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Abstract  
Various efficient compression methods have been pro-

posed for tackling the problem of increased test-data volume 
of contemporary, core-based Systems-on-Chip (SoCs). How-
ever, many of them cannot exploit the test-application-time 
advantage that cores with multiple scan chains offer, since 
they are not able to perform parallel decompression of the 
encoded data. For eliminating this problem, we present a 
new, low-overhead decompression scheme that can generate 
clusters of test bits in parallel. The test data are encoded 
using a recently proposed and very effective compression 
method called multilevel Huffman. Thus, apart from the sig-
nificantly reduced test-application times, the proposed ap-
proach offers high compression ratios, as well as increased 
probability of detection of unmodeled faults, since the ma-
jority of the unspecified bits of the test sets are replaced by 
pseudorandom data. The time/space advantages of the pro-
posed approach are validated by thorough experiments. 
 

1. Introduction 
In order to meet tight time-to-market constraints, contem-

porary systems embed pre-designed and pre-verified mod-
ules called IP (Intellectual Property) cores. The structure of 
IP cores is often hidden from the system integrator and as a 
result, neither fault simulation nor test pattern generation can 
be performed for them. IP cores are delivered along with a 
pre-computed test set and if they are not BIST-ready, proper 
test structures should be incorporated in the system.  

Various methods have been proposed to cope with testing 
of IP cores. Some of them embed the pre-computed test vec-
tors in longer pseudorandom sequences generated on chip 
[1], [10], [14]. The major drawback of such methods is their 
long test application time. For that reason many techniques 
have been proposed for direct test data compression, using, 
among others, various compression codes [2]-[6], [8], [11], 
[16], [17], [19], [21], [22], dictionaries [12], [13], [20], [24], 
[25], mutation encoding [18], etc. These approaches can 
operate on fully compacted test sets thus allowing further 
test-time reductions. Dictionary based methods impose high 
hardware overhead due to the large embedded RAMs required, 
and therefore they are not considered further in this paper. 

Usually, test sets, even if they are dynamically and/or 
statically compacted, include large numbers of 'x' values. 
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Compression methods, in order to achieve high compression 
ratios, replace these 'x' values with logic values 0 and/or 1, 
depending on the characteristics of the implemented code. 
Therefore, compression methods may adversely affect the 
coverage of unmodeled faults. This is why in [11] and [23] 
LFSRs are used for generating whole clusters of test data. 

Another common problem of many compression methods 
is their inability of exploiting the test-application-time ad-
vantages that a core with multiple scan chains offers. In 
other words, if parallel decompression is not possible, a se-
rial-in parallel-out register must be used for spreading the 
decoded data in the scan chains and as a result, no test-time 
savings, due to the multiple scan chains, are possible. The 
solution of using more than one decoder is too expensive and 
thus inapplicable. For that reason, in this paper we propose a 
test-data compression scheme that can generate whole clus-
ters of decoded data in parallel. It will be shown that the 
proposed scheme manages to exploit most of the offered 
parallelism with low hardware overhead (comparable to that 
of single-scan-chain schemes). The test-data are compressed 
using the recently proposed and very effective multilevel 
Huffman encoding method of [11]. Thus, the proposed ap-
proach offers high compression ratios as well as increased 
probability of detection of unmodeled faults, since most of 
the test sets' 'x' bits are replaced by pseudorandom data. 

 
2. Compression Method 

Consider a core with Nsc balanced scan chains of Wsc scan 
cells each, as shown in Figure 1: 
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Figure 1. Scan chains, clusters and blocks 

Each test cube (test vector with 'x' values) is partitioned 
into Wsc consecutive slices of Nsc bits, according to the scan-
chain structure of the core. In other words, a test slice con-
sists of the test bits contained in the scan cells of a vertical 
cross-section of the scan chains. Wsc scan cycles are required 
for loading the scan chains. In case of a not perfectly bal-
anced scan structure (scan chains are not equally sized), the 
short test slices are padded with 'x' values. Each test slice is 



 

partitioned into clusters of size CS. If Nsc is not divided ex-
actly by CS, then the last cluster of all slices is shorter than 
the others. In other words each test cube is partitioned into 
Wsc⋅⎡Nsc/CS⎤ test clusters. 

