MDR(Oi,t
R
Oi

)

woR(Oi, tROi
) R = R1, R2.

Each output Oi with high deviation value at response R
when t is applied contributes to the weight of t proportionally
to its potential to observe defects as it is represented by the
value woR(Oi, tROi

). The weight of test vector t is calculated as

WT (t) = WT R1 (t) + WT R2 (t) . (2)

Among the test vectors in set L, the one with the highest value
WT is identified as the most effective one.

The final objective of the metric is to select test vectors
in such a way as to provide a weighted distribution of high
deviation values at all outputs. Note that outputs with increased
observability for test vector t are expected to detect many
defects at their logic cones when t is applied. Thus, if t
is selected, these outputs are expected to offer less defect
detection during the application of the test vectors following,
regardless of the potential of these vectors to detect defects.
Thus, every time a test vector t is selected that provides high
deviation value at output Oi at response R, the weight woR(Oi,
tROi

) is divided by a constant factor DF (note that tROi
= 0 or

1). In this way, the selected test vectors offer high deviation
value at all outputs in a weighted fashion (i.e., outputs of
large logic cones are still favored compared to outputs of small
logic cores). The value of parameter DF determines how fast
the selection process begins to select test vectors with high
deviation values at the outputs of smaller cones too (the higher
is the value of DF, the sooner such test vectors are selected).
We verified that a value of DF in the range [2, 10] guarantees
the selection of test vectors with high deviation values at all
outputs. We have chosen the value of DF = 8.

The proposed output deviation-based metric is more effi-
cient than the metric proposed in [18] as it considers the
structure of the circuit and also offers a weighted distribution
of high deviation values at all outputs. In addition, it is more
efficient than the metric proposed in [9] as it evaluates both
responses R1, R2 of each test cube at the same time and thus
enables the generation of compact test sets with high coverage
of both timing-dependent and timing-independent defects.

KAVOUSIANOS AND CHAKRABARTY: GENERATION OF COMPACT STUCK-AT TEST SETS TARGETING UNMODELED DEFECTS 789

Finally, we note that another output-deviation based metric
was proposed in [19] but this targets only small delay defects.

III. Proposed Test-Generation Method

Step 1) In the first step, a repository of test cubes is gener-
ated, using N-detect ATPG with as high a value of
N as is computationally feasible (N is a user-defined
parameter). The purpose of this step is to generate a
pool of highly efficient test cubes in order to select the
most efficient (in terms of defect coverage) ones. This
set will become the basis for generating the single
detect stuck-at test set. N-detection ATPG offers large
volumes of test cubes among which test cubes that are
very effective for detecting defects exist and which
can be identified by the proposed metric. During
ATPG, the Xs of the test cubes are left unspecified in
order to be exploited at later steps, and the dynamic-
compaction option is turned on in order to limit the
size of the repository.

Step 2) In this step, the generated test cubes are evaluated
using the proposed metric. Since output deviations
are not defined in [18] for test cubes (i.e., test patterns
containing Xs), we evaluate each test cube according
to its potential to yield test vectors with high output
deviations values if its Xs are replaced randomly
by logic values 0, 1. To this end, we generate m
random test vectors per cube by specifying its Xs
in m different random ways (m is a predetermined
constant). Next, all test vectors are inserted in a set
L and they are evaluated using the output deviation-
based metric. Note that the m random test vectors
generated for each cube are used only for evaluating
the respective test cube, and they are discarded after-
ward. Eventually, the k most effective test vectors that
correspond to k different test cubes are identified and
the respective k cubes are selected and form the basis
for the test set (k and m are user-defined parameter).
Specifically, for selecting each of the k test cubes the
test vector t with the highest weight WT (t) is identi-
fied and the corresponding test cube is selected. The
rest m−1 test vectors corresponding to the selected
test cube are dropped from set L. This is iteratively
applied k times (i.e., until k test cubes are selected).

Step 3) The next step ensures that the selected test cubes
achieve complete coverage of stuck-at faults. We
perform stuck-at fault simulation with the selected
cubes and we drop every stuck-at fault the first time
it is detected. Then, we specify the “X” values of the
selected cubes in order to detect as many undetected
stuck-at faults as possible. If necessary, we generate
additional top-off test cubes using a new ATPG
step with the dynamic compaction option turned
on.

