
1070 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

Multilevel Huffman Coding: An Efficient Test-Data
Compression Method for IP Cores

Xrysovalantis Kavousianos, Member, IEEE, Emmanouil Kalligeros, Member, IEEE, and
Dimitris Nikolos, Member, IEEE

Abstract—A new test-data compression method suitable for
cores of unknown structure is introduced in this paper. The pro-
posed method encodes the test data provided by the core vendor
using a new, very effective compression scheme based on multilevel
Huffman coding. Each Huffman codeword corresponds to three
different kinds of information, and thus, significant compression
improvements compared to the already known techniques are
achieved. A simple architecture is proposed for decoding the
compressed data on chip. Its hardware overhead is very low and
comparable to that of the most efficient methods in the literature.
Moreover, the major part of the decompressor can be shared
among different cores, which reduces the hardware overhead of
the proposed architecture considerably. Additionally, the proposed
technique offers increased probability of detection of unmodeled
faults since the majority of the unknown values of the test sets are
replaced by pseudorandom data generated by a linear feedback
shift register.

Index Terms—Embedded testing techniques, Huffman encod-
ing, intellectual property (IP) cores, linear feedback shift registers
(LFSRs), test-data compression.

I. INTRODUCTION

THE INCREASED complexity of contemporary systems-
on-a-chip (SoCs), the tight time-to-market constraints,

and the lack of expertise in designing some building blocks
are some of the reasons that make the use of predesigned
and preverified modules (cores) during the development of
an integrated circuit necessary. This high level of integration,
although reducing the chips’ production cost, makes their test-
ing an increasingly challenging task. A large amount of data
must be stored in the tester [automatic test equipment (ATE)]
and then transferred as fast as possible deep into the chip.

Manuscript received February 8, 2006; revised June 12, 2006 and August 10,
2006. The research Project was co-funded by the European Union—European
Social Fund (ESF) & National Sources, in the framework of the program
“Pythagoras II” of the “Operational Program for Education and Initial Voca-
tional Training” of the 3rd Community Support Framework of the Hellenic
Ministry of Education. This paper was presented in part at the Proceedings
of the Design Automation and Test in Europe Conference, March 2006. This
paper was recommended by Associate Editor S. Hellebrand.

X. Kavousianos is with the Computer Science Department, University of
Ioannina, 45110 Ioannina, Greece (e-mail: kabousia@cs.uoi.gr).

E. Kalligeros is with the Computer Science Department, University of
Ioannina, 45110 Ioannina, Greece, with the Computer Science and Technology
Department, University of Peloponnese, Terma Karaiskaki, 22100 Tripoli,
Greece, and also with the Computer Engineering and Informatics Department,
University of Patras, 26500 Patras, Greece (e-mail: kalliger@ceid.upatras.gr).

D. Nikolos are with the Computer Engineering and Informatics Department,
University of Patras, 26500 Patras, Greece (e-mail: nikolosd@cti.gr).

Digital Object Identifier 10.1109/TCAD.2006.885830

However, the limited channel capacity, memory, and speed
of ATEs, as well as the reduced accessibility of some of the
inner nodes of dense SoCs, render the above requirements
infeasible. Therefore, test-data volume, testing time, and test
applicability are major concerns from a test economics point of
view [19], [46].

Embedded testing has been proposed to ease the burden of
testing on ATEs, as well as to provide the required accessibility
to cores deeply embedded in a SoC’s structure. It combines the
ATE capabilities with on-chip integrated structures. Embedded
testing techniques store a compressed version of the test set
on the ATE, which is then downloaded and decompressed on
chip. Various embedded testing approaches have been pro-
posed in the literature, which use, among others, combinational
continuous-flow linear decompressors [3], [38], the REusing
Scan chains for test Pattern decompressIoN (RESPIN) archi-
tecture [10], the Illinois scan architecture [14], [20], linear
feedback shift register (LFSR)-based decompressors [17], [30],
[32], [34], [39], [53], folding counters [18], and weighted ran-
dom pattern generators [26], [29]. Also, commercial tools exist,
which automate the generation of embedded decompressors
[2], [36], [47], [48].

Most of the aforementioned techniques need structural infor-
mation of the core under test (CUT) or require the synergy of
the automatic test pattern generation (ATPG) tool [34], [53].
From the cores incorporated in a SoC, some may be in-house
designed reusable blocks, whereas others can be third-party in-
tellectual property (IP) cores. The structure of IP cores is often
hidden from the system integrator, and only a precomputed test
set is provided by their vendor. Several methods have been
proposed to cope with testing of IP cores of unknown structure.
Some of them embed the precomputed test vectors in longer
pseudorandom sequences, which are generated on chip [4],
[33], [41], [50]. The main drawback of these techniques is their
long test-application time. To reduce both the test-data volume
and test-application time, many methods encode directly the
test set using various compression codes. In this case, useless
vectors are not applied to the CUT. Golomb codes were pro-
posed in [5]–[7] and [49], alternating run-length codes in [8],
frequency-directed run-length codes in [9] and [44], statistical
codes in [12], [24], and [28], a nine-coded technique in [52],
and combinations of codes in [37], [45], and [51]. Some
techniques use dictionaries [35], [40], [54], [55] but suffer
from increased hardware overhead due to the large embedded
random access memories they require, and for that reason, they
are not considered further in this paper.

0278-0070/$25.00 © 2007 IEEE

KAVOUSIANOS et al.: MULTILEVEL HUFFMAN CODING: TEST-DATA COMPRESSION METHOD FOR IP CORES 1071

Among the statistical codes used for test-data compres-
sion, Huffman are the most effective ones since they provably
provide the shortest average codeword length [22]–[24], [28],
[31]. Their main problem is the high hardware overhead of
the required decompressors. For that reason, selective Huffman
coding was proposed in [28], which significantly reduces the
decoder size by slightly sacrificing the compression ratio.

Compression is sometimes performed in the difference vec-
tors instead of the actual test vectors [5], [7], [9], [25]. This
is motivated by the observation that test vectors are usually
correlated (differ in a small number of bits), and therefore,
their difference vectors will have long runs of 0s, which can
be effectively compressed by run-length codes. However, when
difference vectors are used, either cyclical shift registers, which
increase the testing cost (especially for cores with a large num-
ber of scan cells), should be incorporated in the system, or the
scan chains of other cores must be reused, if they are available
and the power constraints of the system are not violated.

Moreover, there is a class of techniques that requires the
preexistence of arithmetic modules or processors in the system
[1], [11], [16], [21], [27], [43].

The high efficiency of all the aforementioned compression
methods is mainly due to the large number of x values in the
test sets. Traditionally, ATPG tools fill these x values randomly
with logic 0 or 1, so as to improve the coverage of unmodeled
faults. On the contrary, compression techniques, in order to
achieve high compression ratios, replace all these x values with
the same logic value (0 or 1), depending on the characteristics
of the implemented code. For that reason, the unmodeled fault
coverage may be reduced. In [52], it is suggested that, if
possible, at least a portion of a test set’s x values should be
set randomly.

In this paper, we propose a statistical compression method
based on Huffman coding, which fills the majority of a test set’s
x values randomly. This random filling is achieved by using a
small LFSR. The proposed method improves the compression
ratio by using multilevel Huffman coding (compression of
different kinds of information with the same codewords) and,
at the same time, requires a very simple decompressor with
low hardware overhead. It also offers the ability of exploiting
the tradeoff between compression ratio and area overhead. The
proposed approach does not need any structural information
of the CUT and is therefore proper for IP cores of unknown
structure. Additionally, it does not require the incorporation
of any special arithmetic modules, processors, or cyclical shift
registers in the system and does not apply any useless vectors
to the CUT. Note that although the combination of LFSRs
with Huffman encoding has been used in the literature [37]
(LFSR reseeding with seed compression), in this paper, a totally
different approach is proposed.

The rest of this paper is organized as follows: Section II
reviews Huffman coding, Section III describes the proposed
compression method, and Section IV presents the decom-
pression architecture. In Section V, we calculate the required
test-application time and the achieved test-time reduction as
compared to the no-compression case. Experimental results and
comparisons are provided in Section VI, whereas conclusions
are provided in Section VII.

II. HUFFMAN ENCODING PRELIMINARIES

Statistical codes represent data blocks of fixed length with
variable-length codewords. The efficiency of a statistical code
depends on the frequency of occurrence of all distinct fixed-
length blocks in a set of data. The most frequently occurring
blocks are encoded with short codewords, whereas the less
frequently occurring ones are encoded with large codewords. In
this way, the average codeword length is minimized. It is obvi-
ous however that, if all distinct blocks in a data set appear with
the same (or nearly the same) frequency, then no compression
can be achieved. Among all statistical codes, Huffman offer
the best compression since they provably provide the shortest
average codeword length. Another advantageous property of a
Huffman code is that it is prefix free; i.e., no codeword is the
prefix of another one. This makes the decoding process simple
and easy to implement.