The proposed encoding scheme is based on pseudoran-
dom bit generation and multilevel Huffman coding. Accord-
ing to the multilevel Huffman approach, the same Huffman 
code is used for encoding different sets of information (three 
in our case, as it will be explained later). As pseudorandom 
generator we use a small LFSR and a phase shifter, which 
can produce pseudorandom clusters of size CS. The phase 
shifter is initially designed as proposed in [17]. However, 
since we want to be able to choose among different se-
quences of pseudorandom clusters for the same time period, 
we add an extra input to each XOR tree [9]. This extra input 
is driven, through a multiplexer, by various cells of the 
LFSR. For every different cell, a different sequence of pseu-
dorandom clusters is generated at the outputs of the phase 
shifter. The pseudorandom generator is shown in Figure 2.  
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Figure 2. Pseudorandom Generator 

At first, the LFSR is set to a random initial state and is let 
evolve for a number of cycles equal to the total number of 
the test clusters. Then all the test clusters are compared 
against the corresponding pseudorandom clusters of the clus-
ter sequences generated when each LFSR-cell's output is fed 
to the phase shifter's extra input. If a test cluster is compati-
ble with a pseudorandom cluster belonging in the sequence 
of cell i, a hit for cell i occurs. A designer-defined number of 
LFSR cells with the largest hit ratios are selected in order to 
feed the extra input of the phase shifter. The multiplexer 
selection address of each chosen cell is encoded using 
Huffman coding, i.e. each Huffman codeword is used for 
enabling an LFSR cell to drive the extra input of the phase 
shifter. We call this type of encoding Cell encoding. Since 
many test clusters have a large number of 'x' values, they are 
compatible with pseudorandom clusters generated when dif-
ferent LFSR cells feed the phase shifter's extra input. The 
proposed method associates each cluster with the cell that 
skews the cell-occurrence probabilities the most. Test clus-
ters that are not compatible with any pseudorandom clusters 
are labeled as failed and a single Huffman codeword is used 
for distinguishing them from the rest. We note that both the 
normal and inverted outputs of the LFSR cells are consid-
ered during the aforementioned cell-selection procedure. 

If consecutive test clusters can be generated by using the 
same LFSR cell, we encode them with only one codeword, 
which succeeds the Cell-encoding codeword and indicates 
the number of consecutive clusters (cluster-group length) 
that will be generated. In order to keep the cost low, the 
available lengths are chosen from a predetermined list of 

distinct lengths (group-length quantization). These distinct 
lengths are equal to the powers of 2 in the interval [1, 
max_length), where max_length is the maximum number of 
consecutive test clusters which are compatible with pseudo-
random ones. We call this type of Huffman encoding, 
Length encoding. A cluster group with a length not included 
in the list, is partitioned into smaller groups of proper length. 
A Cell-encoding codeword is always followed by a Length-
encoding codeword, if the encoded cluster is not a failed one.  

All failed clusters are partitioned into blocks of size BS, 
and the blocks with the highest probabilities of occurrence 
are encoded using a selective Huffman code as proposed in 
[8]. We call this encoding Block encoding. Some blocks re-
main un-encoded (failed blocks) and are embedded in the 
compressed test set. Contrary to [8] where an extra bit is used 
in front of all codewords, a single Huffman codeword is asso-
ciated with each failed block (as in the case of failed clusters). 