Step 4) This step is optional and is motivated by the method
proposed in [7]. As many of the remaining Xs as
possible are specified in order to achieve multiple
detections of as many stuck-at faults as possible, as

TABLE I

Benchmarks and Test-Set Sizes

Circuit
Scan # Reg−SD/ Prop Pure−ND

Inp. Cells Gates Emb−ND SD/ND (N = 10)
s5378 35 179 3114 130 140 436
s9234 36 211 4636 150 159 1126
s13207 62 638 6837 269 290 869
s15850 77 534 7949 137 143 678

IS
C

A
S’

89

s38417 28 1636 21 K 106 111 560
s38584 38 1426 23 K 164 170 1049

sytemcaes 258 670 17 K 211 220 621
tv80 13 359 13 K 640 672 3577

usb−funct 112 1746 23 K 129 123 964
ac97−ctrl 54 2199 24 K 53 60 393

IW
L

S’
05

mem−ctrl 116 1078 22 K 577 608 2680
pci−bridge32 159 3358 38 K 203 215 1610

ethernet 93 10 544 136 K 1110 1117 7491

suggested in [7]. This further improves the defect
coverage of the test sets in many cases.

Step 5) At this step, all remaining Xs are exploited to
maximize the effectiveness of test patterns according
to the proposed metric (note that even if Step 4
is applied prior to Step 5, many Xs still remain in
the test cubes as Step 4 cannot exploit all Xs for
improving the multi-detection of test cubes). To this
end, a similar process with the selection of test cubes
from the repository described in Step 2 is applied.
First, for each test cube, m random test vectors
are generated by filling the unspecified bits in m
different random ways. Then, the output deviations
for all test vectors at both responses R = R1, R2 as
well as the MDR(Oi, v) for v = 0, 1, i∈[1, Q] values
are calculated. The high output deviation values are
identified and the weights woR(Oi,v) for i∈[1, Q], v
= 0, 1 and R = R1, R2 are initialized to the volume
of lines in the logic cone of output Oi. Then, an
iterative process selects the test vectors with the
highest weights WT calculated using (2) and updates
the weights as shown in Section II. When a test vector
is selected, the remaining m − 1 vectors generated
by the same cubes are discarded. This terminates
when one vector has been selected for each cube.

IV. Simulation Results

The test-generation flow, excluding ATPG and fault simu-
lation, was implemented in C. Commercial tools were used
for all ATPG-related and fault simulation steps. We used the
largest ISCAS’89 and a subset of IWLS’05 benchmark circuits
[20]. The basic characteristics of these circuits are shown
in Table I. The total CPU time (including all steps) of the
proposed method varies from a few minutes for small circuits
to 2.5 h for the largest circuit, namely “Ethernet.” The most
time-consuming part of our method is related to the selection
of the test patterns from the N-detect repository in Step 2 (see
Section II). Specifically, for the “Ethernet” benchmark circuit
this step takes 1.9 h to finish.

The quality of the proposed method, with respect to defect
coverage, was evaluated using two surrogate fault models−
the transition-delay and the bridging fault model. These fault
models are not targeted by the generated stuck-at test sets, but
instead, they are used as a means to evaluate the effectiveness

790 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

Fig. 1. Transition-fault coverage ramp-up.

of the proposed method for detecting un-modeled defects.
We used the LOC technique for detecting timing-dependent
defects. Thus, transition faults are detected by the response
to the second vector for each vector pair (consisting of each
stuck-at test and its response). For detecting bridging faults,
we used the immediate response to every stuck-at test vector.

We compare the proposed test-generation method with
traditional single-detect and N-detect stuck-at ATPG as well
as with the embedded multi-detect ATPG method proposed in
[7]. The following test sets were compared with each other.

1) Reg−SD: traditional (regular) single-detect stuck-at test
set, with the Xs specified randomly.

2) Pure−ND: traditional N-detect stuck-at test set with the
Xs specified randomly.

3) Emb−ND: single-detect stuck-at test set, with the Xs
filled in such a way as to embed multi-detection (up
to N) of stuck-at faults. The approach of [7] was
implemented for this purpose.

