

A Parallel Multilevel-Huffman Decompression Scheme
for IP Cores with Multiple Scan Chains

X. Kavousianos1, E. Kalligeros2 and D. Nikolos2

1Computer Science Dept., University of Ioannina, 45110 Ioannina, Greece
2Computer Engineering & Informatics Dept., University of Patras, 26500 Patras, Greece

kabousia@cs.uoi.gr, kalliger@ceid.upatras.gr, nikolsd@cti.gr

Abstract
Various efficient compression methods have been pro-

posed for tackling the problem of increased test-data volume
of contemporary, core-based Systems-on-Chip (SoCs). How-
ever, many of them cannot exploit the test-application-time
advantage that cores with multiple scan chains offer, since
they are not able to perform parallel decompression of the
encoded data. For eliminating this problem, we present a
new, low-overhead decompression scheme that can generate
clusters of test bits in parallel. The test data are encoded
using a recently proposed and very effective compression
method called multilevel Huffman. Thus, apart from the sig-
nificantly reduced test-application times, the proposed ap-
proach offers high compression ratios, as well as increased
probability of detection of unmodeled faults, since the ma-
jority of the unspecified bits of the test sets are replaced by
pseudorandom data. The time/space advantages of the pro-
posed approach are validated by thorough experiments.

1. Introduction
In order to meet tight time-to-market constraints, contem-

porary systems embed pre-designed and pre-verified mod-
ules called IP (Intellectual Property) cores. The structure of
IP cores is often hidden from the system integrator and as a
result, neither fault simulation nor test pattern generation can
be performed for them. IP cores are delivered along with a
pre-computed test set and if they are not BIST-ready, proper
test structures should be incorporated in the system.

Various methods have been proposed to cope with testing
of IP cores. Some of them embed the pre-computed test vec-
tors in longer pseudorandom sequences generated on chip
[1], [10], [14]. The major drawback of such methods is their
long test application time. For that reason many techniques
have been proposed for direct test data compression, using,
among others, various compression codes [2]-[6], [8], [11],
[16], [17], [19], [21], [22], dictionaries [12], [13], [20], [24],
[25], mutation encoding [18], etc. These approaches can
operate on fully compacted test sets thus allowing further
test-time reductions. Dictionary based methods impose high
hardware overhead due to the large embedded RAMs required,
and therefore they are not considered further in this paper.

Usually, test sets, even if they are dynamically and/or
statically compacted, include large numbers of 'x' values.

 This research was co-funded by the European Union in the framework of
the “Operational Program for Education and Initial Vocational Training -
EPEAEK II” of the 3rd Community Support Framework of the Hellenic
Ministry of Education, funded by 25% from National Sources and by 75%
from the European Social Fund (ESF).

Compression methods, in order to achieve high compression
ratios, replace these 'x' values with logic values 0 and/or 1,
depending on the characteristics of the implemented code.
Therefore, compression methods may adversely affect the
coverage of unmodeled faults. This is why in [11] and [23]
LFSRs are used for generating whole clusters of test data.

Another common problem of many compression methods
is their inability of exploiting the test-application-time ad-
vantages that a core with multiple scan chains offers. In
other words, if parallel decompression is not possible, a se-
rial-in parallel-out register must be used for spreading the
decoded data in the scan chains and as a result, no test-time
savings, due to the multiple scan chains, are possible. The
solution of using more than one decoder is too expensive and
thus inapplicable. For that reason, in this paper we propose a
test-data compression scheme that can generate whole clus-
ters of decoded data in parallel. It will be shown that the
proposed scheme manages to exploit most of the offered
parallelism with low hardware overhead (comparable to that
of single-scan-chain schemes). The test-data are compressed
using the recently proposed and very effective multilevel
Huffman encoding method of [11]. Thus, the proposed ap-
proach offers high compression ratios as well as increased
probability of detection of unmodeled faults, since most of
the test sets' 'x' bits are replaced by pseudorandom data.

2. Compression Method

Consider a core with Nsc balanced scan chains of Wsc scan
cells each, as shown in Figure 1:

Wsc

Nsc

slice 0

cl
us

te
rs

slice Wsc-1

bl
oc

k
bl

oc
k

bl
oc

k

Figure 1. Scan chains, clusters and blocks

Each test cube (test vector with 'x' values) is partitioned
into Wsc consecutive slices of Nsc bits, according to the scan-
chain structure of the core. In other words, a test slice con-
sists of the test bits contained in the scan cells of a vertical
cross-section of the scan chains. Wsc scan cycles are required
for loading the scan chains. In case of a not perfectly bal-
anced scan structure (scan chains are not equally sized), the
short test slices are padded with 'x' values. Each test slice is

partitioned into clusters of size CS. If Nsc is not divided ex-
actly by CS, then the last cluster of all slices is shorter than
the others. In other words each test cube is partitioned into
Wsc⋅⎡Nsc/CS⎤ test clusters.