The advantage of the proposed compression method is 
that the same Huffman decompressor can be used for im-
plementing the three different decodings (Cell, Length and 
Block). Note that one codeword is used for each cell. As the 
same codewords are used for all three encodings, the number 
of selected cells is equal to the number of list lengths in 
Length encoding and to the number of unique blocks en-
coded by Block encoding. The Huffman tree is constructed 
by summing the corresponding occurrence probabilities of 
the three cases so as a single Huffman code, for all three of 
them, to be generated. Thus the same codeword, depending 
on the mode of the decoding process, corresponds to 3 dif-
ferent kinds of information: to an LFSR cell (normal and/or 
inverted), to a cluster-group length or to a block of data. Al-
ways the first codeword in the encoded-data stream is con-
sidered as a Cell-codeword. If it does not indicate a failed 
cluster, then the next codeword determines the length of the 
cluster group. If, on the other hand, it corresponds to a failed 
cluster, the next CS/BS codewords are processed as Block 
codewords. Each of the Block codewords may indicate a 
failed block or a Huffman encoded block. In the former case 
the actual block of data is embedded in the encoded-data 
stream, while in the later case the block of data is generated 
by the decompressor. This sequence is iteratively repeated 
starting always from a Cell encoding codeword. 
Example. Consider a core with 48 scan chains and a test set 
of 768 bits. For its encoding we use 4 LFSR cells and thus 4 
cluster-group-list lengths and 4 encode-able data blocks. Let 
each cluster be 24 bit wide (2 clusters per slice) and each 
block 4 bit wide (6 blocks per cluster). Figure 3 presents the 
selected cells, the available list lengths and the most 
frequently occurring data blocks sorted in descending order 
according to their occurrence frequency. Each line of the 
table (i.e., the respective case for all three encodings) corre-
sponds to a single codeword in the final encoded stream. 
Note that there are 13 groups of clusters matched by LFSR-
cell sequences and 3 failed clusters which are partitioned 
into 18 blocks. Overall, there are 47 occurrences of encode-
able data and 5 unique codewords that will be used for en-
coding  them.  The  occurrence  volumes  in  each  line of the  



 

Cell Occur. Code
Word

A 6 0

B 4 10

Fail 3 110

C 2 1110

D 1 1111
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1 7
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Figure 3. Proposed Encoding Example 

table are summed and divided by the total number of occur-
rences (47), generating the probability of occurrence of each 
distinct codeword, as shown in Figure 3. The encoded 
stream in Figure 3 corresponds to the data stored in the ATE. 
Initially (t0) the first slice is undefined (u). The first code-
word (0) corresponds to cell A, and the next codeword (10) 
indicates the group length, which is 2 according to the table. 
Therefore the first slice is filled by using cell A (Cluster 1 in 
t1 and Cluster 2 in t2). The next codeword (110) indicates 
that the next cluster is a failed one. Thus, this cluster is parti-
tioned into 6 blocks. The next codeword (10) indicates that 
the first block is a failed one as well; therefore the actual 
data (0010) are not encoded and follow codeword 10. The 
codeword for the second block is 0 which correspond to the 
encoded block 0011. This is repeated until all 6 blocks have 
been processed. The size of the encoded data is 111 bits. 
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Figure 4. Decompression Architecture 

 
3. Decompression Architecture 

The block diagram of the proposed decompression archi-
tecture is shown in Figure 4. The Input Buffer receives the 

encoded data from the ATE channels (ATE_DATA) with the 
frequency of the ATE clock (ATE_CLK), shifts them into 
Huffman FSM unit with the frequency of the system clock, 
and activates signal Empty so as to notify the ATE to send 
the next test data. When the Huffman FSM recognizes a 
codeword, it informs Input Buffer to stop sending test data 
and, assuming that the implemented code consists of N 
codewords, it places on the bus CodeIndex a binary value 
between 0 and N-1, which is used as the Cell Selection Ad-
dress (Figure 2). It also sets Valid Code=1. Units Block and 
Cluster Group Length which are combinational blocks (or 
lookup tables) return respectively the encoded block and 
group length that correspond to CodeIndex. As it was shown 
in Section 2, a failed cluster is partitioned into blocks and 
each block is either Huffman encoded or not (embedded as is 
into the compressed data). Signal Select Huffman/ATE is 
used for distinguishing between these two cases and the se-
lected data are driven through multiplexing logic to the 
Source Select unit. This unit receives pseudorandom clusters 
and blocks of failed clusters and, depending on the Select 
Cluster/Block signal, it constructs the slice that will enter the 
scan chains. 
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Figure 5. Controller State Diagram 