Let T be the fully specified test set of an IP core [a fully
specified test set contains no don’t care (x) bits]. Let us also
assume that if we partition the test vectors of T into blocks of
length l, we get k distinct blocks b1, b2, . . . , bk with frequencies
(probabilities) of occurrence p1, p2, . . . , pk, respectively. The
entropy of the test set is defined as H(T) = −

∑k
i=1 pi(log2 pi)

and corresponds to the minimum average number of bits re-
quired for each codeword. The average codeword length of a
Huffman code is closer to the aforementioned theoretical en-
tropy bound compared to any other statistical code. In practice,
test sets have many don’t care (x) bits. In a good encoding
strategy, the don’t cares must be assigned such that the entropy
value H(T) is minimized. In other words, the assignment of
the test set’s x values should skew the occurrence frequencies
of the distinct blocks as much as possible. We note that the
inherent correlation of the test cubes of T (test vectors with x
values) favors the targeted occurrence frequency skewing and,
consequently, the use of statistical coding.

To generate a Huffman code, we create a binary tree. A leaf
node is generated for each distinct block bi, and a weight equal
to the occurrence probability of block bi is associated with
the corresponding node. The pair of nodes with the smallest
weights is selected first, and a parent node is generated with
weight equal to the sum of the weights of these two nodes.
The previous step is repeated iteratively, selecting each time
the node pair with the smallest sum of weights, until only a
single node is left unselected, i.e., the root (we note that each
node can be chosen only once). Starting from the root, we visit
all the nodes once, and we assign to each left-child edge the
logic 0 value and to each right-child edge the logic 1 value. The
codeword of block bi is the sequence of the logic values of the
edges belonging to the path from the root to the leaf node cor-
responding to bi. If c1, c2, . . . , ck are the codeword lengths of
blocks b1, b2, . . . , bk, respectively, then the average codeword
length is C(T) =

∑k
i=1 pici.

Example 1 (Huffman Encoding): Consider the test set shown
in column 1 of Table I, which consists of four test vectors of
length 16 (64 bits overall). If we partition the test vectors into
blocks of length 4, we get 16 occurrences of five distinct blocks.
Columns 2 and 3 present those five blocks and their frequencies
of occurrence, respectively. Column 4 presents the codeword of

1072 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

TABLE I
HUFFMAN ENCODING EXAMPLE

Fig. 1. Huffman tree of Example 1.

each block (the corresponding Huffman tree and the encoded
data set are shown in Fig. 1). The size of the encoded data set is
31 bits, and the average codeword length is

C(T) = 1 · 7
16

+ 2 · 5
16

+ 3 · 2
16

+ 4 · 1
16

+ 4 · 1
16

= 1.9375.

Note that the entropy is equal to

H(T) = −
(

7
16

· log2

7
16

+
5
16

· log2

5
16

+
2
16

· log2

2
16

+
1
16

· log2

1
16

+
1
16

· log2

1
16

)

= 1.9218.

The size of a Huffman decoder depends on the number
of distinct blocks that are encoded. Increased encoded-block
volumes lead to big decoders due to the big size of the cor-
responding Huffman tree. For that reason, a selective Huffman
approach was adopted in [28], according to which only the most
frequently occurring blocks are encoded, whereas the rest are
not. An extra bit is appended to every block, indicating if it is
encoded or not.

The encoding procedure of this paper combines LFSR-
generated pseudorandom sequences with multilevel selective
Huffman coding. As far as the selective Huffman part is con-
cerned, the proposed approach differs from that of [28] in two
main points.

1) The utilized Huffman code is specified by taking into
account the occurrence frequency of multiple kinds of
information and not only that of the data blocks as in [28].
As a consequence, the proposed compression scheme
is more sophisticated and hence much more effective
(higher compression is achieved since the same Huffman

codewords are used for encoding three different kinds of
information and not only data blocks).

2) The unencoded data blocks are indicated by using a sep-
arate Huffman codeword instead of appending an extra
bit to every block either encoded or not. This separate
codeword precedes only each unencoded block.

III. COMPRESSION METHOD

As mentioned above, the proposed compression method
exploits pseudorandom LFSR sequences and performs mul-
tilevel Huffman coding with a limited number of codewords
(selective). The test cubes of the CUT are compared against
the bit sequences generated by various cells of an LFSR, and
if they match (i.e., they are compatible), an appropriate cell
is chosen for feeding the scan chain(s) of the CUT. What is
actually coded is an index for each selected LFSR cell; i.e.,
each Huffman codeword is used for enabling a specific LFSR
cell to feed the scan chain(s). If no match with an LFSR cell
sequence can be found, then the test data are directly encoded
using a selective Huffman code. Direct test-data coding is most
of the times used for portions of the test cubes with many
defined bits, which are expected to be incompatible with the
LFSR’s pseudorandom sequences. On the other hand, the major
part of the test data encoded by LFSR cells corresponds to
the test cubes’ x-bit sequences. Therefore, most of the cubes’
x values are replaced by pseudorandom data, which increases
the probability of detection of unmodeled faults. In the follow-
ing, we describe the proposed compression method assuming a
single scan chain.

A. Encoding Procedure Overview

At first, the CUT’s test cubes are concatenated so as to form
a single bit stream, which is partitioned into clusters of fixed
length. All the test set’s clusters (referred also as test clusters
or simply clusters) are then compared against the normal and
inverted pseudorandom sequences generated by each cell of a
randomly initialized LFSR. The pseudorandom sequences have
the same length as the bit stream created by the concatenation
of the test cubes, and they are also partitioned into fixed-
length (pseudorandom) clusters. By considering multiple LFSR
cells and, consequently, multiple pseudorandom sequences, we
increase the number of test clusters that are compatible with
the corresponding clusters of the LFSR sequences. In other
words, if a test cluster cannot be matched by the corresponding
pseudorandom cluster of an LFSR cell, it may be compatible
with the respective cluster of another cell. Moreover, LFSRs
with internal XOR gates are used because, due to the internal
XOR gates, the pseudorandom sequences generated by their
cells are less correlated than the sequences generated by the
cells of external feedback LFSRs.

When a cluster of test data is compatible with the respective
cluster of an LFSR cell sequence, a cell hit occurs. A predeter-
mined (defined by the designer) number of LFSR cells with the
largest hit ratios is selected to feed the scan chain of the CUT
through a multiplexer. Specifically, the multiplexer selection
address of each cell is Huffman encoded. We call this type of

KAVOUSIANOS et al.: MULTILEVEL HUFFMAN CODING: TEST-DATA COMPRESSION METHOD FOR IP CORES 1073

encoding “cell encoding.” All the clusters that are compatible
with the pseudorandom sequences of the selected cells are gen-
erated by the LFSR (and are consequently encoded). The rest of
the clusters are labeled as failed and are processed afterward in
a different way, as it will be explained later. We should note that
a single Huffman codeword is associated with all failed clusters
to distinguish them from the rest. This codeword notifies the
decoder that the next cluster to be processed is a failed one.

Since many clusters have a large number of x values, they
are compatible with the sequences generated by more than one
LFSR cell. The proposed method associates each cluster with
the LFSR cell, which skews the cell occurrence (matching) fre-
quencies the most. In other words, if for a cluster cl more than
one hit from different LFSR cells occurs, then cl is appointed to
the most frequently used cell. The construction of the Huffman
tree is done later, taking into account the matching frequencies
of the selected cells as well as the frequency of occurrence of
the failed clusters.

For exploiting the advantages of variable-to-variable coding
(Huffman is a fixed-to-variable code), we allow, if possible,
consecutive clusters to be generated by the same LFSR cell.
The number of consecutive clusters (cluster group length)
that will be generated is encoded using only one codeword,
which follows the cell encoding codeword in the encoded
data stream. Due to the large number of x values in the test
sets, cluster grouping, as was verified experimentally, can be
performed in many cases. To keep the hardware overhead
low, we allow the length of each group of clusters to be
among a predetermined list of distinct lengths (group length
quantization). These distinct lengths are chosen to be equal to
20, 21, . . . 2r−1, where 2r−1 < max_length and max_length
is the maximum number of consecutive clusters that are
compatible with LFSR-generated pseudorandom clusters. If,
for example, max_length = 40, then the list of lengths L will
be L = {1, 2, 4, 8, 16, 32}. In the case that the length of a
cluster group is not equal to a length in L, then a number of
clusters is removed from the end of the group, so its length
becomes equal to the largest possible length in the list. Group
lengths are also Huffman encoded. This choice is motivated
by the lengths’ occurrence probabilities, which are normally
skewed (large lengths are expected to occur less frequently than
short lengths). We call this type of Huffman encoding “length
encoding.” As it will be explained later, the same Huffman
codewords are used for cell encoding and length encoding to
keep the decoding cost low. Therefore, the maximum number
of potential list lengths is equal to the number of selected cells.
In the case that the number of selected cells is greater than
r, additional lengths are appended in the list according to the
following rule: Each additional length is selected iteratively as
the midpoint of the greatest distance between two successive
lengths in the list. For example, if an extra list length could
be appended to list L, this would be equal to 24 (the midpoint
between 16 and 32). A cell encoding codeword is always
followed in the code stream by a length encoding codeword
when the encoded cluster is not a failed one.