The proposed encoding scheme is based on pseudoran-
dom bit generation and multilevel Huffman coding. Accord-
ing to the multilevel Huffman approach, the same Huffman
code is used for encoding different sets of information (three
in our case, as it will be explained later). As pseudorandom
generator we use a small LFSR and a phase shifter, which
can produce pseudorandom clusters of size CS. The phase
shifter is initially designed as proposed in [17]. However,
since we want to be able to choose among different se-
quences of pseudorandom clusters for the same time period,
we add an extra input to each XOR tree [9]. This extra input
is driven, through a multiplexer, by various cells of the
LFSR. For every different cell, a different sequence of pseu-
dorandom clusters is generated at the outputs of the phase
shifter. The pseudorandom generator is shown in Figure 2.

LFSR

XOR
tree 1

XOR
tree 2

XOR
tree
CS

mux
Cell

Selection
Address

Phase
Shifter

Figure 2. Pseudorandom Generator

At first, the LFSR is set to a random initial state and is let
evolve for a number of cycles equal to the total number of
the test clusters. Then all the test clusters are compared
against the corresponding pseudorandom clusters of the clus-
ter sequences generated when each LFSR-cell's output is fed
to the phase shifter's extra input. If a test cluster is compati-
ble with a pseudorandom cluster belonging in the sequence
of cell i, a hit for cell i occurs. A designer-defined number of
LFSR cells with the largest hit ratios are selected in order to
feed the extra input of the phase shifter. The multiplexer
selection address of each chosen cell is encoded using
Huffman coding, i.e. each Huffman codeword is used for
enabling an LFSR cell to drive the extra input of the phase
shifter. We call this type of encoding Cell encoding. Since
many test clusters have a large number of 'x' values, they are
compatible with pseudorandom clusters generated when dif-
ferent LFSR cells feed the phase shifter's extra input. The
proposed method associates each cluster with the cell that
skews the cell-occurrence probabilities the most. Test clus-
ters that are not compatible with any pseudorandom clusters
are labeled as failed and a single Huffman codeword is used
for distinguishing them from the rest. We note that both the
normal and inverted outputs of the LFSR cells are consid-
ered during the aforementioned cell-selection procedure.

If consecutive test clusters can be generated by using the
same LFSR cell, we encode them with only one codeword,
which succeeds the Cell-encoding codeword and indicates
the number of consecutive clusters (cluster-group length)
that will be generated. In order to keep the cost low, the
available lengths are chosen from a predetermined list of

distinct lengths (group-length quantization). These distinct
lengths are equal to the powers of 2 in the interval [1,
max_length), where max_length is the maximum number of
consecutive test clusters which are compatible with pseudo-
random ones. We call this type of Huffman encoding,
Length encoding. A cluster group with a length not included
in the list, is partitioned into smaller groups of proper length.
A Cell-encoding codeword is always followed by a Length-
encoding codeword, if the encoded cluster is not a failed one.

All failed clusters are partitioned into blocks of size BS,
and the blocks with the highest probabilities of occurrence
are encoded using a selective Huffman code as proposed in
[8]. We call this encoding Block encoding. Some blocks re-
main un-encoded (failed blocks) and are embedded in the
compressed test set. Contrary to [8] where an extra bit is used
in front of all codewords, a single Huffman codeword is asso-
ciated with each failed block (as in the case of failed clusters).

