
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 859

which means thatxa , xa , xa are linearly independent
mod ~P (x) as specified by Lemma 1.1 in the form given by
[13], since in the LFSR/SR structure the zeroth cell of the LFSR
part is indexed with 0.

2) General LFSM and groups of cells with indexes greater than
d�1. In this case setA = fa1; a2; . . . ; akg is such thatai � d,
1 � i � k, that is, no cell lies within the LFSM part of the
LFSM/SR. This case is important in TPG since the SR part of
an LFSM/SR is many times a scan chain which is responsible
for providing all test-phase inputs (primary outputs and internal
flip–flops, plus any additional internal test input points) with test
values, while the LFSM part is responsible for providing with
values only the SR part (and not directly any proper circuit in-
puts). Then all�() values are the same with�(ai) = d � 1,
and so allDx sets are also the same withD�(a) = Dd�1. The
�() values are�(ai) = amax � ai = a1 � ai. So the formula
now becomes

a 2A j2D
xd�1�j+�(a)= (x�(a) +

x�(a)+� � �+x�(a))
j2D

xd�1�j= (xa �a +xa �a +

� � �+xa �a)
j2D

xd�1�j = 0 mod P (x): But since the
second term in the above product is of degree less thand and
P (x) is an irreducible polynomial,P (x) must divide the first
termxa �a +xa �a + � � �+xa �a . But as shown in the case
above, this is equivalent toxa �a +� � �+xa �a +xa �a +
� � �+xa �a being divisible by~P (x), which is the condition of
Lemma 1.1. That is, in this case, all LFSMs with the same char-
acteristic polynomialP (x) have the same behavior as a Type-1
LFSR with characteristic polynomialP (x) (as expected, since
every cellj after the(d� 1)th receives just a shift-by-j version
of the characteristic sequence of the LFSM).

IV. CONCLUSION

We investigated the linear dependencies in an LFSM/SR TPG for an
arbitrary LFSM. We obtained a formula that relates the linear depen-
dencies with the characteristic polynomial of the LFSM and that can
be computed in very fast polynomial time. The formula, which gener-
alizes a previously known formula for Type-1 LFSRs only, allows the
fast determination of linear dependencies in an LFSM/SR structure for
any LFSM, including in particular Type-2 LFSRs and CA.

REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital Systems
Testing and Testable Design. New York: Computer Sci. Press, 1990.

[2] W.-B. Jone and C. A. Papachristou, “A coordinated approach to parti-
tioning and test pattern generation for pseudoexhaustive testing,” in26th
ACM/IEEE Design Automation Conf., 1989, pp. 525–530.

[3] H.-J. Wunderlich and S. Hellebrand, “Tools and devices supporting the
pseudo-exhaustive test,” inProc. European Design Automation Conf.,
1990.

[4] D. Kagaris, F. Makedon, and S. Tragoudas, “A method for pseudo-ex-
haustive test pattern generation,”IEEE Trans. Computer-Aided Design,
vol. 13, pp. 1170–1178, Sept. 1994.

[5] R. Srinivasan, S. K. Gupta, and M. A. Breuer, “Novel test pattern gen-
erators for pseudoexhaustive testing,” inProc. Int. Test Conf., 1993, pp.
17–21.

[6] E. R. Berlekamp,Algebraic Coding Theory. Laguna Hills, CA:
Aegean Park, 1984.

[7] C. L. Chen, “Linear dependencies in linear feedback shift registers,”
IEEE Trans. Computers, vol. 35, pp. 1086–1088, Dec 1986.

[8] P. H. Bardell, W. H. McAnney, and J. Savir,Built-in Test for VLSI. New
York: Wiley, 1987.

[9] P. H. Bardell, “Calculating the effects of linear dependencies inm-se-
quences as test stimuli,”IEEE Trans. Computer-Aided Design, vol. 11,
pp. 83–85, Jan. 1992.

[10] D. Kagaris and S. Tragoudas, “Avoiding linear dependencies in LFSR
test pattern generators,”J. Electron. Testing: Theory Applicat., vol. 6,
pp. 229–241, 1995.

[11] J. Rajski and J. Tyszer, “On linear dependencies in subspaces of LFSR-
generated sequences,”IEEE Trans. Computers, vol. 45, pp. 1212–1221,
Oct. 1996.

[12] Z. Barzilai, D. Coppersmith, and A. L. Rosenberg, “Exhaustive bit gen-
eration with application to VLSI self-testing,”IEEE Trans. Comput., vol.
C-32, pp. 190–194, 1983.

[13] D. T. Tang and C. L. Chen, “Logic test pattern generation using linear
codes,”IEEE Trans. Comput., vol. 33, pp. 845–850, Sept. 1984.