  The controller synchronizes the operation of all units. Its 
state diagram is shown in Figure 5 (the most important sig-
nals are presented). Initially the controller waits for the first 
codeword to be received (Valid Code=1). If this codeword 
indicates a non-failed cluster, the controller sets CSR_en=1 
so as to store the cell address to the CSR resister and pro-
ceeds to WAIT_LENGTH state. Otherwise, it reaches state 
WAIT_FAILED_CLUSTER. At WAIT_LENGTH state the 
controller waits for the next codeword and upon reception 
stores the data returned by the Cluster Group Length unit 
(length of the group) and sets Select Cluster/Block=0 in or-
der to enable pseudorandom data to enter the Source Select 
unit. It then proceeds to state LOAD_CLUSTER_GROUP 
where it remains for a number of clock cycles equal to the 
length of the group. During these cycles, the LFSR is let 
evolve (LFSR_en=1) and the produced pseudorandom clus-
ters are loaded into the Source Select unit. Every time a 
whole test slice is ready, it is loaded into the scan chains. 
After the end of these cycles the state machine returns to 



 

WAIT_CHANNEL state for the next iteration.  
In the WAIT_FAILED_CLUSTER state the controller 

waits for the next codeword. If this codeword corresponds to 
an encoded block, the controller sets Select Huffman/ATE=0 
and Select Cluster/Block=1 in order to drive the output of the 
Block unit (i.e., the decoded data block) into the Source Se-
lect unit, and proceeds to the CLUSTER_DONE? state. On 
the other hand, if the received codeword corresponds to a 
failed block, the controller proceeds to the WAIT_FAILED_ 
BLOCK state and sets Select Huffman/ATE=1, Select Clus-
ter/Block=1 and Sync=1 to enable the ATE to send the data 
block. Then it samples the ATE_CLK and when the data 
from the ATE are available, they are driven directly to the 
Source Select unit (Input Buffer is bypassed). From the 
WAIT_FAILED_BLOCK state the controller proceeds to the 
CLUSTER_DONE? state. If all blocks of the failed cluster 
have been handled, the LFSR is let evolve for one clock cy-
cle (LFSR_en=1) and the next state is WAIT_CHANNEL. 
Otherwise the controller proceeds to state WAIT_FAILED_ 
CLUSTER in order to process the next block. 
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The Source Select unit is shown in Figure 6a. It receives 
cluster data produced by the Pseudorandom Generator (en-
coded clusters - Cluster Data bus), as well as block data ei-
ther by the Block unit (Huffman encoded blocks - Block 
Data bus) or by the ATE (failed blocks). The received data 
are stored in a buffer (Scan Buffer) of size equal to that of a 
test slice (Nsc). This buffer consists of ⎡Nsc/BS⎤ registers with 
size equal to BS each, grouped into k=⎡Nsc/CS⎤ groups of 
w=CS/BS registers. All Buffer Groups are loaded in a round 
robin fashion (Buffer Group i is loaded after Buffer Group i-
1). When SelectCluster/Block=0 the Cluster Data bus (of 
width CS) loads, through the Mux unit, all registers of a 
group simultaneously (in a single clock cycle), while when 
SelectCluster/Block=1 the Block Data bus (of width BS) is 
driven to every register (w clock cycles are needed for load-
ing a whole group). This operation is handled by the control-
ler through the use of w enable signals eniw...en(i+1)w-1, one 
for each register in the group (Buffer Group i is shown in 
Figure 6b). Totally, k⋅w enable signals are generated for the 
whole Scan Buffer. In order for a cluster to be loaded into 

Buffer Group i by the Pseudorandom Generator, all w enable 
signals of this group are activated. When a failed cluster is 
loaded into Buffer Group i, group's i registers are enabled 
one after the other, until all the blocks of the failed cluster 
are loaded into the corresponding registers (the enable sig-
nals are one-hot encoded). When the whole Scan Buffer is 
full, the scan chains are loaded. 