The advantage of the proposed compression method is
that the same Huffman decompressor can be used for im-
plementing the three different decodings (Cell, Length and
Block). Note that one codeword is used for each cell. As the
same codewords are used for all three encodings, the number
of selected cells is equal to the number of list lengths in
Length encoding and to the number of unique blocks en-
coded by Block encoding. The Huffman tree is constructed
by summing the corresponding occurrence probabilities of
the three cases so as a single Huffman code, for all three of
them, to be generated. Thus the same codeword, depending
on the mode of the decoding process, corresponds to 3 dif-
ferent kinds of information: to an LFSR cell (normal and/or
inverted), to a cluster-group length or to a block of data. Al-
ways the first codeword in the encoded-data stream is con-
sidered as a Cell-codeword. If it does not indicate a failed
cluster, then the next codeword determines the length of the
cluster group. If, on the other hand, it corresponds to a failed
cluster, the next CS/BS codewords are processed as Block
codewords. Each of the Block codewords may indicate a
failed block or a Huffman encoded block. In the former case
the actual block of data is embedded in the encoded-data
stream, while in the later case the block of data is generated
by the decompressor. This sequence is iteratively repeated
starting always from a Cell encoding codeword.
Example. Consider a core with 48 scan chains and a test set
of 768 bits. For its encoding we use 4 LFSR cells and thus 4
cluster-group-list lengths and 4 encode-able data blocks. Let
each cluster be 24 bit wide (2 clusters per slice) and each
block 4 bit wide (6 blocks per cluster). Figure 3 presents the
selected cells, the available list lengths and the most
frequently occurring data blocks sorted in descending order
according to their occurrence frequency. Each line of the
table (i.e., the respective case for all three encodings) corre-
sponds to a single codeword in the final encoded stream.
Note that there are 13 groups of clusters matched by LFSR-
cell sequences and 3 failed clusters which are partitioned
into 18 blocks. Overall, there are 47 occurrences of encode-
able data and 5 unique codewords that will be used for en-
coding them. The occurrence volumes in each line of the

Cell Occur. Code
Word

A 6 0

B 4 10

Fail 3 110

C 2 1110

D 1 1111

List
Length Occur.

1 7

2 3

4 2

8 1

Data
Block Occur.

0011 8

0000

4Fail

3

1111 2

0001 1

SUM 16 13 18

Total Sum = 47

P

(6+7+8)/47

(4+3+4)/47

(3+2+3)/47

(2+1+2)/47

(1+1)/47

Cell Encoding Length
Encoding

Block
Encoding

0.45 0.23 0.17 0.11 0.04

0.15

0.32

0.55

1.0

0

1

1

1

1

0

0

0

c5

c1

c2

c3

c4

c5c1 c2 c3 c4

Huffman Tree

Slice 1

Encoded
Stream 0 10 110 10 0010 0

Failed Cluster Failed Block

C
el

l A
 (t

1)

t0 t1 t2 t3 t4

u
u
.
.
.
u

u
.
.
.
u

0
0
1
0

0
0
1
0

0
0
1
1

C
el

l A
 (t

1)

u
u
.
.
.
u

u
u
.
.
.
u

Cluster 1

u
u
.
.
.
u

u
...

u
u
.
.
.
u

C
el

l A
 (t

2)

Slice 2

Cluster 2

Figure 3. Proposed Encoding Example

table are summed and divided by the total number of occur-
rences (47), generating the probability of occurrence of each
distinct codeword, as shown in Figure 3. The encoded
stream in Figure 3 corresponds to the data stored in the ATE.
Initially (t0) the first slice is undefined (u). The first code-
word (0) corresponds to cell A, and the next codeword (10)
indicates the group length, which is 2 according to the table.
Therefore the first slice is filled by using cell A (Cluster 1 in
t1 and Cluster 2 in t2). The next codeword (110) indicates
that the next cluster is a failed one. Thus, this cluster is parti-
tioned into 6 blocks. The next codeword (10) indicates that
the first block is a failed one as well; therefore the actual
data (0010) are not encoded and follow codeword 10. The
codeword for the second block is 0 which correspond to the
encoded block 0011. This is repeated until all 6 blocks have
been processed. The size of the encoded data is 111 bits.

Huffman
FSM

ATE_DATA

ATE_CLK

Pseudo-
Random

GeneratorC
SR

CodeIndex

Block

Cluster
Group
LengthController

Valid
Code

LFSR_en

Sync

CSR_en

Input
Buffer

0

1

ATE_DATA

Select Huffman/ATE

Source
Select

Select Cluster/Block

en

en

Decompressor

Empty

BS

BS

BS

CS

ATE_SYNC

Cell
Selection
Address Scan Chains

Wsc

Nsc

LFSR_en

sl
ic

e
0

sl
ic

e
W

sc
-1

CSR_en

Block
Data

Cluster
Data

Figure 4. Decompression Architecture

3. Decompression Architecture

The block diagram of the proposed decompression archi-
tecture is shown in Figure 4. The Input Buffer receives the