[14] A. Lempel and M. Cohn, “Design of universal test sequences for VLSI,”
IEEE Trans. Inform. Theory, vol. 31, pp. 10–15, Jan. 1985.

[15] P. H. Bardell, “Design considerations for parallel pseudorandom pattern
generators,”J. Electron. Testing: Theory Applicat., vol. 3, pp. 73–87,
Jan. 1990.

[16] J. Rajski, N. Tamarapalli, and J. Tyszer, “Automated synthesis of phase
shifters for built-in self-test applications,”IEEE Trans. Computer-Aided
Design, vol. 19, pp. 1175–1188, Oct. 2000.

[17] M. Serra, T. Slater, J. C. Muzio, and D. M. Miller, “The analysis of
one-dimensional linear cellular automata and their aliasing properties,”
IEEE Trans. Computer-Aided Design, vol. 9, pp. 767–778, July 1990.

[18] C. Cattell and J. C. Muzio, “Synthesis of one-dimensional linear hybrid
cellular automata,”IEEE Trans. Computer-Aided Design, vol. 15, pp.
325–335, Mar. 1996.

[19] V. D. Agrawal, C. R. Kime, and K. K. Saluja, “A tutorial on built-in
self-test. part 1: Principles,”IEEE Design Test Computers, pp. 73–82,
Mar. 1993.

[20] H. S. Stone,Discrete Mathematical Structures and Their Applica-
tions. Chicago, IL: Science Res. Assoc., 1973.

A New Built-In TPG Method for Circuits With Random
Pattern Resistant Faults

Xrysovalantis Kavousianos, Dimitris Bakalis, Dimitris Nikolos, and
Spyros Tragoudas

Abstract—The partition of the inputs of a circuit under test (CUT) into
groups of compatible inputs reduces the size of a test pattern generator and
the length of the test sequence for built-in self-test (BIST) applications. In
this paper, a new test-per-clock BIST scheme is proposed which is based on
multiple input partitions. The test session consists of two or more phases,
and a new grouping is applied during each test phase. Using the proposed
method a CUT can be tested at-speed and complete fault coverage (100%)
is achieved with a small number of test vectors and small area overhead.
Our experiments show that the proposed technique compares favorably to
the already known techniques.

Index Terms—Built-in self-test, test pattern generators.

I. INTRODUCTION

Built-in self-test (BIST) [1]–[5] is an important promising technique
for testing large and complex systems. Minimal test application time,

Manuscript received February 7, 2001; revised October 8, 2001. This work
was supported in part by the Computer Technology Institute. This paper was
recommended by Associate Editor K.-T. Cheng.

X. Kavousianos, D. Bakalis, and D. Nikolos are with the Computer Engi-
neering and Informatics Department, University of Patras, Patras 26500, Greece
(e-mail: kabousia@ceid.upatras.gr; bakalis@cti.gr; nikolosd@cti.gr).

S. Tragoudas is with the Electrical and Computer Engineering Depart-
ment, Southern Illinois University, Carbondale, IL 62901 USA (e-mail:
spyros@engr.siu.edu).

Publisher Item Identifier S 0278-0070(02)05623-3.

0278-0070/02$17.00 © 2002 IEEE

860 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

area overhead, and test data storage as well as minimal performance
degradation and at-speed testing is essential in many BIST applications.
In many applications 100% fault coverage is also desirable.

BIST schemes can be classified into two general categories [4], [5]:
test-per-scan and test-per-clock. In the test-per-scan scheme a complete
or partial scan path is serially filled by the test pattern generator (TPG)
[6]–[12], whereas in the test-per-clock scheme a new test vector is ap-
plied to the circuit under test (CUT) at each clock cycle [12]–[24]. In
this paper, we consider only test-per-clock BIST schemes.

BIST schemes are also classified according to the type of patterns
they generate. Pseudorandom BIST schemes [2] have the advantage of
very low hardware overhead. However, for circuits with random pat-
tern resistant faults, high fault coverage cannot be achieved within an
acceptable test length. Test point insertion, weighted pseudorandom
patterns, CUT inputs reduction, and mixed-mode BIST are the main
techniques which have been proposed to solve this problem. Although
test point insertion methods [13] reduce the test length, they increase
the hardware overhead and may also pose additional delays on the crit-
ical paths of the system slowing down its performance. Weighted pseu-
dorandom pattern BIST schemes which require very small hardware
overhead have been proposed in [14] and [15]. The method of [15] has
the additional advantage that it achieves almost complete fault coverage
with relatively short test sequences. However, [14] and [15] cannot be
easily used for at-speed testing, because some multiplexers should be
inserted between the linear feedback shift register (LFSR) outputs and
the CUT inputs. Input reduction based only on compatibility analysis
of the CUT inputs [16], [17] has the advantage of very small hard-
ware overhead. However, in most cases the test sequence length is very
long. In order to reduce the test sequence length, the methods pro-
posed in [18] and [19] insert logic between the TPG outputs and the
CUT inputs, which makes at-speed testing difficult. Mixed-mode BIST
schemes [12], [20]–[23] impose in the pseudorandom sequence deter-
ministic test vectors for detecting the random pattern resistant faults.
The methods proposed in [20] and [22] insert logic between the TPG
outputs and the CUT inputs making at-speed testing difficult.