The Scan Buffer can be avoided if the core is equipped with 
a separate scan enable or clock signal for each scan chain. 
Then the scan chains can be loaded directly without the in-
terference of the buffer, using the enable signals for driving 
the scan enables or for gating the clock of each scan chain. 

The same decompressor can be used for two or more 
cores by changing only the units Block and Cluster Group 
Length, as well as the multiplexer in the Pseudorandom 
Generator, which occupy only a small portion of the total 
area. Moreover, if the Block and Cluster Group Length units 
are implemented as lookup tables, they need to be loaded 
with the specific data of each core only at the beginning of 
the test session. In [11] it was shown that the compression 
ratio reduction in the case of utilizing the same decompres-
sor for multiple cores, due to the use of the same codewords, 
is only marginal. This is easily explained if we take into ac-
count that, for the same number of cells (same number of 
Huffman codewords) and for relatively skewed frequencies 
of occurrence, the Huffman trees are not much different and 
thus the encoding, if not optimal, will be very close to the 
optimal one. Note that, regardless of the fact that the same 
Huffman FSM unit is utilized, the selected cells, list lengths, 
encoded blocks, as well as the cluster and block sizes do not 
have to be the same for different cores. 

Let us now calculate the test application time. Suppose 
that ⎜D⎜and ⎜E⎜ are the size in bits of the uncompressed and 
compressed test set respectively. The compression ratio is 
given by the formula CR=(⎜D⎜-⎜E⎜)/⎜D⎜. Let fATE, fSYS be the 
ATE and system clock frequencies respectively, with 
fSYS=m·fATE, and let Nch be the number of channels available 
for downloading the test data from the ATE. Also, let Gi be 
the number of occurrences of cluster groups with length Li 
and assume that Fc and Fb are the number of failed clusters 
and failed blocks respectively. The test application time of 
the uncompressed test set is tD=⎜D⎜/(Nch

.fATE) and the reduc-
tion is given by the formula tred=(tD-tE)/tD, where tE is the test 
application time of the compressed test set. tE consists of 
four parts: 
t1. The time required for downloading the data (codewords 
and failed blocks) from the ATE to the core: t1=⎜E⎜/(Nch

.fATE). 
t2. The time for the serialization of codewords by the Input 
Buffer (failed blocks do not require serialization): t2=(|E|-
Fb⋅BS)/fSYS.   
t3. The time required for loading the scan chains with pseu-
dorandom sequences of length equal to the number of the 

decoded cluster groups: ∑=
i

ii
SYS

3 LG
f

1t . 

t4. The time required for loading the scan chains with failed 
clusters. Each cluster is partitioned into CS/BS blocks  and  a 



 

Table 1. Compression Results 

 20 scan chains 40 scan chains 80 scan chains 100 scan chains 
core 

Min-
Test 8 cells 16 cells 24 cells 8 cells 16 cells 24 cells 8 cells 16 cells 24 cells 8 cells 16 cells 24 cells