encoded data from the ATE channels (ATE_DATA) with the
frequency of the ATE clock (ATE_CLK), shifts them into
Huffman FSM unit with the frequency of the system clock,
and activates signal Empty so as to notify the ATE to send
the next test data. When the Huffman FSM recognizes a
codeword, it informs Input Buffer to stop sending test data
and, assuming that the implemented code consists of N
codewords, it places on the bus CodeIndex a binary value
between 0 and N-1, which is used as the Cell Selection Ad-
dress (Figure 2). It also sets Valid Code=1. Units Block and
Cluster Group Length which are combinational blocks (or
lookup tables) return respectively the encoded block and
group length that correspond to CodeIndex. As it was shown
in Section 2, a failed cluster is partitioned into blocks and
each block is either Huffman encoded or not (embedded as is
into the compressed data). Signal Select Huffman/ATE is
used for distinguishing between these two cases and the se-
lected data are driven through multiplexing logic to the
Source Select unit. This unit receives pseudorandom clusters
and blocks of failed clusters and, depending on the Select
Cluster/Block signal, it constructs the slice that will enter the
scan chains.

WAIT
CHANNEL

WAIT
LENGTH

LOAD
CLUSTER
GROUP

WAIT
FAILED

CLUSTER

WAIT
FAILED
BLOCK

CLUSTER
DONE?

0,-,- / 0,0,-,-,0

Valid Code,Group_Done,ATE_CLK /
Sync,CSR_en,Select Huffman-ATE,Select

Cluster-Block, LFSR_en

1,-,- / 0,1,-,-,0
0,-,- / 0,0,-,-,0

1,-,- / 0,0,-,0,0

-,0,- / 0,0,-,0,1

-,1,- / 0,0,-,-,0

1,-,- / 0,0,-,-,0
0,-,- / 0,0,-,-,0

1,-,- / 0,0,0,1,0

1,-,- / 0,0,1,1,0

-,-,0 / 1,0,1,1,0

-,-,1/ 0,0,1,1,0

-,-,- / 0,0,-,-,1

-,-,- / 0,0,-,-,0

Figure 5. Controller State Diagram

 The controller synchronizes the operation of all units. Its
state diagram is shown in Figure 5 (the most important sig-
nals are presented). Initially the controller waits for the first
codeword to be received (Valid Code=1). If this codeword
indicates a non-failed cluster, the controller sets CSR_en=1
so as to store the cell address to the CSR resister and pro-
ceeds to WAIT_LENGTH state. Otherwise, it reaches state
WAIT_FAILED_CLUSTER. At WAIT_LENGTH state the
controller waits for the next codeword and upon reception
stores the data returned by the Cluster Group Length unit
(length of the group) and sets Select Cluster/Block=0 in or-
der to enable pseudorandom data to enter the Source Select
unit. It then proceeds to state LOAD_CLUSTER_GROUP
where it remains for a number of clock cycles equal to the
length of the group. During these cycles, the LFSR is let
evolve (LFSR_en=1) and the produced pseudorandom clus-
ters are loaded into the Source Select unit. Every time a
whole test slice is ready, it is loaded into the scan chains.
After the end of these cycles the state machine returns to

WAIT_CHANNEL state for the next iteration.
In the WAIT_FAILED_CLUSTER state the controller

waits for the next codeword. If this codeword corresponds to
an encoded block, the controller sets Select Huffman/ATE=0
and Select Cluster/Block=1 in order to drive the output of the
Block unit (i.e., the decoded data block) into the Source Se-
lect unit, and proceeds to the CLUSTER_DONE? state. On
the other hand, if the received codeword corresponds to a
failed block, the controller proceeds to the WAIT_FAILED_
BLOCK state and sets Select Huffman/ATE=1, Select Clus-
ter/Block=1 and Sync=1 to enable the ATE to send the data
block. Then it samples the ATE_CLK and when the data
from the ATE are available, they are driven directly to the
Source Select unit (Input Buffer is bypassed). From the
WAIT_FAILED_BLOCK state the controller proceeds to the
CLUSTER_DONE? state. If all blocks of the failed cluster
have been handled, the LFSR is let evolve for one clock cy-
cle (LFSR_en=1) and the next state is WAIT_CHANNEL.
Otherwise the controller proceeds to state WAIT_FAILED_
CLUSTER in order to process the next block.

w
-1

0

Cluster
Data

Block
Data

Buffer
Group 0

Buffer
Group k-1

kw
-1

(k
-1

)w

en0..enw-1

en(k-1)w..enkw-1

iw
iw

+1
(i+

1)
w

-1

Cluster
Data

Block
Data

CS0..BS-1BS
BS

BS

BS

CS=w.BS

eniw

eniw+1

en(i+1)w-1

i.w.BS

(i.w+1).BS-1

To Scan Chain

(i.w+1).BS

(i.w+2).BS-1

[(i+1)w-1].BS

(i+1)w.BS-1
Select

Cluster/
Block

CS

w.BS

w.BS

To
Nsc=k.w.BS

Scan Chains

Select
Cluster/Block

m
ux

m
ux

m
ux

reg

reg

reg

CS
Scan

Chains

CSBS..2BS-1

CS(w-1)BS..wBS-1

(a) (b)