In a test-per-clock BIST scheme, a register must be modified in order
to operate as a parallel in—parallel out register during normal mode
and as a shift register, LFSR, or two-port register during test mode.
This modification may cause a delay in the normal operation of the
circuit, if the register is in the critical path. This is the minimal perfor-
mance degradation that a test-per-clock BIST TPG may cause in the
normal operation of the circuit. Since the methods proposed in [14],
[15], [18]–[20], and [22] insert logic between the TPG outputs and the
CUT inputs, they may further affect the performance of the system in
normal operation.

In this paper, we propose a new TPG scheme that ensures: 100%
fault coverage, low hardware overhead, short test length, and at-speed
testing because it does not insert logic between the input flip–flops and
the CUT and minimal performance degradation. The proposed scheme
is based on multiple partitions of the CUT inputs into groups. A test
session consists of two or more phases and during each phase a new
grouping of the inputs is used. The number of groups is the same for
all phases. The majority of single stuck-at faults is detected by applying
the first grouping. New groupings are repeatedly applied, until the fault
coverage reaches 100%. The procedure for the first partition of inputs
into groups takes into account all the stuck-at faults, while for the re-
maining groupings only undetected faults are considered. Our goals,
small test set length and low area overhead, are obtained using two
grouping algorithms. The first algorithm selects the first grouping of
the inputs of the CUT using pseudorandom vectors, while the second
one selects the next groupings using pseudorandom test patterns for the
easy-to-detect faults and deterministic for the rest.

Fig. 1. TPG with single group assignment.

The paper is organized as follows: Section II presents the architec-
ture of the TPG scheme while Section III presents the grouping algo-
rithms. Experimental results are given in Section IV on the ISCAS’85
and the combinational part of the ISCAS’89 benchmarks.

II. PROPOSEDTPG ARCHITECTURE

Consider a CUT withk inputs. The grouping of thek inputs of the
CUT inton groups(n < k) reduces the size of a TPG and the length
of the test sequence for BIST applications [16], [17]. As it is shown in
Fig. 1, theith cell of ann-bit TPG, denoted byTi, drives a group of
CUT inputs.

In order to achieve high fault coverage in circuits with many random
pattern resistant faults, many groups and hence very long sequences,
are needed. The test length can be cut down by reducing the number
n of groups, but this results in insufficient fault coverage. To achieve
high fault coverage with short test length we propose a new scheme
based on multiple partitions of the CUT inputs into groups. Then, the
test session consists of two or more phases, each one with a different
grouping of inputs. The number of groups is the same for all phases.

To reduce the hardware required for the implementation, the
grouping procedure proposed in Section III ensures that there aren

inputs of the CUT such that:

1) each one belongs to a different group from the othern�1 inputs
in all groupings;

2) each one of thesen inputs is assigned to the same TPG output in
all groupings.

The TPG module can then be implemented by modifying suitably
the cellsR1; . . . ; Rn of thek-bit input register(k > n). The proposed
scheme is given in Fig. 2. The block phase selection determines the
phase while the block assigning logic assigns the TPG outputs to the
inputs of the CUT depending on the phase. In the following, we de-
scribe the modules of Fig. 2 in more detail.

A. Input Register

We denote the k-input register of the CUT as
R1 . . .RnM1 . . .Mk�n. In normal mode the input register receives
inputs from the previous functional units and feeds them to the CUT.
TheR1 . . .Rn cells are modified so that in test mode they implement
either an LFSR (with primitive characteristic polynomial) or a binary
counter. This part of the input register constitutes block TPG in Fig. 2.
The other part of the input register(M1 . . .Mk�n) is modified to a
single-clock two-port register. The single-clock two-port register is
implemented with multiplexed flip–flops, which are controlled by a
test/normal mode signal. In test mode, the TPG module producesn

-bit vectors, and the assigning logic generates vectors each having
k � n bits. Hence,k-bit vectors are generated and applied to the
CUT. The inputs of the assigning logic module are driven from the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 861