4) Prop−SD: compact single-detect stuck-at test set gener-
ated by the proposed flow, with Xs specified exclusively
to maximize output deviation values (Step 4 is omitted).

5) Prop−ND: compact single-detect stuck-at test set gen-
erated by the proposed test-generation flow, with the Xs
specified in order to detect first multiple (up to N) times
as many stuck-at faults as possible (Step 4 is applied)
and then the remaining Xs are specified in order to
maximize output deviation values.

We run various experiments to study the effect of parameters
N, k (k is the volume of test cubes selected from the N-detect
repository) and m (m is the volume of random fillings applied
at each test cube). An extensive analysis of these experiments
can be found in [21]. From these experiments we concluded
that the values of N and m should be as large as possible,
while the value of k should be the largest one that complies
with the test data volume constraints of the design. For the
rest of the experiments, we assume the following values for
these parameters: N = 10, m = 10, and k = 30%, 50%. We
also assume the value N = 10 for the Emb−ND method in
order to ensure a fair comparison.

The sizes of the test sets generated by the Reg−SD,
Emb−ND, Pure−ND, Prop−SD, and Prop−ND methods are
shown in the last three columns of Table I. Column 5 presents

TABLE II

Transition: Bridging Fault Coverage (%)

Transition Fault Coverage Random Bridging Faults
Circuit RegSD Emb ND Prop SD Prop ND Reg SD Emb ND Prop SD Prop ND
s5378 58.5 61.6 65.2 65.3 93.6 95.1 94.6 95.4
s9234 39.7 42.9 48.5 48.9 86.1 87.4 86.5 87.9
s13207 61.1 63.1 68.4 67.0 92.1 94.0 93.7 94.6
s15850 50.9 49.7 54.6 52.9 93.1 94.1 93.6 94.4
s38417 77.1 78.5 80.4 80.3 96.7 97.6 97.0 97.8
s38584 60.9 61.7 62.4 62.1 89.4 90.5 89.8 90.7
sytemcaes 65.6 64.2 72.8 71.4 95.4 95.8 95.7 95.9
tv80 53.0 55.2 60.5 59.7 88.9 89.5 89.4 89.6
usb−funct 60.0 63.6 64.6 65.9 94.7 96.3 95.1 96.1
ac97−ctrl 42.8 43.9 47.2 47.6 96.4 97.2 96.8 97.7
mem−ctrl 40.1 42.2 45.1 46.2 74.3 75.0 75.1 75.5
pci−bridge32 59.7 64.1 70.0 70.3 95.7 96.8 96.3 97.0
ethernet 47.4 48.7 51.2 51.6 90.5 91.5 90.8 91.3

the number of test vectors in Reg−SD and Emb−ND (the
pattern counts are the same), column 6 presents the (identical)
number of test vectors in Prop−SD and Prop−ND, and finally,
column 7 lists the number of the test cubes in the 10-detect
pattern repositories (also denoted as Pure−ND). The size of
the test sets generated by the proposed method is almost the
same as the size of the test sets generated by the other methods
and significantly smaller than the size of the repositories used.
Note that the test-set sizes for the proposed method can be
reduced even further using smaller values of k.

Next, we compare the four test sets with respect to the
coverage achieved for transition-delay faults. The results are
shown in the second to the fifth column of Table II. As
expected, in most of the cases, Emb−ND, Prop−SD, and
Prop−ND provide significantly higher transition-fault cover-
age than the baseline Reg−SD test set. Moreover, both the
proposed test sets, Prop−SD and Prop−ND, provide higher
coverage than Emb−ND. In more than half of the cases, the
highest coverage is provided by the Prop−ND test sets.

In Fig. 1, we present the transition fault coverage ramp-
up for these methods for selected benchmark circuits (the
respective charts for the rest of the circuits can be found in
[21]). In each of the charts the x-axis presents the volume of
test vectors applied and the y-axis the transition fault coverage.
It is clear that both the proposed methods provide high ramp-
up and thus they offer reduced test application time in an
abort-at-first-fail environment.