Buffer
Group iMux Unit

Mux
Unit

BS

BS

BS

Scan Buffer

Figure 6. Source Select unit

The Source Select unit is shown in Figure 6a. It receives
cluster data produced by the Pseudorandom Generator (en-
coded clusters - Cluster Data bus), as well as block data ei-
ther by the Block unit (Huffman encoded blocks - Block
Data bus) or by the ATE (failed blocks). The received data
are stored in a buffer (Scan Buffer) of size equal to that of a
test slice (Nsc). This buffer consists of ⎡Nsc/BS⎤ registers with
size equal to BS each, grouped into k=⎡Nsc/CS⎤ groups of
w=CS/BS registers. All Buffer Groups are loaded in a round
robin fashion (Buffer Group i is loaded after Buffer Group i-
1). When SelectCluster/Block=0 the Cluster Data bus (of
width CS) loads, through the Mux unit, all registers of a
group simultaneously (in a single clock cycle), while when
SelectCluster/Block=1 the Block Data bus (of width BS) is
driven to every register (w clock cycles are needed for load-
ing a whole group). This operation is handled by the control-
ler through the use of w enable signals eniw...en(i+1)w-1, one
for each register in the group (Buffer Group i is shown in
Figure 6b). Totally, k⋅w enable signals are generated for the
whole Scan Buffer. In order for a cluster to be loaded into

Buffer Group i by the Pseudorandom Generator, all w enable
signals of this group are activated. When a failed cluster is
loaded into Buffer Group i, group's i registers are enabled
one after the other, until all the blocks of the failed cluster
are loaded into the corresponding registers (the enable sig-
nals are one-hot encoded). When the whole Scan Buffer is
full, the scan chains are loaded.

The Scan Buffer can be avoided if the core is equipped with
a separate scan enable or clock signal for each scan chain.
Then the scan chains can be loaded directly without the in-
terference of the buffer, using the enable signals for driving
the scan enables or for gating the clock of each scan chain.

The same decompressor can be used for two or more
cores by changing only the units Block and Cluster Group
Length, as well as the multiplexer in the Pseudorandom
Generator, which occupy only a small portion of the total
area. Moreover, if the Block and Cluster Group Length units
are implemented as lookup tables, they need to be loaded
with the specific data of each core only at the beginning of
the test session. In [11] it was shown that the compression
ratio reduction in the case of utilizing the same decompres-
sor for multiple cores, due to the use of the same codewords,
is only marginal. This is easily explained if we take into ac-
count that, for the same number of cells (same number of
Huffman codewords) and for relatively skewed frequencies
of occurrence, the Huffman trees are not much different and
thus the encoding, if not optimal, will be very close to the
optimal one. Note that, regardless of the fact that the same
Huffman FSM unit is utilized, the selected cells, list lengths,
encoded blocks, as well as the cluster and block sizes do not
have to be the same for different cores.

Let us now calculate the test application time. Suppose
that ⎜D⎜and ⎜E⎜ are the size in bits of the uncompressed and
compressed test set respectively. The compression ratio is
given by the formula CR=(⎜D⎜-⎜E⎜)/⎜D⎜. Let fATE, fSYS be the
ATE and system clock frequencies respectively, with
fSYS=m·fATE, and let Nch be the number of channels available
for downloading the test data from the ATE. Also, let Gi be
the number of occurrences of cluster groups with length Li
and assume that Fc and Fb are the number of failed clusters
and failed blocks respectively. The test application time of
the uncompressed test set is tD=⎜D⎜/(Nch

.fATE) and the reduc-
tion is given by the formula tred=(tD-tE)/tD, where tE is the test
application time of the compressed test set. tE consists of
four parts:
t1. The time required for downloading the data (codewords
and failed blocks) from the ATE to the core: t1=⎜E⎜/(Nch

.fATE).
t2. The time for the serialization of codewords by the Input
Buffer (failed blocks do not require serialization): t2=(|E|-
Fb⋅BS)/fSYS.
t3. The time required for loading the scan chains with pseu-
dorandom sequences of length equal to the number of the

decoded cluster groups: ∑=
i

ii
SYS

3 LG
f

1t .