Fig. 2. The proposed scheme.

flip–flops of the TPG. Hence, while a test vector is applied to CUT,
the input of eachRi receives the new value, corresponding to the new
state of the TPG. This value is also spread through the assigning logic
to the inputs of the cellsMj , which belong to the same group withRi.
These logic values are stored in the cellsR1 . . .RnM1 . . .Mk�n at
the next clock edge and hence appear at the inputs of the CUT at the
next clock period. Then, taking into account that the delay of the CUT
is always greater than that of the assigning logic module, we conclude
that the test vectors are available at clock rate. Since the test vectors
are available at clock rate and our technique does not insert any logic
between the input register and the CUT inputs, we conclude that our
method is suitable for at-speed testing. We consider that a register
drives the inputs of the CUT; therefore, the multiplexers required for
the selection between normal operation and test mode are placed at
the inputs of the flip–flop of the input register (as in [16, Fig. 7]).

B. Phase Selection Module

The test session consists of one or more phases, where in each phase
we have a different grouping of the inputs. During a phase, the TPG
module of Fig. 2 generates all possible vectors. Fig. 3 presents the block
diagram of the phase selection module.

Let q be the number of phases. Thelast TPG stateblock identifies
the last state of the TPG and triggers at-bit counter,t = dlog

2
(q)e,

to increase. The decoder transforms the binary output of the counter
into the signalsP1; P2; . . . ; Pq , which determine the current phase of
the test session. During phasei, only Pi has the value 1. The counter
is initialized at the00 . . . 0 state and is incremented at the beginning of
each new phase until it reaches stateq. When the counter reaches state
q, the end of the test session is signaled by theend of testingblock.

The area overhead of the phase selection module is very small. As
it is shown in experimental results, in most of the cases the number
of the phases is less than 16. Therefore, no more than four cells are
required for the implementation of the counter and the decoder is very
small. Since the lengthn of the TPG is generally low (12 or less in most
experiments), a very small number of gates is sufficient to identify the
last state of the TPG. The end of testing block is also very small.

We have to note that when the test session consists of only one phase,
the phase selection module is reduced to the last TPG state block which
signals the end of testing mode.

C. Assigning Logic Module

In each phase of the test session the cellsM1 . . .Mk�n of the input
register are divided inton groupsG1; . . . ; Gn. CellRi of the TPG also
belongs to groupGi. The cells of groupGi have identical logic values
stored during each phase. The assigning logic module is responsible

Fig. 3. Phase selection module.

for assigning each cellMj to the appropriate cell of the TPG module,
in each phase. When the test session consists of more than one phase,
multiplexers can be used to accomplish this assignment. If cellMj is a
member ofp different groups during different phases, then ap ! 1
multiplexer is necessary to select the value to be stored to the cell.
If the cell is a member of the same group during all phases, then no
multiplexer is necessary. The number and the size of the multiplexers
can be reduced applying several simplifications.

1) Suppose that cellsMi andMj of the two-port register belong to a
common group, during each phase. Then a common multiplexer
is sufficient to drive both cells.

2) Consider a test session withm phases and a cellMj that belongs
to x different groups(x� m). Then less area overhead can be
achieved if ax ! 1 multiplexer along with some glue logic for
the selection signals is used to drive this cell instead of am! 1
multiplexer.

Many such simplifications can be performed due to the small number
of outputs of the TPG module and the small number of phases. The al-
gorithm presented in Section III minimizes the hardware overhead of
the assigning logic module, by reducing the number of different outputs
of the TPG that correspond to an input of the two-port register during
all phases. In that way, a small number (even zero in many cases) of
smaller multiplexers is required for many inputs of the two-port reg-
ister.1

III. GROUPINGPROCEDURE

The objective of the proposed method is to find for a given lengthn

of the TPG,q different setsSi, with 1 � i � q, each one consisting
of n groupsGi

j , with 1 � j � n, of the primary inputs of the CUT.
In setSi groupGi

j consists of inputs of the CUT that in phasei of the
test session receive the same logic value as the input of the CUT driven
by the cellRj of the TPG. The proposed method selectsn cells of the
input register to construct the TPG module and considers the restk�n
cells of the input register as the two-port register module.

First of all, we have to select a value forn. The selection depends
on the specific CUT. The value ofn must be as small as possible, in
order to bound the number of test vectors generated by the TPG. At the
same time it is preferable for the first grouping to cover the majority of
easy-to-detect faults, in order to reduce the process time. For that reason
we apply random patterns to the circuit until there is a number of con-
secutivep = 100 vectors that do not detect any new faults. The number
of these vectors minus thep last ones is considered as the number of
vectors,s, detecting all easy faults. Then the first grouping must apply
2n � 1 vectors with2n � 1 � s; therefore,n = dlog

2
(s + 1)e. Our

experiments have verified that this value is a good initial selection for
n. Other values close ton (greater or smaller) can be also considered
for achieving better hardware overhead or shorter test sequences (as we
can see at the experimental results) depending on the designer’s spec-
ifications.