In the case of a failed cluster, a different approach is adopted.
The cluster is partitioned into equally sized blocks, and each
block is encoded directly using selective Huffman coding. We

call this encoding “block-data encoding.” According to the
selective Huffman approach, only the blocks with the highest
probabilities of occurrence are encoded. Thus, some blocks
remain unencoded (we call them failed blocks) and are provided
directly by the ATE. As in the case of failed clusters, a single
Huffman codeword (not necessarily the same as for failed
clusters) is associated with all failed blocks. The actual data
of an unencoded block follow that codeword. In block-data
encoding, the same Huffman codewords as in cell encoding
and length encoding are used. Therefore, a number of distinct
blocks equal to the number of the selected LFSR cells and to
the number of potential list lengths can be encoded.

In terms of hardware overhead, the major advantage of
the proposed compression method is that the same Huffman
decoder can be used to implement the three different decodings.
The size of the Huffman decoder is determined by the number
of the selected LFSR cells (which is equal to the number
of the list lengths in length encoding and to the number of
distinct blocks encoded by block-data encoding). The Huffman
tree is constructed by summing the corresponding occurrence
probabilities of all three cases so as a single Huffman code, cov-
ering all three of them, is generated. Thus, the same codeword,
depending on the mode of the decoding process, corresponds
to three different kinds of information (and hence is decoded
differently): 1) to an LFSR cell output (normal or inverted);
2) to a cluster group length; or 3) to a block of data. The first
codeword in the encoded data stream is always considered as
a cell codeword. If it does not indicate a failed cluster, then
the next codeword corresponds to the length of the cluster
group. If, on the other hand, a failed cluster is indicated, then
the next “cluster size/block size” codewords are processed as
block-data codewords, where cluster size (block size) denotes
the number of bits of each cluster (block). Each one of them
may indicate a block-data encoded block or a failed block. In
the first case, the data block is generated by the decompressor,
or else, the actual failed block follows in the encoded stream.
This codeword sequence is repeated iteratively starting always
from a cell encoding codeword.
Example 2: Assume a test set of 744 bits. Let each cluster

be 24 bits wide and each block 4 bits wide (six blocks per
cluster). For the encoding of the test set, we use four LFSR
cells and, consequently, four different cluster group list lengths
and four distinct encode-able data blocks for each failed cluster.
Consider the encoding scenario presented in Fig. 2(a), where
the selected cells, the available list lengths, and the most
frequently occurring data blocks are reported in descending
order according to their frequency of occurrence. Each line
of the table (i.e., the respective case for all three encodings)
corresponds to a single codeword in the final encoded data
stream. Note that there are 12 groups of clusters matched by
LFSR cell sequences and three failed clusters that are parti-
tioned into 18 blocks. Overall, there are 45 occurrences of
encode-able information and five unique codewords that will
be used for encoding them. The occurrence volumes in each
line of the table are summed and divided by the total number of
occurrences (i.e., 45), generating the probability of occurrence
of each distinct codeword. Note that the descending order at
each column guarantees that the occurrence frequencies of the

1074 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

Fig. 2. Proposed encoding example.

codewords will be as skewed as possible. The encoded data
stream in Fig. 2(c) is a representation of the data stored in
the ATE. The first codeword (i.e., 0) corresponds to cell A,
and the next codeword (i.e., 10) indicates the group length,
which is 2 [see the corresponding line in the table of Fig. 2(a)].
Therefore, the scan chain is fed from cell A for the first two
clusters. The next codeword (i.e., 110) indicates that the next
cluster is a failed one. According to the proposed compression
scheme, each failed cluster is partitioned into six blocks. The
next codeword (i.e., 10) indicates that the first block of the third
cluster is a failed one as well; therefore, the actual data (i.e.,
0010) are not encoded and follow codeword 10. The codeword
for the second block is 0, which corresponds to the encoded
block 0011 that will be loaded in the scan chain. This is repeated
until all six blocks of the failed cluster have been processed. The
size of the encoded stream is 109 bits.

B. Encoding Algorithm

The encoding process consists of five main steps.
Step 1—Generation of the Pseudorandom Sequences and

Concatenation of the Test Cubes Into a Single Bit Stream: At
the first step, the LFSR is initialized randomly and is allowed to
evolve for a number of cycles equal to the number of bits of the
test set. The pseudorandom sequences generated by each LFSR
cell (normal and inverted) are partitioned into clusters of fixed
length. Then, the CUT’s test cubes are concatenated to form a
single test bit stream, which is also partitioned into clusters of
the same length. The concatenation is performed in a number
of iterations equal to the number of the test cubes. At each
iteration, a new test cube is selected and appended at the end

of the test bit stream. For choosing the appropriate test cube, a
cube weight is calculated as follows: Each cube is partitioned
into test clusters, which are compared against the corresponding
pseudorandom clusters generated by all LFSR cells. For every
match of a test cluster with a pseudorandom cluster, the number
of the defined bits of the test cluster is added to the weight of
the cube. We select the cube with the maximum weight, i.e.,
the one that contains the maximum number of defined bits that
can be generated by most of the LFSR cells. Note that in the
subsequent steps (after the generation of the test bit stream),
every test cluster can be examined against 2 · len pseudorandom
clusters (len is the LFSR length), one for each pseudorandom
sequence generated by the 2 · len normal and inverted outputs
of the LFSR cells.
Step 2—Selection of the LFSR Cells for the Encoding: At the

second step of the encoding process, a predetermined number
of LFSR cells is iteratively selected. During each iteration, a
weight is calculated for each cell, and the cell with the largest
weight is selected. The weight of each cell is calculated as the
sum of the defined-bit volumes of all clusters of the test bit
stream, which are compatible with the corresponding pseudo-
random clusters generated by that cell. The cell with the largest
weight is selected, and the clusters of the test bit stream, which
are compatible with the corresponding pseudorandom clusters
of that cell, are not further considered. The same procedure is
applied again to the remaining clusters of the test bit stream, for
the rest LFSR cells, until the predetermined number of LFSR
cells is selected.
Step 3—Determination of the LFSR Cell That Will Encode

Each Test Cluster: At the next step, each test cluster is as-
sociated with one LFSR cell in a greedy iterative fashion as
follows: At each iteration, the pseudorandom sequence of every
selected (from Step 2) LFSR cell is separately examined against
the whole test bit stream, and all successive pseudorandom
clusters that are compatible with the corresponding test clusters
are grouped. The size of the largest group determines the value
of max_length (see Section III-A), and thus, the list of group
lengths is generated. Then, if the length of any of the formed
groups is not equal to one of the distinct lengths in the list,
the largest distinct length that does not exceed the length of
the group is selected, and the last clusters of the group are
removed. In this way, the length of the group becomes equal to
the selected distinct length. The largest group is then selected,
and if there is more than one maximum sized group generated
by different cells, the one produced by the cell that is already
associated with the greatest number of groups is selected. The
clusters of the test bit stream matched by the pseudorandom
clusters of the selected group are not further considered in the
remaining iterations.
Step 4—Partitioning of Failed Clusters Into Blocks and

Selection of the Encode-Able Blocks: At the next step of the
encoding process, the test clusters that cannot be generated by
any of the selected LFSR cells are labeled as failed, and they are
partitioned into blocks of the same size. Among them, a number
of blocks (equal to the number of selected LFSR cells) with the
highest probabilities of occurrence are selected.
Step 5—Generation of the Codewords and Encoding of the

Test Bit Stream: At the final step of the encoding process, the

KAVOUSIANOS et al.: MULTILEVEL HUFFMAN CODING: TEST-DATA COMPRESSION METHOD FOR IP CORES 1075

Fig. 3. Decompression architecture.

Huffman codewords are generated, and the test bit stream is en-
coded. Specifically, three different occurrence lists of encode-
able information are created.

1) Cell occurrence list. It consists of: 1) one entry for every
selected LFSR cell. The value of each entry is equal
to the number of groups that will be generated by the
corresponding cell and 2) one entry for all failed clusters
with value equal to the failed-cluster volume.