t4. The time required for loading the scan chains with failed
clusters. Each cluster is partitioned into CS/BS blocks and a

Table 1. Compression Results

 20 scan chains 40 scan chains 80 scan chains 100 scan chains
core

Min-
Test 8 cells 16 cells 24 cells 8 cells 16 cells 24 cells 8 cells 16 cells 24 cells 8 cells 16 cells 24 cells

Red.
(%)

s5378 23754 9597 9420 9247 9702 9470 9261 9713 9427 9338 10029 9697 9521 61,1
s9234 39273 16595 16056 15787 16746 16201 15722 17095 16330 15860 16995 16358 15923 60,0

s13207 165200 21865 20258 19400 20363 18973 18543 20319 18840 18381 19512 18593 18153 89,0
s15850 76986 20844 20143 19630 20715 19754 19326 20687 19763 19313 20921 20162 19329 74,9
s38417 164736 65372 63725 62227 63569 60585 59078 63420 60593 59026 63184 60140 58706 64,4
s38584 199104 62770 61891 59750 62449 59699 57801 62989 60776 58381 62412 60584 58518 71,0

single clock cycle is required for loading each block (the
time required for downloading the failed blocks from the
ATE has been taken into account in t1). Thus:
t4=Fb⋅CS/(BS⋅fSYS).
The total time required for applying the compressed test set
is tE=t1+t2+t3+t4 and it can be easily proven that

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⋅−

⋅
−= ∑

i
ii

c
b

ch
red LG

BS
CSF

BSFE
mD

N
CRt

4. Evaluation and comparisons
The proposed compression method was implemented in C

programming language. We conducted our experiments in a
Pentium PC for the largest ISCAS '89 benchmarks circuits
using the dynamically compacted test sets generated by the
Mintest ATPG program [7]. The same test sets were also
utilized in [2]-[6], [8], [11], [15], [16], [18]-[22]. As far as
the Pseudorandom Generator is concerned, a primitive-
polynomial LFSR of size 20 with internal XOR gates was
used, while each XOR tree of the phase shifter comprised 3
gates. Block size (BS) was considered equal to Nch and
ranged from 5 to 10, while cluster-size values (CS) ranged
from 20 to 50. The run time of the compression method was
a few seconds for each benchmark circuit.

In Table 1 the compression results of the proposed
method for 20, 40, 80 and 100 scan chains, and 8, 16 and 24
cells are presented. For each cell-volume case, various clus-
ter and block sizes were examined and the best results are
reported. In column 2 the sizes of the original Mintest test
sets are shown. It is obvious that the compression improves
as the number of cells increases. Last column presents the
reductions achieved over Mintest, considering the best re-
sults of the proposed method (boldfaced).

Table 2. Compression improvement (%) over other methods
Circ. [2] [3] [4] [5] [6] [8] [15] [16] [18] [19] [21] [22]
s5378 - - 20.9 25.1 19.3 13.3 35.0 19.0 - 36.7 15.8 12.0
s9234 29.3 30.1 27.3 29.0 24.1 12.6 47.8 26.0 - 34.3 23.6 11.5
s13207 56.4 48.3 44.4 41.2 33.4 52.2 13.5 39.5 75.6 52.2 37.2 25.8
s15850 52.6 36.8 26.6 25.7 21.8 26.2 23.2 21.6 25.8 38.3 23.2 12.7
s38417 36.2 35.6 9.6 37.2 23.6 13.1 31.1 9.6 -30.4 20.1 0.5 4.0
s38584 44.5 35.7 25.3 25.7 23.0 19.1 -1.2 21.7 21.3 33.1 22.8 8.1

In Table 2 we present the comparisons of the proposed

method against other compression techniques in the litera-
ture which are suitable for IP cores of unknown structure and
have reported results for the Mintest test sets. It can be seen
that the proposed approach performs better than all the other
methods except for the case of s38584 of [15], which pro-
vides a marginally better result, and that of s38417 of [18].

However, the results reported in [18] do not include control
information which is of significant volume and must be also
stored in the ATE for every core. Compared to the single-
scan-chain Multilevel Huffman approach of [11] the com-
pression results are similar and therefore are not appended.
We note that no comparisons are provided against the ap-
proach of [23], which also exploits LFSR-generated pseudo-
random sequences, since its ATPG-synergy requirement
renders it unsuitable for IP cores of unknown structure.

Figure 7. TAT reduction.