Next, we show that a high degree of multi-detection is not
always necessary for high defect coverage. We present results

KAVOUSIANOS AND CHAKRABARTY: GENERATION OF COMPACT STUCK-AT TEST SETS TARGETING UNMODELED DEFECTS 791

Fig. 2. Multi-detection results for the different test sets.

TABLE III

Small Test Sets Are More Effective Than N -Detect Test Sets

N∗: Threshold Test-Set Size Reduction of
Circuit on N of Size (%)N∗-Detect Proposed
s5378 6 318 140 56.0%
s9234 5 585 159 72.8%
s13207 6 608 290 52.3%
s15850 5 368 143 61.1%
s38417 3 208 111 46.6%
s38584 2 259 170 34.4%
sytemcaes 6 441 220 50.1%
tv80 3 1324 672 49.2%
usb−funct 2 219 123 43.8%
ac97−ctrl 3 130 60 53.8%
mem−ctrl 8 2285 608 73.4%
pci−bridge32 3 534 215 59.7%
ethernet 2 2102 1117 46.9%

for systemcaes benchmark circuit which is a representative
case (the other benchmarks exhibit similar behavior). Each
curve in Fig. 2 presents the percentage of stuck-at faults
detected n times or more for n = 1, 2 . . . 11. Note that the test
set of the proposed method provides less multi-detection than
the two baseline methods, yet it provides higher transition-
fault coverage. The test set of the proposed Prop−SD method
offers less multi-detection than the Emb−ND method but
higher transition fault coverage at the same time. We therefore
conclude that generating patterns with high deviations allows
us to get high defect coverage with a smaller value of N than
would be possible by using N-detect testing alone. Hence, a
combination of output deviations and multi-detection offers
the most promising solution.

Next, we compare the four test sets using the bridging fault
model. 100 K pairs of lines were selected randomly and four
bridging faults were simulated for each pair by considering
both lines as aggressors and victims, as well as both AND,
OR bridging faults. Columns 6–9 of Table II show the random
bridging fault coverage (the best results are boldfaced). In most
of the cases, the Prop−ND test set provides the best results. In
very few cases Emb−ND provides marginally higher bridging
fault coverage than the Prop−ND case.

Finally, we determine a threshold N∗ on N, such that for all
N < N∗, either Prop−SD or Prop−ND test set offers higher
transition-fault coverage than an N∗-detect (Pure−ND) test set
(note that all test sets provide complete coverage of detectable
stuck-at faults). Table III presents the results. Columns 2 and
3 present the value of N∗ as well as the corresponding size
of Pure−ND test set. The last two columns present the test

set size of the proposed method and the test set size reduction
compared to the N∗ detect test set, respectively. The results in
Table III demonstrate that, for most benchmarks, the proposed
method leads to much smaller but more effective test sets
than several pure N-detect test sets. This supports our finding
that N-detect ATPG in conjunction with the proposed output
deviation-based method offers the most promising solution for
generating test sets of high defect coverage.

V. Conclusion

We presented a new method to generate stuck-at test sets
with high un-modeled defect coverage. Results show that com-
pact test sets can be generated offering higher coverage of un-
modeled defects compared to other methods. The effectiveness
of the proposed method is attributed to the combination of
multi-detect ATPG and pattern selection based on output devi-
ations; therefore, this method serves as a promising alternative
to N-detect ATPG with large N.

References

[1] M. Amyeen, S. Venkataraman, A. Ojha, and S. Lee, “Evaluation of the quality
of n-detect scan ATPG pattern on a processor,” in Proc. Int. Test Conf., 2004, pp.
669–678.

[2] B. Benware, C. Schuermyer, N. Tamarapalli, K.-H. Tsai, S. Ranganathan, R.
Madge, J. Rajski, and P. Krishnamurthy, “Impact of multiple-detect test patterns
on product quality,” in Proc. Int. Test Conf., 2003, pp. 1031–1040.

[3] R. Blanton, K. Dwarakanath, and A. Shah, “Analyzing the effectiveness of
multiple-detect test sets,” in Proc. Int. Test Conf., 2003, pp. 876–885.