1In the case of implementing the multiplexing logic using logic gates, further
area reduction can be achieved on the logic circuit by synthesis tools, which has
not been examined in this paper.

862 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

The proposed grouping procedure consists of four main steps.

Step 1) The objective of the first step is to derive the first grouping,
setS1, in such a way that the majority of the easy-to-detect
faults to be detected under this grouping. For that reason an
algorithm, Algorithm A, is used which does not guarantee
100% fault coverage but runs very fast. We then run fault
simulation for all vectors that can be applied to the CUT
under this grouping and discard the detected faults from the
fault list.

Step 2) At the second step, test vectors for the undetected faults are
extracted via an ATPG tool. The ATPG tool is utilized in
order to extract no less than one and no more thanT (a
given parameter) test vectors for every nonredundant fault,
whenever that is possible. Multiple test vectors per fault are
needed in order to ensure alternatives and produce better
groupings on subsequent steps. The largerT is, the better
the remaining setsSi, i > 1, but the larger the execution
time of the ATPG tool is. A typical value used in our ex-
periments forT is 30. Initially, the ATPG tool runs fault
simulation using random vectors and collects all vectors de-
tecting at least one of the targeted faults. If for some faults
the random vectors fail to produce at least one test vector, a
deterministic ATPG algorithm is employed.

Step 3) In this step, then cellsR1; R2; . . . ; Rn forming the TPG
are selected. The selection of theR1; R2; . . . ; Rn is very
crucial, hence we developed an effective heuristic proce-
dure.

Step 4) The last stage of the method has the objective to form setsSi
for i > 1. For that reason a heuristic algorithm, Algorithm
B, is developed which receives a set of undetected faults
and test vectors and creates a grouping detecting as many
of these faults as possible. This algorithm is iteratively ex-
ecuted until all nonredundant faults have been covered.

In the following, we present the details of Algorithm A, the TPG
cells selection, and Algorithm B.

A. Algorithm A

The vector11 . . . 1 is applied to the CUT under any possible
grouping, regardless of whether the TPG is implemented as a counter
or an LFSR. When the TPG is implemented as a counter the vector
00 . . . 0 is also always applied. For that reason, depending on the used
TPG, we drop at the beginning the faults detected by these vectors.

We then consider one group containing all inputs of the CUT and
we attempt to split it inton groupsG1; G2; . . . ; Gn in n � 1 repeti-
tions. In each repetitionm, withm 2 [1; . . . ; n�1], one of the groups
G1; G2; . . . ; Gm is selected and split into two groups. In order to se-
lect a good group and a good way of splitting it, the algorithm applies
various random solutions until it cannot find a better solution for a pre-
defined number of successive attempts. Specifically, each one of them

groups is repeatedly divided into two random parts while in the same
time the restm� 1 groups remain unaffected. Then the2m+1 vectors
produced by them+1 groups are applied to the CUT and the additional
fault coverage is calculated. Among all the random groupings produced
by the algorithm, the one with the largest additional fault coverage is
selected.

In every repetition, the2m+1 test vectors produced by the selected
m + 1 groups are always a superset of the2m test vectors produced
by the originalm groups. For that reason, in each repetition, we exe-
cute fault simulation applying only the new vectors for the undetected
faults. This leads to a significant reduction of the execution time of Al-
gorithm A.

Algorithm A achieves very high fault coverage of the easy-to-detect
faults, even though the produced setS1 is formed randomly in a very
short time. However, due to its random nature, it cannot guarantee com-
plete fault coverage.

B. Selection of TPG Cells

Hereafter, we denote asI = fI1 . . . Ikg the set of inputs of the
CUT, IR = fIR1; IR2; . . . ; IRng the set of inputs driven by the cells
R1; R2; . . . ; Rn of the TPG, andIM = fIM1; IM2; . . . ; IMk�ng
the set of inputs driven by the cellsM1;M2; . . . ;Mk�n of the
two-port register. Obviously, we haveI = IR [IM. The selection
of cells R1; R2; . . . ; Rn is equivalent to the selection of inputs
IR1; IR2; . . . ; IRn.