Red. 
(%) 

s5378 23754 9597 9420 9247 9702 9470 9261 9713 9427 9338 10029 9697 9521 61,1 
s9234 39273 16595 16056 15787 16746 16201 15722 17095 16330 15860 16995 16358 15923 60,0 

s13207 165200 21865 20258 19400 20363 18973 18543 20319 18840 18381 19512 18593 18153 89,0 
s15850 76986 20844 20143 19630 20715 19754 19326 20687 19763 19313 20921 20162 19329 74,9 
s38417 164736 65372 63725 62227 63569 60585 59078 63420 60593 59026 63184 60140 58706 64,4 
s38584 199104 62770 61891 59750 62449 59699 57801 62989 60776 58381 62412 60584 58518 71,0 
 

single clock cycle is required for loading each block (the 
time required for downloading the failed blocks from the 
ATE has been taken into account in t1). Thus: 
t4=Fb⋅CS/(BS⋅fSYS). 
The total time required for applying the compressed test set 
is tE=t1+t2+t3+t4 and it can be easily proven that  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⋅−

⋅
−= ∑

i
ii

c
b

ch
red LG

BS
CSF

BSFE
mD

N
CRt  

4. Evaluation and comparisons 
The proposed compression method was implemented in C 

programming language. We conducted our experiments in a 
Pentium PC for the largest ISCAS '89 benchmarks circuits 
using the dynamically compacted test sets generated by the 
Mintest ATPG program [7]. The same test sets were also 
utilized in [2]-[6], [8], [11], [15], [16], [18]-[22]. As far as 
the Pseudorandom Generator is concerned, a primitive-
polynomial LFSR of size 20 with internal XOR gates was 
used, while each XOR tree of the phase shifter comprised 3 
gates. Block size (BS) was considered equal to Nch and 
ranged from 5 to 10, while cluster-size values (CS) ranged 
from 20 to 50. The run time of the compression method was 
a few seconds for each benchmark circuit. 

In Table 1 the compression results of the proposed 
method for 20, 40, 80 and 100 scan chains, and 8, 16 and 24 
cells are presented. For each cell-volume case, various clus-
ter and block sizes were examined and the best results are 
reported. In column 2 the sizes of the original Mintest test 
sets are shown. It is obvious that the compression improves 
as the number of cells increases. Last column presents the 
reductions achieved over Mintest, considering the best re-
sults of the proposed method (boldfaced). 

Table 2. Compression improvement (%) over other methods 
Circ. [2] [3] [4] [5] [6] [8] [15] [16] [18] [19] [21] [22]
s5378 - - 20.9 25.1 19.3 13.3 35.0 19.0 - 36.7 15.8 12.0
s9234 29.3 30.1 27.3 29.0 24.1 12.6 47.8 26.0 - 34.3 23.6 11.5
s13207 56.4 48.3 44.4 41.2 33.4 52.2 13.5 39.5 75.6 52.2 37.2 25.8
s15850 52.6 36.8 26.6 25.7 21.8 26.2 23.2 21.6 25.8 38.3 23.2 12.7
s38417 36.2 35.6 9.6 37.2 23.6 13.1 31.1 9.6 -30.4 20.1 0.5 4.0
s38584 44.5 35.7 25.3 25.7 23.0 19.1 -1.2 21.7 21.3 33.1 22.8 8.1

 
In Table 2 we present the comparisons of the proposed 

method against other compression techniques in the litera-
ture which are suitable for IP cores of unknown structure and 
have reported results for the Mintest test sets. It can be seen 
that the proposed approach performs better than all the other 
methods except for the case of s38584 of [15], which pro-
vides a marginally better result, and that of s38417 of [18]. 

However, the results reported in [18] do not include control 
information which is of significant volume and must be also 
stored in the ATE for every core. Compared to the single-
scan-chain Multilevel Huffman approach of [11] the com-
pression results are similar and therefore are not appended. 
We note that no comparisons are provided against the ap-
proach of [23], which also exploits LFSR-generated pseudo-
random sequences, since its ATPG-synergy requirement 
renders it unsuitable for IP cores of unknown structure. 

 
Figure 7. TAT reduction. 