2) Group length occurrence list. It consists of one entry for
every distinct length of the list of group lengths. The value
of each entry is equal to the number of cluster groups with
the corresponding length.

3) Block occurrence list. It consists of: 1) one entry for each
block to be encoded with value equal to the number of
its occurrences and 2) one entry for all failed blocks with
value equal to the failed-block volume.

The above lists are sorted in descending order according to
the values of their entries, and then, these values are added
rowwise to create a single list. Specifically, the values of the
first entries of all lists (largest ones) are added to create the first
entry of the new list, the values of the second entries (second
largest) are added to create the second entry of the new list, etc.
The new list is used for the construction of the Huffman tree,
and the resulting codewords are used for encoding each piece
of information of the initial lists.

IV. DECOMPRESSION ARCHITECTURE

The block diagram of the proposed decompression architec-
ture is presented in Fig. 3. It consists of the following units.1

1) Huffman FSM. This unit receives serially the data from
the ATE (ATE_DATA) with the frequency of ATE clock
(ATE_CLK). Upon reception of a codeword, the signal
HSync, which is sent back to the ATE, is set to 0 to
stop the transmission until the decompressor is ready to

1The decompression architecture has been verified with extensive simula-
tions. For the convenience of the reader, only the most important signals are
shown.

receive the next codeword. At the same time, the FSM
places on the bus CodeIndex a binary index indicat-
ing which codeword has been received and notifies the
Decoding Controller with the signal Valid Code. The
aforementioned index is a binary value between 0 and
N − 1, assuming that the implemented code consists of
N codewords, and it also serves as the selection address
of the Cell Mux.

2) Source Select Mux. Selects the source (an LFSR cell,
Block Data, or a failed block from ATE) that will feed
the scan chain according to the value of bus Src (01, 10,
and 00, respectively). Src is an output of the Decoding
Controller.

3) Cell Mux. Selects the cell that will feed the scan chain.
4) Cell Select Register (CSR). Stores the address of the

selected cell (CodeIndex value) when CSR_en is set to
1 (by the Decoding Controller) and holds it during scan
chain loading.

5) LFSR. It is enabled by the scan-enable (SE) signal every
time the scan chain is loaded with any kind of test data.
In this way, the pseudorandom sequence generated by
each LFSR cell has size equal to the size of the bit stream
loaded in the scan chain. When blocks (encoded or not)
are fed in the scan chain, the generated LFSR data are
simply ignored.

6) Block Data and Cluster Group Length. Combinational
blocks that receive CodeIndex and return the block data
and the group length, respectively. They can be also
implemented as lookup tables, with CodeIndex used for
their addressing.

7) Block Shifter. Shifts the data block received by the Block
Data unit into the scan chain. Decoding Controller con-
trols the shifting with signal Sh_en.

8) Fail Cluster/Block. A very small combinational circuit
that sets Fail = 1 when a codeword corresponds to a
failed cluster or a failed block.

9) Bit Counter (BC), Block Counter (BLC), and Cluster
Counter (CLC). Count, respectively, the number of bits,
blocks, and clusters that enter the scan chain. BC_Done is
set to 1 when a whole block has been shifted in the scan
chain, BLC_Done = 1 when all the blocks of a cluster
have been shifted in the scan chain, and CLC_Done = 1
when all the clusters of a group have been shifted in the
scan chain.

10) Decoding Controller. This is a finite state machine that
synchronizes the operation of all units. The state diagram
of this state machine is presented in Fig. 4 (only the most
important input and output signals are shown). Initially,
the controller waits for the first codeword to be re-
ceived by the Huffman FSM unit. After its reception
(Valid Code = 1), the controller checks if it encodes an
LFSR cell (Fail = 0) or indicates a failed cluster (Fail =
1). In the former case, the controller sets CSR_en = 1
(the cell selection address, i.e., CodeIndex, is stored in
the CSR resister) and proceeds to the WAIT_LENGTH
state. In the latter case, it proceeds to the WAIT_
FAILED_CLUSTER state. At the WAIT_LENGTH state,
the controller waits for the next codeword, which is a

1076 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

Fig. 4. Decoding Controller state diagram.

group length codeword and, after its reception, enables
the loading of CLC with the output of the Cluster Group
Length unit (it is the binary representation of the length
of the group). Also, the controller initializes the BC and
BLC, sets Src = 01 (the selected LFSR cell is driven
to the output of the Source Select Mux) and proceeds
to the SHIFT_LFSR_DATA state. At this state, it acti-
vates the SE = 1 signal, and the LFSR begins to load
the scan chain with data from the selected cell until
Cluster Counter reaches zero (CLC_Done = 1). Then,
the state machine returns to the WAIT_CHANNEL state.
In the case of a failed cluster, the controller enters the
WAIT_FAILED_CLUSTER state and waits for the next
codeword. If it corresponds to an encoded data block
(Fail = 0), then the controller stores the output of the
Block Data unit (which is the decoded data block) to the
Block Shifter, sets Src = 10 (the Block Shifter’s output
is driven to the output of the Source Select Mux), and
proceeds to the SHIFT_BLOCK_DATA state, where it re-
mains until it is signaled by Bit Counter (BC_Done = 1).
At that state, the data of the Block Shifter are serially
loaded in the scan chain. On the other hand, if the
codeword received at the WAIT_FAILED_CLUSTER
state corresponds to a failed block (Fail = 1), the con-
troller sets Src = 00 (the ATE channel is driven to the
output of the Source Select Mux) and proceeds to the
WAIT_FAILED_BLOCK state, where it remains until
it is signaled by Bit Counter (BC_Done = 1). During
WAIT_FAILED_BLOCK, Bit Counter is enabled once at
each ATE_CLK cycle. The controller sets signal CSync
to enable the transmission of an unencoded block, it
samples ATE_CLK and sends each data bit received
from the ATE to the scan chain of the CUT (us-
ing signal SE). From both SHIFT_BLOCK_DATA and
WAIT_FAILED_BLOCK states, the controller proceeds

to the CLUSTER_DONE? state, in which it is checked
if all the blocks of a failed cluster have been processed
or not. If Block Counter has reached 0 (BLC_Done = 1),
then all the blocks have been processed, and thus, the next
state is WAIT_CHANNEL. Otherwise, the next state is
WAIT_FAILED_CLUSTER.

The whole test-generation process is controlled by two small
counters, which are not shown in Fig. 3. The first one indicates
when a test vector has been loaded in the scan chain and is ready
for application. When this happens, the function of the decoder
is suspended for one clock cycle (the capture cycle). When all
the vectors have been applied to the CUT, the second counter
indicates the end of the test session.

The proposed decompression architecture, like the decoders
of many other compression techniques, suffers from the prob-
lem of synchronization with the ATE. One way to solve this
problem is to use a first-in first-out buffer between the decoder
and the ATE [13]. For simplicity, such a buffer was omitted
from our description.

As it will be shown in Section VI, the efficiency of the
proposed encoding approach depends mainly on the number
of selected cells, which determines the number of codewords
of the Huffman code. The same decompressor can be used for
two or more cores by implementing for each core only the
units Cell Mux, Block Data, Cluster Group Length, and Fail
Cluster/Block, which occupy only a small portion of the area
of the decompressor. Moreover, if the Block Data and Cluster
Group Length units are implemented as lookup tables, they just
need to be loaded with the specific data for each core only at
the beginning of the test session. Therefore, the decompressor
can be easily reused for different cores with almost zero area
penalty. Note that the unit Huffman FSM is implemented only
once, and thus, the same codewords are used for all cores. As it
will be demonstrated in Section VI, in most cases, the reduction
in the compression ratio when using the same codewords for

KAVOUSIANOS et al.: MULTILEVEL HUFFMAN CODING: TEST-DATA COMPRESSION METHOD FOR IP CORES 1077

Fig. 5. Application to multiple-scan-chain architectures.

multiple cores is only marginal. This can be easily explained if
we take into account that, for the same number of cells (same
number of Huffman codewords) and skewed frequencies of
occurrence, the Huffman trees are not much different, and thus,
the achieved compression will be very close to the one of a ded-
icated Huffman code. Note that, despite the fact that the same
Huffman FSM unit is used, the selected cells, the cluster size,
and the block size do not have to be the same for different cores.