According to the first grouping the setI has been split inton groups
G1
1; . . . ; G

1
n. From each group we select one representative so as to

form set IR. In order to select the representatives, a weightWR(Ia; Ib)
for every pair of inputsIa, Ib is calculated. For each faultf of the
so far undetected faultsF of the circuit, and for every pair of inputs
Ia, Ib we calculate the percentagepf (Ia; Ib) of its test vectors that
have complementary logic values at these inputs. The higher the per-
centagepf(Ia; Ib) is, the more difficult is the fault to be detected if
inputsIa, Ib are put in the same group. However, since the test vec-
tors, used by our method, for each fault may represent only a small
portion of the test vectors which detect this fault, the previous argu-
ment may be misleading if we base our decision on the exact value of
pf(Ia; Ib). Hence, for each range of values ofpf(Ia; Ib) we assign a
weight. Whenpf(Ia; Ib) is less than 50%, less than half of the pro-
duced test vectors require complementary values at inputsIa, Ib. In
this case, this fault can be easily detected even if inputsIa, Ib receive
the same value and therefore we assign towf(Ia; Ib) the value of zero.
On the other hand, whenpf(Ia; Ib) is approaching 100%, then almost
all test vectors require inputsIa, Ib to receive complementary values;
therefore, the probability that the fault will remain undetected if inputs
Ia, Ib receive always the same logic value is very large. In this case
wf(Ia; Ib) is given a large value. Specifically, we assign weights in
the following way:

wf(Ia; Ib) =

0; pf(Ia; Ib) < 50%

2; 50% � pf(Ia; Ib) � 70%

8; 70% > pf(Ia; Ib) � 90%

16; 90% < pf(Ia; Ib) � 100%:

Then the weightWR(Ia; Ib) is estimated as the sum ofwf(Ia; Ib)
for all faults, that isWR(Ia; Ib) = f2F

wf(Ia; Ib). The value of
WR(Ia; Ib) is an indication of the impact of assigning inputsIa, Ib in
the same group. WhenWR(Ia; Ib) is large, we should avoid puttingIa
andIb in the same group. In this case, we prefer to assign these inputs
in set IR to ensure that they will not be assigned in the same group in
any of the future groupings.

At first, among the inputs belonging toG1
1 and G1

2 we select
the inputsIa1 2 G1

1, and Ia2 2 G1
2 with the maximum weight

WR(Ia1; Ia2). We symbolizeIa1 and Ia2 as IR1 and IR2, respec-
tively. Then, we select, as representative ofG1

3, the inputIa3 2 G1
3

which has the larger sumWR(IR1; Ia3) + WR(IR2; Ia3). We
symbolizeIa3 by IR3. In the same way we select, as the representative
of groupG1

p, the inputIap 2 G1
p which has the maximum value of

p�1

i=1
WR(IRi; Iap):

C. Algorithm B

Algorithm B receives as inputs: 1) a list of undetected faults; 2) a set
of multiple test vectors for them; 3) the setIR1; IR2; . . . ; IRn; and 4)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 863

Fig. 4. Graph reduction example.

the groupings constructed so far, and creates a new grouping detecting
as many faults as possible.

Consider a graph where nodes correspond to inputs and the edge
connecting two nodes represents the ability to put these inputs in the
same group. The nodes of the graph are divided into two sets:NR, the
nodes corresponding to inputsIR1; IR2; . . . ; IRn, andNM , the nodes
corresponding to inputsIM1; IM2; . . . ; IMk�n. Initially, all nodes of
setNR are connected to all nodes of setNM . This means that each input
of setNM can be put in the same group with each input of setNR. The
objective is to reduce the edges of the graph in order each node of set
NM to be connected with exactly one node of setNR. Then, all nodes
of setNM connected to nodeIRi, along with nodeIRi, construct a
single group. We note that each time the state of the graph represents
all permissible groupings of inputs.

The reduction of the graph edges is done as follows: Firstly, the al-
gorithm selects a test vectort. Let the logic values of the bits corre-
sponding to inputsIMj andIRi be complementary int. Then in order
for t to be applied under any grouping, represented by the state of the
graph, inputsIMj andIRi must not be assigned in the same group.
Therefore, we remove the edge connecting the corresponding nodes. It
is obvious that after the removals imposed by vectort, each node of
setNM must be connected to at least one node ofNR else the graph
will not represent a valid grouping. In the latter case, we reject the test
vector. This procedure is repeated until either all faults have been cov-
ered or there is not any other test vector of a so far undetected fault that
can be produced by the grouping. Then, if a node ofNM is connected
to p nodes ofNR, with p > 1, the hardware overhead required by each
connection is estimated and thep�1 connections with the larger hard-
ware overhead are removed.