For assessing the test application time (TAT) improve-
ments of our method we performed two sets of experiments, 
for the boldfaced cases of Table 1. In the first one we study 
the reduction of the test application time achieved against 
the case in which the test set is downloaded uncompacted 
(UNC) to the core, using the same number of channels. Fig-
ure 7 presents the average (UNC:AVG), minimum (UNC: 
MIN) and maximum (UNC:MAX) improvement for various 
values of m=fSYS /fATE for all benchmarks. It is obvious that as 
m increases, the test-time gain becomes greater. In the sec-
ond set of experiments we compare the test application time 
of the proposed method against the single-scan-chain Multi-
level Huffman approach of [11]. Since [11] considers only 
one channel for downloading data from ATE, we re-
calculated its test application time for the channel volumes 
used in this paper (an input buffer is appended in [11] too). 
The best results of the proposed method and [11] have been 
compared and the average ([11]:AVG), minimum ([11]:MIN) 
and maximum ([11]:MAX) improvement for various values 
of m for all benchmarks, are shown in Figure 7. It is obvious 
that the test application time gain is very high in all cases 
(40%-81.6%). However, although the test-time gain attrib-
uted to the parallel loading of multiple scan chains is con-
stant, the serialization of the decoder input data is carried out 
faster as m increases and thus the test-time reduction drops.  

For assessing the hardware overhead of the proposed 
method, we synthesized three different decompressors using 
Leonardo Spectrum (Mentor tools) for 8, 16 and 24 cells, 
assuming 10 ATE channels, 40 scan chains, CS = 20 bits and 



 

BS = 10 bits. The Block and Cluster Group Length units 
were implemented as combinational circuits. The resulted 
area overhead was 377, 473 and 582 gate equivalents respec-
tively (a gate equivalent corresponds to a 2-input NAND 
gate). In this overhead we have not considered the Scan 
Buffer which can be avoided and is not considered in the 
other methods too. The hardware overhead, in gate equiva-
lents, for the most efficient methods in the literature is: 416 
for [22], 320 for [4], 136-296 for [6], 125-307 for [2] (as 
reported in [6]) and 203-432 for [11], while the hardware 
overhead of [8], although not reported directly, is greater 
than that of [6]. As can be seen, the hardware overhead of 
the proposed decompressor is comparable to that of the rest 
techniques, even though all of them do not exploit the ad-
vantages of multiple scan chains (i.e., perform serial decod-
ing which is a simpler and less hardware intensive case). The 
approaches of [15] and [18] have low hardware overhead but, 
as we have shown earlier, do not offer as high compression 
ratios as the proposed method. 

The hardware overhead of the proposed method can be 
reduced if the same decompressor is used for testing, one 
after the other, several cores of a chip. Units Huffman FSM, 
Controller, CSR, Source Select, as well as the LFSR and the 
phase shifter can be implemented only once on the chip. On 
the other hand, units Block, Cluster Group Length and the 
multiplexer of the Pseudorandom Generator must be imple-
mented for every core under test. The area occupied by the 
latter units is equal to 7.7%, 14% and 19.7% of the total area 
of the decompressor for 8, 16 and 24 cells respectively. 
Therefore, only a small amount of hardware should be added 
for each additional core. The use of the same Huffman FSM 
unit for several cores implies that the codewords, which 
correspond to LFSR cells, list lengths and data blocks, are 
the same for each core, while the actual cells, list lengths and 
data blocks can be different. As shown in [11], in such a case, 
the compression ratio suffers only a marginal decrease. 

  
5. Conclusion 

A test-data compression method that can exploit the exis-
tence of multiple scan chains in a core in order to reduce the 
test-application time has been presented. Multilevel Huff-
man coding, properly adapted to the multiple-scan-chains 
case, is used for compressing the test data, while a low-
overhead decompressor capable of generating whole clusters 
of test bits in parallel is also introduced. The proposed 
method offers reduced test-application times, high compres-
sion ratios and increased probability of detection of unmod-
eled faults, since most of the test sets' 'x' bits are replaced by 
pseudorandom values. 
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