The proposed scheme can be applied to multiple-scan-chain
architectures by using a shift register with width equal to the
number of scan chains (Fig. 5). The shift register is loaded by
the decompressor and then feeds the scan chains in parallel, as
proposed in [52]. Alternatively, the scan output of chain i can
be connected to the scan input of chain i + 1 (i ∈ [1, k − 1]),
thus forming a single scan chain. Obviously, in both cases, the
test-application time advantage that multiple scan chains offer
is canceled. However, the tradeoff between test-application time
and hardware overhead can be explored if the set of scan chains
is partitioned into groups and each group is driven by a single
decompressor. In this case, all groups will be loaded in parallel,
and the test-application time will be reduced by a factor equal
to the number of groups. Of course, the hardware overhead, due
to the multiple decompressors, will increase.

V. TEST-APPLICATION TIME CALCULATION

Let us now calculate the test-application time reduction of
the proposed encoding scheme. Suppose that |D| and |E|
are the sizes in bits of the uncompressed and compressed
test sets, respectively. The compression ratio is given by the
formula CR = (|D| − |E|)/|D|. Let fATE and fSYS be the
ATE and system clock frequencies, respectively, with fSYS =
m · fATE (m ≥ 1), and CS and BS be the cluster and block
sizes, respectively. Also, in the encoded data set, let Gi be
the number of occurrences of the cluster group with length
Li (i = 1, . . . , n, where n is the number of codewords), and
Fc and Fb be the volumes of failed clusters and failed blocks,
respectively. The test-application time of the uncompressed test
set is tD = |D|/fATE, and the test-application time reduction
is given by the formula TR = (tD − tE)/tD, where tE is the
test-application time of the compressed test set. tE consists of
three main parts.

1) t1: The time for downloading the data stream from the
ATE to the core. It is equal to t1 = |E|/fATE.

2) t2: The time required for loading the scan chain with
pseudorandom LFSR sequences of length equal to the
number of bits of the decoded cluster groups. The num-
ber of all clusters is

∑n
i=1 GiLi, and therefore, t2 =

CS/fSYS

∑n
i=1 GiLi.

3) t3: The time for loading the scan chain with encoded data
blocks (not failed blocks). The total number of blocks is
equal to Fc · CS/BS; thus, the number of the successfully
encoded blocks is (Fc · CS/BS) − Fb, and their total size
in bits is Fc · CS − Fb · BS. Therefore, t3 = (Fc · CS −
Fb · BS)/fSYS.

The total time required for the compressed test set is

tE = t1 + t2 + t3

=
|E|

fATE
+

1
fSYS

(
CS ·

n∑
i=1

Gi · Li + Fc · CS − Fb · BS

)

and the test-application time reduction is equal to

TR = 1 − |E|
|D| −

fATE

|D| · fSYS

×
(

CS ·
n∑

i=1

GiLi + Fc · CS − Fb · BS

)

or equivalently

TR = CR − 1
|D| · m

(
CS ·

n∑
i=1

GiLi + Fc · CS − Fb · BS

)
.

VI. EVALUATION AND COMPARISONS

The proposed compression method was implemented in
C programming language. We conducted experiments on a
Pentium PC for the largest IEEE International Symposium on
Circuits and Systems (i.e., ISCAS 1989) benchmark circuits,
assuming a single (full) scan chain. We used the dynamically
compacted test sets generated by Mintest [15] for stuck-at
faults. The same test sets were used in [5], [6], [8], [9], [12],
[28], [42], [44], [49], [51], and [52]. The runtime of the com-
pression method is a few seconds for each benchmark circuit.
The compression ratio is calculated by the formula

CR (%) =
data bits − compressed bits

data bits
· 100.

Primitive polynomial LFSRs with internal XOR gates were
used in the experiments. Note that for each LFSR cell, apart
from its normal sequence, the inverted one is also considered
(normal and inverted LFSR cell outputs are considered as
different cells).

At first, experiments have been performed using the test sets
of several ISCAS 1989 benchmark circuits so as to study how
the various algorithm parameters influence the compression
ratio. In the following, we present results only for s15850. The
results for the rest benchmark circuits are similar.

Our first set of experiments studies the effect of the LFSR
size, polynomial, and seed on the compression ratio. Various
LFSRs were used, and the number of selected cells in all
experiments was 8, whereas the cluster size and block size were
set to 16 and 4, respectively. Ten random primitive polynomial
seed pairs were utilized for each of the ten examined LFSR
sizes between 15 and 60 (with step = 5). Among them, the
maximum and the minimum compression ratios achieved for

1078 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

Fig. 6. LFSR size experiments for s15850.

Fig. 7. Varying cluster size for s15850.

each LFSR size are reported in Fig. 6 (Max Ratio curve and
Min Ratio curve, respectively). Both curves do not seem to be
affected by the LFSR size, whereas the distance between them
depends mainly on the use of different polynomials and seeds.
We therefore conclude that the size of the LFSR does not affect
the compression ratio, whereas the choice of polynomials and
seeds slightly affects the compression results. The maximum
compression ratio variation, calculated as the difference of the
global maximum ratio (73.29%) minus the global minimum
ratio (72.55%), is 0.74%, which is very small. Consequently,
we deduce that the LFSR size, polynomial, and seed affect the
proposed compression method only marginally. Hence, in the
following experiments, an LFSR of size 15, a single random
primitive polynomial, and a single random seed are used.

The second set of experiments demonstrates the effect of the
cluster size on the compression ratio. For the test set of s15850,
we applied the proposed method for cluster sizes between
4 and 124 bits (with step = 8) and for 4, 8, 12, and 16 selected
cells. As mentioned earlier, the same polynomial and the same
seed were used in all experiments. For each case, various block
sizes were examined, and the block size value that maximized
the compression ratio was selected. It is obvious from Fig. 7
that, initially, as the cluster size increases, the compression ratio
improves. For a specific value of the cluster size, which depends
on the number of selected cells, the compression ratio reaches
a peak value and then drops. Two things, with contradicting
effects on the compression ratio, happen as the cluster size
increases: The total number of clusters and, as a result, the
bits required for their encoding are reduced, while on the other
hand, the number of failed clusters increases. The cluster size,
which balances this behavior, leads to the maximum compres-

Fig. 8. Varying block size for s15850.

sion ratio. Note that as the selected-cell volume increases, larger
cluster sizes are required for achieving the best compression.
This is an expected behavior since as the cell volume increases,
the probability of generating a cluster from one of the selected
cells is higher, and thus, the number of failed clusters drops. The
variation of the compression ratio values in these experiments
is 8.4% for 4 cells, 6.9% for 8 cells, 7.1% for 12 cells, and 7.7%
for 16 cells.

The third set of experiments shows the effect of different
block sizes on the compression ratio. For the test set of s15850,
we varied the block size between 3 and 12 bits (with step = 1)
using a single polynomial, a single seed, eight selected cells,
and cluster sizes equal to 12, 24, and 30. Note that the block
size affects only the encoding of failed clusters (Block Data
encoding). The results are shown in Fig. 8. For small block
sizes, many codewords are required for encoding each failed
cluster since each cluster contains many blocks. On the other
hand, large block sizes affect the compression achieved by
Block Data encoding in a negative manner. This is a conse-
quence of the selective Huffman nature of Block Data encoding,
according to which only a portion of all distinct blocks is
encoded. Specifically, as the block size increases, the number
of distinct blocks grows exponentially, whereas the number of
encoded blocks remains constant; thus, the percentage of the
failed blocks increases. The compression ratio variation in this
set of experiments reached 2.1% for cluster size 12, 3% for
cluster size 24, and 2.2% for cluster size 30.

We next study the effect of the selected-cell volume on the
compression ratio. The following parameter values were used
(for s15850): cluster size equal to 16 and 32 and block size
equal to 4 and 8. For each experiment, we varied the number
of cells between 4 and 24 with step = 4 (for one polynomial
and one seed). The results are shown in Fig. 9(a). We can
see that an increase in the number of selected cells leads to
compression ratio improvements, independently of the other
parameters. For small selected-cell volumes, the compression
ratio is mainly affected by the block size. This is due to the large
number of failed clusters, which increases the percentage of the
data encoded by Block Data encoding. When the number of
cells increases, the compression ratio is mainly affected by the
cluster size. In this case, the number of failed clusters decreases,
and thus, more test data are encoded by pseudorandom LFSR
sequences (cell encoding and length encoding). This is shown
in Fig. 9(b), where the percentages of clusters encoded by the

KAVOUSIANOS et al.: MULTILEVEL HUFFMAN CODING: TEST-DATA COMPRESSION METHOD FOR IP CORES 1079

Fig. 9. Varying cell volume for s15850.