For assessing the test application time (TAT) improve-
ments of our method we performed two sets of experiments,
for the boldfaced cases of Table 1. In the first one we study
the reduction of the test application time achieved against
the case in which the test set is downloaded uncompacted
(UNC) to the core, using the same number of channels. Fig-
ure 7 presents the average (UNC:AVG), minimum (UNC:
MIN) and maximum (UNC:MAX) improvement for various
values of m=fSYS /fATE for all benchmarks. It is obvious that as
m increases, the test-time gain becomes greater. In the sec-
ond set of experiments we compare the test application time
of the proposed method against the single-scan-chain Multi-
level Huffman approach of [11]. Since [11] considers only
one channel for downloading data from ATE, we re-
calculated its test application time for the channel volumes
used in this paper (an input buffer is appended in [11] too).
The best results of the proposed method and [11] have been
compared and the average ([11]:AVG), minimum ([11]:MIN)
and maximum ([11]:MAX) improvement for various values
of m for all benchmarks, are shown in Figure 7. It is obvious
that the test application time gain is very high in all cases
(40%-81.6%). However, although the test-time gain attrib-
uted to the parallel loading of multiple scan chains is con-
stant, the serialization of the decoder input data is carried out
faster as m increases and thus the test-time reduction drops.

For assessing the hardware overhead of the proposed
method, we synthesized three different decompressors using
Leonardo Spectrum (Mentor tools) for 8, 16 and 24 cells,
assuming 10 ATE channels, 40 scan chains, CS = 20 bits and

BS = 10 bits. The Block and Cluster Group Length units
were implemented as combinational circuits. The resulted
area overhead was 377, 473 and 582 gate equivalents respec-
tively (a gate equivalent corresponds to a 2-input NAND
gate). In this overhead we have not considered the Scan
Buffer which can be avoided and is not considered in the
other methods too. The hardware overhead, in gate equiva-
lents, for the most efficient methods in the literature is: 416
for [22], 320 for [4], 136-296 for [6], 125-307 for [2] (as
reported in [6]) and 203-432 for [11], while the hardware
overhead of [8], although not reported directly, is greater
than that of [6]. As can be seen, the hardware overhead of
the proposed decompressor is comparable to that of the rest
techniques, even though all of them do not exploit the ad-
vantages of multiple scan chains (i.e., perform serial decod-
ing which is a simpler and less hardware intensive case). The
approaches of [15] and [18] have low hardware overhead but,
as we have shown earlier, do not offer as high compression
ratios as the proposed method.

The hardware overhead of the proposed method can be
reduced if the same decompressor is used for testing, one
after the other, several cores of a chip. Units Huffman FSM,
Controller, CSR, Source Select, as well as the LFSR and the
phase shifter can be implemented only once on the chip. On
the other hand, units Block, Cluster Group Length and the
multiplexer of the Pseudorandom Generator must be imple-
mented for every core under test. The area occupied by the
latter units is equal to 7.7%, 14% and 19.7% of the total area
of the decompressor for 8, 16 and 24 cells respectively.
Therefore, only a small amount of hardware should be added
for each additional core. The use of the same Huffman FSM
unit for several cores implies that the codewords, which
correspond to LFSR cells, list lengths and data blocks, are
the same for each core, while the actual cells, list lengths and
data blocks can be different. As shown in [11], in such a case,
the compression ratio suffers only a marginal decrease.

5. Conclusion

A test-data compression method that can exploit the exis-
tence of multiple scan chains in a core in order to reduce the
test-application time has been presented. Multilevel Huff-
man coding, properly adapted to the multiple-scan-chains
case, is used for compressing the test data, while a low-
overhead decompressor capable of generating whole clusters
of test bits in parallel is also introduced. The proposed
method offers reduced test-application times, high compres-
sion ratios and increased probability of detection of unmod-
eled faults, since most of the test sets' 'x' bits are replaced by
pseudorandom values.

References
[1] K. Chakrabarty, et al., “Deterministic Built-In Test Pattern
Generation for High-Performance Circuits using Twisted-Ring
Counters”, IEEE Trans. On VLSI Systems, pp. 633-636, Oct. 2000.
[2] A. Chandra, K. Chakrabarty, “System-on-a-Chip Test-Data
Compression and Decompression Architectures Based on Golomb
Codes”, IEEE Trans. on CAD, vol. 20, no. 3, pp. 355-368, 2001.
[3] Chandra A., Chakrabarty K., “Test Data Compression and De-