Fig. 4 presents a very simple example of the edge reduction proce-
dure. In this example, a counter TPG is considered. Assume that ini-
tially we have setsNR = fIR1; IR2g andNM = fIM1; IM2; IM3g.
In state 1 all nodes ofNR are connected to all nodes ofNM . For
the vector(IR1; IR2; IM1; IM2; IM3) = 01 � 10 the connections
IR1 � IM2 and IR2 � IM3 have to be removed because the cor-
responding bits in the test vector are complementary. Then we get
state 2. In the same way for the vector(IR1; IR2; IM1; IM2; IM3) =
100 � 1 we get state 3 and the resulting groups arefIR1; IM3g and
fIR2; IM1; IM2g. The vectors produced by this grouping are (00000),
(01110), (10001), (11111); therefore, the required test vectors will be
applied to the CUT.

A very crucial factor for the efficiency of the algorithm is the se-
lection of the test vectors used for the graph edge removal. Each test
vector and each undetected fault is associated with a cost. The cost of
test vectorv indicates the possibility to fail covering other test vectors
if v is selected. Then, based on the costs of their test vectors, the faults
are classified into easy and hard and a cost is given to each one of them.
The details are given in the Appendix. A very good approach is to se-
lect test vectors beginning from the hard faults because easy faults can
be covered easily.

The first step of the algorithm is the initialization of the graph and
the calculation of the costs of all undetected faults and the costs of their
test vectors. Then the algorithm executes repeatedly the following two
steps until the fault list becomes empty.

1) The test vectors list is checked for test vectors which do not make
any reductions of the edges of the graph. These vectors are pro-
duced by any grouping represented by the current state of the
graph, therefore the faults that are detected by these vectors are
discarded from the fault list.

2) The hardest fault is selected, that is the fault with the maximum
cost. If the fault has at least one test vector that can be applied
under a grouping represented by the state of the graph, then the
one with the smallest cost (less harmful) is selected. The graph
reductions are performed and the fault is discarded permanently
from the fault list, else the fault is temporarily discarded from
the list of the faults.

When the list becomes empty, all faults discarded temporarily are
appended again and new test vectors are extracted via the application
of a few random vectors. This is done because some of the undetected
faults may be quite easy and have more test vectors than the so far
extracted ones. If new test vectors are extracted the algorithm makes a
new effort to cover them by executing again the above procedure, else
the repetition terminates and the algorithm initiates a new repetition for
the construction of the next grouping.

The algorithm terminates when a repetition fails to cover any more
faults, or the edges of the graph cannot be furthermore reduced. In the
first case, the edges can be further reduced using hardware minimiza-
tion criteria. For that reason, we examine the previous groupings and
try to make the most frequent assignments in the new grouping. In this
way, the necessary multiplexers can be minimized. Specifically, sup-
pose that nodeIMj is connected withp nodes of the setNR. We select
to retain the connection which assigns inputIMj to the group of input
IRi in which was mostly assigned in the previous groupings. The rest
of thep � 1 connections are removed.

IV. EXPERIMENTAL RESULTS

In order to validate the effectiveness of the proposed scheme, we
have performed several experiments. Table I gives experimental results
on the ISCAS’85 benchmarks. The first and the second column reports
the circuit name and the number of its inputs, while the third column
shows the TPG length used for the experiment. Columns 4 and 5 present
the number of phases and the total number of test vectors, respectively,
required for achieving complete 100% fault coverage. The area over-
head column gives, in gate equivalents (GEs), the hardware required
for the implementation of the assigning logic module and the phase
selection module. We assume that eachn-input NAND or NOR gate is
0:5 n gate equivalents, and eachD flip–flop is equal to 3.5 gate equiv-
alents. We also assume that them! 1 multiplexer is implemented by
the use ofm transmission gates and is equal to0:5m gate equivalents.
Decoding logic is not used in the multiplexers because the control lines
are provided directly by the decoder shown in Fig. 3.

Table I shows that when the TPG size decreases, the number of
phases required for complete fault coverage increases as well as the
hardware overhead while the total number of vectors decreases. There-
fore, there is a tradeoff between the area overhead and the test length.
A BIST designer can select between a TPG with small size that leads
to a solution with less test vectors and more area overhead and a larger
TPG that leads to a solution with more test vectors and less area over-
head.

The CPU time required for selecting the number of phases and the
groupings of the inputs of the CUT in each phase was measured on
a 500-MHz Intel Pentium-III processor system with 100-MHz system

864 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

TABLE I
RESULTS FOR100% FAULT COVERAGE ON THE ISCAS’85

BENCHMARK CIRCUITS WITH HARD TO DETECT FAULTS

bus speed and 128 MBs of main memory and was always less than 30
min. The largest portion is due to the large number of random solutions
applied in algorithm A. This CPU time does not include the ATPG
component, which was not implemented with efficiency considerations
in mind since it can be substituted by any commercial ATPG tool.