TABLE II
COMPRESSION RESULTS

TABLE III
COMPARISONS AGAINST [28] AND [52]

LFSR are presented for the experiments of Fig. 9(a) (note that
block size was set to eight since it does not affect the number
of LFSR-encoded clusters). It is obvious that as the number
of selected cells increases, the percentage of LFSR-encoded
clusters increases too (or, equivalently, the failed-cluster per-
centage decreases), and thus, the compression ratio improves.
After a specific number of cells, the number of clusters encoded
by the LFSR, and consequently the compression ratio reach a
saturation point. The saturation value of each curve in Fig. 9(a)
depends on the cluster and block sizes (it generally gets higher
as cluster and block sizes increase). The maximum variation of
the compression ratio in these experiments is about 5.7% for
the case of cluster size 32 and block size 8.

So far, we have seen that the LFSR size does not affect
the compression ratio, whereas the influence of the utilized
polynomial and initial seed on it is very limited. The most
important parameter is the number of selected cells, and for
each cell volume, there is one cluster and one block size that
maximize the compression ratio. This behavior is depicted in
Table II, where the compression results of the proposed method
for 4–24 cells (with step = 4) are presented. For every cell-
volume case, various cluster and block sizes were examined.
Among them, the best results are shown in Table II. The same
LFSR (of size 15) and ten random initial seeds were used in

each experiment. Columns labeled “C, B” report the utilized
cluster and the block sizes, whereas columns labeled “ENC”
present the encoded test sets’ sizes (the sizes of the original test
sets are shown in Table III). It is obvious that in all cases, the
compression improves as the number of cells increases.

In Table III, we compare the proposed method against the
approach of Jas et al. [28], which is based on selective Huffman
coding, and that of Tehranipour et al. [52], which is the most
effective compression method proposed so far in the literature.
In columns 2–5, the sizes of the original Mintest test sets, as
well as the encoded data volumes of [28] and [52] and the
proposed approach, are reported. The reduction percentages of
the proposed method over Mintest, [28] and [52] are presented
in columns 6–8. To calculate them, we utilized the formula

Red(%) =
Size(Method) − Size(Proposed)

Size(Method)
· 100 (1)

where Size(Method) denotes the data volume of Mintest,
[28], or [52]. It is obvious that the proposed scheme offers better
compression results than both [28] and [52]. We note that no
comparisons are provided against approaches that need struc-
tural information of the CUT or require ATPG synergy. Also,
we do not compare against the techniques of [37] and [38],
since they do not provide results for the Mintest test sets, and
that of [10], since several conditions have to be satisfied by a
core nearby the CUT, so as the former is used as decompressor.

In Table IV, we present the comparisons of the proposed
method against other compression techniques in the literature,
which impose similar hardware overhead to the CUT and report
results for the Mintest test sets. Specifically, we have used
(1) for calculating the compressed-data reduction percentages
achieved by the proposed method against each one of the other

1080 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

TABLE IV
COMPRESSED-DATA REDUCTION PERCENTAGES (IN PERCENT) OF THE

PROPOSED METHOD AGAINST OTHER TECHNIQUES

Fig. 10. Test-application time reductions for 24 cells.

TABLE V
DECOMPRESSOR HARDWARE OVERHEAD FOR S15850

methods. It can be seen that the proposed approach performs
better than all the rest.

As far as the test-application time is concerned, it is obvious
that as m = fSYS/fATE increases, greater test-application time
gain is achieved. The test-application time reductions for the
experiments presented in Table II for 24 cells are shown in
Fig. 10 and range from 14.7% for m = 2 to 85.6% for m = 30.

For calculating the hardware overhead of the proposed
technique, we synthesized six different decompressors for
4–24 cells (step = 4), cluster size = 16 bits, and block size =
8 bits, using Leonardo Spectrum (Mentor tools). The Block
Data and Cluster Group Length units were implemented as
combinational circuits. The area overhead depends strongly
on the number of selected cells, which affects the area of the
Huffman FSM unit. The block size affects the hardware over-
head in a limited way since only the area of the Block Data
unit depends on it. Cluster size does not affect the hardware
overhead at all. Table V shows the area overhead of the de-
compressor in gate equivalents (a gate equivalent corresponds
to a two-input NAND gate). The decompressors were synthe-
sized for the test set of s15850 (note that the decompressor
area does not depend on the test set but on the architectural
parameters mentioned above). Columns labeled Huffman FSM,

Group Length, Block Data, Fail Cluster/Block, and Cell Mux
present the area of the corresponding units. Column “Rest
Units” reports the area overhead of the rest units of the proposed
architecture. It is obvious that the area overhead depends mainly
on the area of Huffman FSM, which becomes larger as the
number of cells (and thus the number of Huffman codewords)
increases. The overhead imposed by the Group Length, Block
Data, Fail Cluster/Block, and Cell Mux units is only a small
portion of the total area overhead. The area occupied by the
remaining units is almost constant. In the column “Total,” the
total area overhead of the decompressor is reported.

The hardware overhead, in gate equivalents, of the most
efficient methods in the literature is 125–307 for [5] (as reported
in [12]), 320 for [8], 136–296 for [12], and 416 for [52]. In
[28], the hardware overhead is provided as a percentage of
the benchmark circuit area and cannot be directly compared to
the above methods. However, it is larger than that of [12]. As
can be seen, the hardware overhead imposed by the proposed
decompressors is comparable to that of the other techniques.

The hardware overhead can be reduced if the same decom-
pressor is used for testing one after the other several cores of
a chip. Units Huffman FSM, Decoding Controller, BC, BLC,
CLC, CSR, LFSR, and Source Select Mux of the decompressor
can be implemented only once on the chip. On the other hand,
units Block Data, Group Length, Fail Cluster/Block, and Cell
Mux should be implemented for every core that will be tested.
The area overhead occupied by the latter units is equal to
5.9%, 11.8%, 16.6%, 19.2%, 22.6%, and 23.4% of the total
area of the decompressors for 4, 8, 12, 16, 20, and 24 selected
cells, respectively. Therefore, only a small amount of hardware
should be implemented for every additional core. The main part
of the decompressor is implemented only once on the chip and
is used for testing several cores. Note that the area overhead
of the Group Length and Block Data units can be completely
avoided if lookup tables are used. These lookup tables will be
loaded only at the beginning of the test session of each core.

The use of the same Huffman FSM unit for several cores
implies that the codewords, which correspond to LFSR cells,
list lengths, and data blocks, are the same for each core, whereas
the actual cells, list lengths, and data blocks do not have to
be the same. The question is how much this common-FSM
choice affects the compression efficiency. For investigating this,
we conducted a series of experiments, in which the test set of
s15850 was reencoded using the codewords generated for the
rest benchmarks for various selected-cell volumes. For each
cell-volume case, six different experiments were conducted.
During the first one, the best code for s15850, assuming a
dedicated decompressor, was generated. The parameters of this
experiment are identical to those of Table II and correspond to
the best compression achieved for s15850 (for the respective
cell volume). The compression ratio of this experiment is
presented in Fig. 11 by the columns labeled “Ded.” Each of
the other five experiments was a reencoding of the test set
of s15850 with different codewords. The utilized codewords
in these experiments are those generated for each of the five
remaining benchmarks in the best compression cases reported
in Table II (for the same cell volume as in the first experiment).
The compression ratios are reported in Fig. 11 in the form of

KAVOUSIANOS et al.: MULTILEVEL HUFFMAN CODING: TEST-DATA COMPRESSION METHOD FOR IP CORES 1081

Fig. 11. Compression ratios for s15850 using Huffman codewords generated
for other circuits.

columns labeled with the name of the corresponding benchmark
circuit. It is obvious that independently of the selected-cell vol-
ume, the drop of the compression ratio is negligible (0%–0.7%).

As we have already shown in Fig. 9(a) and Table II, the
compression ratio improves (up to a saturation value) as the
volume of selected cells increases. The cell volume also affects
the implementation cost as shown in Table V. Therefore, in
an area-constrained multicore design, the cell volume for each
core is adjusted according to the available area. To save silicon,
the designer may implement one decompressor for several
cores, taking in mind that the same codewords will be used for
encoding all test sets. In this case, it is preferable to implement
a dedicated decompressor for the core that requires the largest
number of cells and then reuse it for the rest cores. The
advantages of this architectural decision are obvious (Fig. 11);
in almost all cases, an increase in the number of cells leads
to compression ratio improvements, independently of the code-
words used. Thus, comparing the two scenarios, in a multicore
environment where either: 1) a dedicated small decompressor
(low cell volume) can be used for each core or 2) a common
large decompressor (high cell volume) can be used for all cores,
scenario 2 is preferable. Even if the encoding is not the best
possible for some of the cores, the gain in compression ratio
from the increased cell volume is higher than the loss due to
the use of a less effective code for them. Moreover, since only
one decompressor is implemented, significant area savings are
achieved. To justify this, we conducted the following experi-
ment: Assuming that all benchmarks are embedded in a system,
we generated the decompressor for s38417 for the 24-selected-
cell case, and for each of the rest benchmarks, we generated
only the Block Data, Group Length, Fail Cluster/Block, and
Cell Mux units. We compare this common-decompressor ap-
proach with that of implementing the dedicated decompressors
that correspond to the results of Table II for 4 and 24 selected
cells, respectively. The comparisons are shown in Table VI.
Columns 2 and 3 present the area overhead and the compres-
sion ratio, assuming that a dedicated decompressor with four
selected cells is used for each core. Columns 4 and 5 present
the area overhead and the compression ratio when a dedicated
decompressor with 24 selected cells is implemented for each
core (these decompressors correspond to the best results of
Table II). Columns 6 and 7 present the area overhead and the