compression Based on Internal Scan Chains and Golomb Coding”,
IEEE Trans. on CAD, vol. 21, pp. 715-72, June 2002.
[4] A. Chandra, K. Chakrabarty, “A Unified Approach to Reduce
SOC Test Data Volume, Scan Power and Testing Time”, IEEE
Trans. on CAD, vol. 22, no. 3, pp. 352-363, 2003.
[5] A. Chandra, K. Chakrabarty, “Test Data Compression and Test
Resource Partitioning for System-On-A-Chip Using Frequency-
Directed Run-Length (FDR) codes”, IEEE Trans. on Computers,
vol. 52 , no. 8, pp. 1076 – 1088, 2003.
[6] P.T. Gonciari, B.M. Al-Hashimi, N. Nicolici, “Variable-Length
Input Huffman Coding for System-On-A-Chip Test”, IEEE Trans.
on CAD, vol. 22 , no. 6, pp. 783 – 796, 2003.
[7] I. Hamzaoglu, J. Patel, “Test Set Compaction Algorithms for
Combinational Circuits”, IEEE Trans. on CAD, vol. 19, no. 8, pp.
957-963.
[8] A. Jas et. al, “An Efficient Test Vector Compression Scheme
Using Selective Huffman Coding”, IEEE Trans. on CAD, vol.22,
no.6, pp.797-806, 2003.
[9] E. Kalligeros et al., “Multiphase BIST: A New Reseeding Tech-
nique for High Test-Data Compression”, IEEE Trans. on CAD, vol.
23, no. 10, pp. 1429-1446.
[10] D. Kaseridis et al., “An Efficient Test Set Embedding Scheme
with Reduced Test Data Storage and Test Sequence Length Re-
quirements for Scan-based Testing”, Inf. Papers Dig. of IEEE ETS,
pp. 147-150, 2005.
[11] X. Kavousianos et al., “Efficient Test-Data Compression for IP
Cores Using Multilevel Huffman Coding”, DATE 06, to appear.
[12] M.J. Knieser, et. all, “A Technique for High Ratio LZW Com-
pression”,.DATE 2003, pp.116 – 121.
[13] L. Li et al., “Test Data Compression Using Dictionaries with
Fixed-Length Indices”, Proc. VTS, 2003, pp. 219-224.
[14] Lei Li, K. Chakrabarty, “Test Set Embedding for Deterministic
BIST Using A Reconfigurable Interconnection Network”, IEEE
Trans. on CAD, vol.23, pp. 1289- 1305, Dec. 2004.
[15] Lei Li et al., “Efficient space/time compression to reduce test
data volume and testing time for IP cores”, Proc. of Int. Conf. on
VLSI Design, pp.53- 58, 2005.
[16] A. Maleh, R. Abaji, “Extended Frequency-Directed Run-
Length Code with Improved Application to System-On-A-Chip
Test Data Compression” IEEE ICECS, vol. 2, pp. 449-452, 2002.
[17] J. Rajski, N. Tamarapalli, and J. Tyszer, “Automated synthesis
of phase shifters for built-in self-test applications,” IEEE Trans.
Computer-AidedDesign, vol. 19, pp. 1175–1188, Oct. 2000.
[18] S. Reda, A. Orailoglu, “Reducing Test Application Time
Through Test Data Mutation Encoding”, DATE 2002, pp. 387-393
[19] P. Rosinger, et al., “Simultaneous Reduction in Volume of
Test Data and Power Dissipation for Systems-On-A-Chip”, Electr.
Letters, vol. 37, no. 24, pp. 1434 – 1436, 2001.
[20] X. Sun, et. al, “Combining Dictionary and LFSR Reseeding
for Test Data Compression”, in Proc. DAC, June 2004, pp. 944-947
[21] M. Tehranipour et al., “Mixed RL-Huffman Encoding for
Power Reduction and Data Compression in Scan Test”, Proc. of
ISCAS, vol. 2, pp. II- 681-4, 2004.
[22] M. Tehranipour, M. Nourani, K. Chakrabarty, “Nine-Coded
Compression Technique for Testing Embedded Cores in SoCs”,
IEEE Trans. On VLSI Systems, vol. 13, pp. 719-731, June 2005.
[23] E.H. Volkerink, A. Khoche, S. Mitra, “Packet-Based Input
Test Data Compression Techniques”, Proc. ITC, pp. 154-163, 2000.
[24] F.G. Wolff and C. Papachristou, “Multiscan-Based Test Com-
pression and Hardware Decompression Using LZ77”, in Proc. ITC,
Oct. 2002, pp. 331 – 339.
[25] A. Wurtenberger, et. all, “Data Compression for Multiple Scan
Chains using Dictionaries with Corrections”, in Proc. ITC, Oct. 04,
pp. 926- 935.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