[4] E. J. McCluskey and C.-W. Tseng, “Stuck-fault tests versus actual defects,” in
Proc. Int. Test Conf., 2000, pp. 336–343.

[5] J. Dworak, J. D. Wicker, S. Lee, M. R. Grimaila, M. R. Mercer, K. M.
Butler, B. Stewart, and L.-C. Wang, “Defect-oriented testing and defect-part-level
prediction,” IEEE Design Test Comput., vol. 18, no. 1, pp. 31–41, Jan.–Feb. 2001.

[6] P. Franco, W. D. Farwell, R. L. Stokes, and E. J. McCluskey, “An experimental
chip to evaluate test techniques chip and experiment design,” in Proc. Int. Test
Conf., 1995, pp. 653–662.

[7] J. Geuzebroek, E. J. Marinissen, A. Majhi, A. Glowatz, and F. Hapke, “Embedded
multi-detect ATPG and its effect on the detection of unmodeled defects,” in
Proc. IEEE Int. Test Conf., Oct. 2007, pp. 1–10.

[8] M. R. Grimaila, S. Lee, J. Dworak, K. M. Butler, B. Stewart, H. Balachandran,
B. Houchins, V. Mathur, J. Park, L.-C. Wang, and M. R. Mercer, “REDO-random
excitation and deterministic observation-first commercial experiment,” in Proc.
IEEE VLSI Test Symp., Apr. 1999, pp. 268–274.

[9] X. Kavousianos and K. Chakrabarty, “Generation of compact test sets with high
defect coverage,” in Proc. DATE, 2009, pp. 1130–1135.

[10] S. Lee, B. Cobb, J. Dworak, M. Grimaila, and M. Mercer, “A new ATPG
algorithm to limit test set size and achieve multiple detections of all faults,” in
Proc. Design Autom. Test Eur., 2002, pp. 92–99.

[11] Y.-T. Lin, O. Poku, N. Bhatti, and R. Blanton, “Physically-aware n-detect test
pattern selection,” in Proc. Design Autom. Test Eur., 2008, pp. 634–639.

[12] J. Nelson, J. Brown, R. Desineni, and R. Blanton, “Multiple-detect ATPG based
on physical neighborhoods,” in Proc. Design Autom. Conf., 2006, pp. 1099–1102.

[13] I. Pomeranz and S. M. Reddy, “A measure of quality for n-detection test sets,”
IEEE Trans. Comput., vol. 53, no. 11, pp. 1497–1503, Nov. 2004.

[14] I. Pomeranz and S. M. Reddy, “Worst-case and average case analysis of
n-detection test sets,” in Proc. Design Autom. Test Eur., 2005, pp. 444–449.

[15] H. Tang, G. Chen, S. M. Reddy, W. Chen, J. Rajski, and I. Pomeranz, “Defect
aware test patterns,” in Proc. Design Autom. Test Eur., 2005, pp. 450–455.

[16] S. Venkataraman, S. Sivaraj, E. Amyeen, S. Lee, A. Ojha, and R. Guo, “An
experimental study of n-detect scan ATPG patterns on a processor,” in Proc.
VLSI Test Symp., 2004, pp. 23–28.

[17] B. Vermeulen, C. Hora, B. Kruseman, E. Marinissen, and R. Rijsinge, “Trends
in testing integrated circuits,” in Proc. Int. Test Conf., 2004, pp. 688–697.

[18] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization using output-
deviation-based reordering of test patterns,” IEEE Trans. Comput.-Aided Design,
vol. 27, no. 2, pp. 352–365, Feb. 2008.

[19] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern selection for
screening small-delay defects in very-deep submicrometer integrated circuits,”
IEEE Trans. Comput.-Aided Design, vol. 29, no. 5, pp. 760–773, May 2010.

[20] IWLS’05 [Online]. Available: http://www.iwls.org/iwls2005/benchmarks.html
[21] X. Kavousianos and K. Chakrabarty, “Generation of compact

single-detect stuck-at test sets targeting unmodeled defects,” Dept.
Electric. Comput. Eng., Duke Univ., Durham, NC, Tech. Rep. ECE-
2010-02 [Online]. Available: http://dukespace.lib.duke.edu/dspace/
handle/10161/2846

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