TABLE VI
HARDWARE OVERHEAD IN A SYSTEM WITH MULTIPLE CORES

compression ratio when a common decompressor is used for
all cores. In column 6, the area of the dedicated decompressor
of s38417, as well as the area of only the aforementioned
required units for the rest benchmarks, is reported. Column 7
shows the compression ratio achieved for each core. In the last
row of Table VI, the total area overhead of the necessary de-
compressors and the average compression ratios are presented.
As it was expected, when dedicated decompressors with four
selected LFSR cells are used, the total hardware overhead is
small, but the average compression ratio is not very high. On
the contrary, when dedicated decompressors with 24 selected
cells are utilized, the total hardware overhead and the average
compression ratio are high. When a common decompressor
with 24 selected cells for all cores is employed, less hardware
overhead is required than both previous cases. Moreover, the
average compression ratio is almost the same with that achieved
when a dedicated decompressor with 24 selected LFSR cells is
implemented for each core. Note that the area gain in the case
of using a common decompressor, compared to the 24-selected-
cell dedicated-decompressor case, is 62%. The total area of the
common decompressor is equal to 6.5% of the total area of the
six benchmarks. In the case of using lookup tables, the total
area of the decompressor is equal to 3.9% of the whole system.
Note that the decompressor area does not depend on the size of
the cores, and therefore, for larger cores, which are common in
contemporary systems, this percentage is much lower.

Instead of generating the codewords considering the occur-
rence lists of a single core and then reusing them for the rest
cores, an even better approach is to generate the codewords,
taking into account the occurrence lists of all cores. In this case,
the average compression ratio is expected to be even higher.
However, as shown in Table VI, the expected improvement
from this scenario is rather limited since the (average) maxi-
mum compression when using a dedicated decompressor with
24 selected cells for each core is only 0.3% higher than that
achieved by the utilization of the decompressor of s38417 for all
cores. On the other hand, minimum hardware overhead will be
imposed if except for the codewords, the encoded data are com-
mon for all cores as well (i.e., the same codeword encodes the
same data for all test sets). Then, all units can be shared among
the different cores, and the area overhead will be minimized.
However, in this case, the encoded data (selected LFSR cells,
cluster group lengths, encoded blocks, cluster size, and block
size) will not be optimized for each core, and consequently, the
average compression ratio is expected to drop.

1082 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 6, JUNE 2007

VII. CONCLUSION

In this paper, a new test-data compression method, which
is based on multilevel Huffman coding, was presented. The
proposed method is suitable for IP cores of unknown structure.
Three different kinds of information are encoded using the
same Huffman codewords, and thus, improved compression
results can be achieved. The area overhead of the required
decompressor is very low and comparable to that of the most
efficient methods in the literature. Furthermore, in a system
with multiple cores, the major part of the decompressor can be
implemented only once and shared among different cores. In
this way, significant area savings can be achieved. In addition,
most of the test sets’ x values are filled with pseudorandom
data generated by an LFSR, leading to increased probability of
detection of unmodeled faults.

ACKNOWLEDGMENT

The authors would like to thank Prof. K. Chakrabarty for pro-
viding the Mintest test sets that were used in the experiments.

REFERENCES

[1] K. J. Balakrishnan and N. A. Touba, “Matrix-based test vector decompres-
sion using an embedded processor,” in Proc. 17th IEEE Int. Symp. DFT
VLSI Syst., 2002, pp. 159–165.

[2] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B. Keller, and
B. Koenemann, “OPMISR: The foundation for compressed ATPG vec-
tors,” in Proc. ITC, 2001, pp. 748–757.

[3] I. Bayraktaroglu and A. Orailoglu, “Concurrent application of compaction
and compression for test time and data volume reduction in scan designs,”
IEEE Trans. Comput., vol. 52, no. 11, pp. 1480–1489, Nov. 2003.

[4] K. Chakrabarty, B. Murray, and V. Iyengar, “Deterministic built-in test
pattern generation for high-performance circuits using twisted-ring coun-
ters,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 5,
pp. 633–636, Oct. 2000.

[5] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression
and decompression architectures based on Golomb codes,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 3, pp. 355–368,
Mar. 2001.

[6] A. Chandra and K. Chakrabarty, “Test data compression and decompres-
sion based on internal scan chains and Golomb coding,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 6, pp. 715–772,
Jun. 2002.

[7] A. Chandra, K. Chakrabarty, and R. A. Medina, “How effective are com-
pression codes for reducing test data volume?” in Proc. 20th IEEE VTS,
2002, pp. 91–96.

[8] A. Chandra and K. Chakrabarty, “A unified approach to reduce SOC test
data volume, scan power and testing time,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 22, no. 3, pp. 352–363, Mar. 2003.

[9] A. Chandra and K. Chakrabarty, “Test data compression and test re-
source partitioning for system-on-a-chip using frequency-directed run-
length (FDR) codes,” IEEE Trans. Comput., vol. 52, no. 8, pp. 1076–1088,
Aug. 2003.

[10] R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for embedded testing,”
in Proc. ITC, 2001, pp. 530–537.

[11] A. Dutta, T. Rodrigues, and N. A. Touba, “Low cost test vector compres-
sion/decompression scheme for circuits with a reconfigurable serial multi-
plier,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2005, pp. 200–205.

[12] P. T. Gonciari, B. Al-Hashimi, and N. Nicolici, “Variable-length input
Huffman coding for system-on-a-chip test,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 22, no. 6, pp. 783–796, Jun. 2003.

[13] P. T. Gonciari, B. Al-Hashimi, and N. Nicolici, “Synchronization over-
head in SOC compressed test,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 13, no. 1, pp. 140–152, Jan. 2005.

[14] I. Hamzaoglu and J. H. Patel, “Reducing test application time for full scan
embedded cores,” in Proc. FTCS, Jun. 1999, pp. 260–267.

[15] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for com-
binational circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 19, no. 8, pp. 957–963, Aug. 2000.

[16] H. Hashempour and F. Lombardi, “Compression of VLSI test data by
arithmetic coding,” in Proc. 19th IEEE Int. Symp. DFT VLSI Syst., 2004,
pp. 150–157.

[17] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in test for circuits with scan based on reseeding of multiple-
polynomial linear feedback shift registers,” IEEE Trans. Comput., vol. 44,
no. 2, pp. 223–233, Feb. 1995.

[18] S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, “A mixed mode BIST
scheme based on reseeding of folding counters,” J. Electron. Test.: Theory
Appl., vol. 17, no. 3/4, pp. 341–349, Jun. 2001.

[19] G. Hetherington et al., “Logic BIST for large industrial designs: Real
issues and case studies,” in Proc. ITC, 1999, pp. 358–367.

[20] F. Hsu, K. Butler, and J. Patel, “A case study on the implementation of the
Illinois scan architecture,” in Proc. ITC, 2001, pp. 538–547.

[21] S. Hwang and J. A. Abraham, “Test data compression and test time
reduction using an embedded microprocessor,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 11, no. 5, pp. 853–862, May 2003.

[22] H. Ichihara, K. Kinoshita, I. Pomeranz, and S. M. Reddy, “Test transfor-
mation to improve compaction by statistical encoding,” in Proc. 13th Int.
Conf. VLSI Des., 2000, pp. 294–299.

[23] H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura, “Dynamic test compres-
sion using statistical coding,” in Proc. 10th ATS, 2001, pp. 143–148.

[24] V. Iyengar, K. Chakrabarty, and B. T. Murray, “Deterministic built-in
pattern generation for sequential circuits,” J. Electron. Test.: Theory Appl.,
vol. 15, no. 1/2, pp. 97–114, Aug.–Oct. 1999.

[25] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan
chains and its application to testing core-based designs,” in Proc. ITC,
1998, pp. 458–464.

[26] A. Jas, K. Mohanram, and N. A. Touba, “An embedded core DFT
scheme to obtain highly compressed test sets,” in Proc. ATS, 1999,
pp. 275–280.

[27] A. Jas and N. A. Touba, “Deterministic test vector compression/
decompression for systems-on-a-chip using an embedded processor,” J.
Electron. Test.: Theory Appl., vol. 18, no. 4/5, pp. 503–514, Aug. 2002.

[28] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, “An efficient
test vector compression scheme using selective Huffman coding,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 6,
pp. 797–806, Jun. 2003.

[29] A. Jas, C. V. Krishna, and N. A. Touba, “Weighted pseudorandom hybrid
BIST,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 12,
pp. 1277–1283, Dec. 2004.

[30] A. Jas, B. Pouya, and N. A. Touba, “Test data compression technique for
embedded cores using virtual scan chains,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 12, no. 7, pp. 775–781, Jul. 2004.

[31] S. Kajihara, K. Taniguchi, K. Miyase, I. Pomeranz, and S. M. Reddy, “Test
data compression using don’t-care identification and statistical encoding,”
in Proc. ATS, 2002, pp. 67–72.

[32] E. Kalligeros, X. Kavousianos, and D. Nikolos, “Multiphase BIST:
A new reseeding technique for high test data compression,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 10, pp. 1429–
1446, Oct. 2004.

[33] D. Kaseridis, E. Kalligeros, X. Kavousianos, and D. Nikolos, “An effi-
cient test set embedding scheme with reduced test data storage and test
sequence length requirements for scan-based testing,” in Proc. IEEE ETS
Inf. Papers Dig., 2005, pp. 147–150.

[34] A. Khoche, E. Volkerink, J. Rivoir, and S. Mitra, “Test vector compression
using EDA–ATE synergies,” in Proc. 20th IEEE VTS, 2002, pp. 97–102.

[35] M. J. Knieser, F. G. Wolff, C. A. Papachristou, D. J. Weyer, and
D. R. McIntyre, “A technique for high ratio LZW compression,” in Proc.
DATE Conf. and Exhib., 2003, pp. 116–121.

[36] B. Koenemann et al., “A SmartBIST variant with guaranteed encoding,”
in Proc. IEEE ATS, 2001, pp. 325–330.

[37] C. V. Krishna and N. A. Touba, “Reducing test data volume using LFSR
reseeding with seed compression,” in Proc. ITC, 2002, pp. 321–330.

[38] C. V. Krishna and N. A. Touba, “Adjustable width linear combina-
tional scan vector decompression,” in Proc. IEEE/ACM ICCAD, 2003,
pp. 863–866.

[39] C. V. Krishna and N. A. Touba, “3-Stage variable length continuous-
flow scan vector decompression scheme,” in Proc. 22nd IEEE VTS, 2004,
pp. 79–86.

[40] L. Li, K. Chakrabarty, and N. A. Touba, “Test data compression
using dictionaries with selective entries and fixed-length indices,” ACM
Trans. Des. Automat. Electron. Syst., vol. 8, no. 4, pp. 470–490, Oct. 2003.

[41] L. Li and K. Chakrabarty, “Test set embedding for deterministic BIST
using a reconfigurable interconnection network,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 23, no. 9, pp. 1289–1305,
Sep. 2004.

KAVOUSIANOS et al.: MULTILEVEL HUFFMAN CODING: TEST-DATA COMPRESSION METHOD FOR IP CORES 1083

[42] L. Li, K. Chakrabarty, S. Kajihara, and S. Swaminathan, “Efficient
space/time compression to reduce test data volume and testing time for
IP cores,” in Proc. 18th Int. Conf. VLSI Des., 2005, pp. 53–58.

[43] A. El-Maleh, S. al Zahir, and E. Khan, “A geometric-primitives-based
compression scheme for testing systems-on-a-chip,” in Proc. 19th IEEE
VTS, Apr./May 2001, pp. 54–59.

[44] A. El-Maleh and R. Al-Abaji, “Extended frequency-directed run-length
code with improved application to system-on-a-chip test data compres-
sion,” in Proc. 9th ICECS, 2002, vol. 2, pp. 449–452.

[45] M. Nourani and M. H. Tehranipour, “RL-Huffman encoding for test
compression and power reduction in scan applications,” ACM Trans. Des.
Automat. Electron. Syst., vol. 10, no. 1, pp. 91–115, Jan. 2005.

[46] J. Rajski, “DFT for high-quality low cost manufacturing test,” in Proc.
ATS, 2001, pp. 3–8.

[47] J. Rajski et al., “Embedded deterministic test for low-cost manufactur-
ing,” IEEE Des. Test Comput., vol. 20, no. 5, pp. 58–66, Sep./Oct. 2003.

[48] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deter-
ministic test,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, no. 5, pp. 776–792, May 2004.

[49] P. Rosinger, P. T. Gonciari, B. Al-Hashimi, and N. Nicolici, “Simultane-
ous reduction in volume of test data and power dissipation for systems-
on-a-chip,” Electron. Lett., vol. 37, no. 24, pp. 1434–1436, Nov. 2001.

[50] S. Swaminathan and K. Chakrabarty, “On using twisted-ring counters for
test set embedding in BIST,” J. Electron. Test.: Theory Appl., vol. 17,
no. 6, pp. 529–542, Dec. 2001.

[51] M. Tehranipour, M. Nourani, K. Arabi, and A. Afzali-Kusha, “Mixed
RL-Huffman encoding for power reduction and data compression in scan
test,” in Proc. ISCAS, 2004, vol. 2, pp. II-681–II-684.

[52] M. Tehranipour, M. Nourani, and K. Chakrabarty, “Nine-coded compres-
sion technique for testing embedded cores in SoCs,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 13, no. 6, pp. 719–731, Jun. 2005.

[53] E. H. Volkerink, A. Khoche, and S. Mitra, “Packet-based input test data
compression techniques,” in Proc. ITC, 2002, pp. 154–163.

[54] F. G. Wolff and C. Papachristou, “Multiscan-based test compression and
hardware decompression using LZ77,” in Proc. ITC, 2002, pp. 331–339.

[55] A. Wurtenberger, C. S. Tautermann, and S. Hellebrand, “Data compres-
sion for multiple scan chains using dictionaries with corrections,” in Proc.
ITC, 2004, pp. 926–935.

Xrysovalantis Kavousianos (S’97–M’02) received
the Diploma degree and the Ph.D. degree in on-
line testing from the Computer Engineering and In-
formatics Department, University of Patras, Patras,
Greece, in 1996 and 2000, respectively.

He is currently a Lecturer with the Computer Sci-
ence Department, University of Ioannina, Ioannina,
Greece. His main interests are in the fields of very
large scale integration design and digital testing. He
is currently working in the areas of test data com-
pression, built-in self-test, low-power testing, and
online testing.

Dr. Kavousianos is a member of the Technical Chamber of Greece.

Emmanouil Kalligeros (M’06) received the
Diploma degree, the M.Sc. degree, and the Ph.D.
degree in embedded testing from the Computer
Engineering and Informatics Department, University
of Patras, Patras, Greece, in 1999, 2001, and 2005,
respectively.

He is currently teaching hardware description lan-
guages with the Computer Science and Technol-
ogy Department, University of Peloponnese, Tripoli,
Greece, and computer architecture with the Com-
puter Engineering and Informatics Department, Uni-

versity of Patras. His research interests include test data compression, built-in
self-test, low-power testing, and delay testing.

Dr. Kalligeros is a member of the Technical Chamber of Greece.

Dimitris Nikolos (M’95) received the B.Sc. degree
in physics, the M.Sc. degree in electronics, and the
Ph.D. degree in computer science from the Univer-
sity of Athens, Athens, Greece.

Since 1999, he has been a Full Professor with
the Computer Engineering and Informatics Depart-
ment, University of Patras, Patras, Greece, and the
Head of the Technology and Computer Architecture
Laboratory. He has authored or coauthored more
than 150 scientific papers. He is the holder of one
U.S. patent. His main research interests include fault-

tolerant computing, computer architecture, VLSI design, and test and design for
testability.

Dr. Nikolos has served as Program Co-Chairman of the IEEE International
On-Line Testing Workshops (1997–2001). He also served on the Program Com-
mittees for the IEEE International On-Line Testing Symposiums (2002–2006),
the IEEE International Symposiums on Defect and Fault Tolerance in VLSI
Systems (1997–1999), the Third and Fourth European Dependable Computing
Conferences, the International Workshop on Power and Timing Modeling, Op-
timization and Simulation (PATMOS; 2005–2006), and the DATE (2000–2006)
Conferences. He was a Guest Co-Editor of the June 2002 special issue of
Journal of Electronic Testing, Theory and Applications devoted to the 2001
IEEE International On-Line Testing Workshop. He was a co-recipient of the
Best Paper Award for his work “Extending the viability of IDDQ testing in
the deep submicron era,” which was presented at the Third IEEE International
Symposium on Quality Electronic Design (ISQED 2002).