In Table II, we present experimental results for the combinational
part of ISCAS’89 benchmark circuits with random pattern resistant
faults. In this case, the outputs of the flip–flops used for storing the
internal state of the sequential circuit are considered as primary inputs,
and the inputs of the flip–flops are considered as primary outputs.

Among the already known test pattern generation schemes for
test-per-clock BIST the schemes proposed in [14], [15], [18]–[20],
and [22] insert logic between the TPG outputs and the CUT inputs.
This makes at-speed testing of the CUT difficult and may affect
the performance of the system in normal operation. The hardware
overhead of the method proposed in [16] and [17] is minimal, however
the test lengths in most cases are very long. The methods proposed
in [12], [21], [23], and [24] as well as our method are suitable for
at-speed testing.

In Tables III and IV, we compare our method against [12], [21],
[23], and [24] for the ISCAS’85 and ISCAS’89 benchmark circuits
with random pattern resistant faults. Our method as well as MFBIST
[21] can provide several solutions which tradeoff the test length and
the hardware requirements. Among the derived solutions the best, with
respect to test length, are given. We note that a dash (-) in Tables III
and IV means that no results have been provided by the authors of the
referenced paper for the specific benchmark circuit.

The comparison presented in Table III is based on the number of test
vectors required for fully testing the CUT. We note that in [12] and in
[23] the seeds are loaded serially in the register. The same assumption
was made for [24] (no hint was given by its authors about this) since
this approach is commonly used and results in the minimum hardware
overhead. Thus, the test application time for the techniques of [23] and
[24] can be calculated by the formula

Test Appl. Time= (Test Vectors� Seeds)� f1

+(Seeds� PI)� f2

wheretest vectorsandseedsare the number of the test vectors and seeds
needed by each technique for fully testing the CUT,PI is the number

TABLE II
RESULTS FOR100% FAULT COVERAGE ON THEISCAS’89 BENCHMARK

CIRCUITS WITH HARD TO DETECT FAULTS

of primary inputs of the corresponding circuit,f1 is the functional fre-
quency of the CUT, andf2 is the scan-in frequency of the seeds. For
the technique of [12], the corresponding test application time is derived
by the formula

Test Application Time= Test Vectors� f1 + Seeds� PI � f2

where test vectors= 3 � Seeds� PI . For our method as well as
MFBIST the test application time is given by the formula

Test Application Time= Test Vectors� f1:

Although in Table III we do not take into account the reseeding time,
our method favorably compares with those of [12], [21], [23], and [24].

In Table IV comparisons based on hardware overhead are given.
Note that the implementation of the MFBIST [21] test pattern genera-
tion scheme requires a quantity H1 in addition to the equivalent gates
listed in Table IV. H1 accounts for a ROM component, a shift register
with parallel load, a Control-PLA, and other combinational logic. Ref-
erence [21] does not give enough information to calculate the hardware
overhead of H1. From Table IV we can see that our approach in many
cases is less hardware intensive than MFBIST. The hardware H2 and
H3 required for the implementation of the control logic of the TPG
schemes presented in [23] and [24] cannot be calculated, because of
the lack of information provided in the papers. Even if we do not take
into account the hardware symbolized by H1, H2, and H3 we can see
that in most cases our method requires less hardware overhead than the
other techniques.

The logic required for the modification of ank-bit register into a
scan register in [12], [21], [23], [24] is equivalent to that required in
our scheme for the modifications of a part of ak-bit register to two-port
register and of the rest to an LFSR. Both modifications have not been
included in the hardware given in Table IV.

V. CONCLUSION

A new TPG scheme for circuits with random pattern resistant faults
has been proposed. This scheme is based on multiple groupings of
the inputs of the CUT. The number of groupsn is constant. During
each test phase a new grouping is applied and the inputs belonging
to the same group are driven by the same output of ann-stage prim-
itive LFSR or counter. Using the proposed method we achieve com-
plete fault coverage with short test lengths and low hardware overhead
while supporting at-speed testing. The short test length implies that the
method is attractive to low energy applications. Our experimental re-
sults have shown that our approach compares favorably to the already
known test-per-clock built-in TPGs.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 865

TABLE III
TEST VECTORCOMPARISONS

TABLE IV
HARDWARE OVERHEAD COMPARISONS

APPENDIX

COST CALCULATION OF THE UNDETECTED FAULTS AND

THEIR TEST VECTORS

At first, a weight is assigned to each edge of the graph which rep-
resents the possibility this edge to be removed during the execution of
the algorithm. All edge’s weights are initialized to zero. Then for each
pair (IMj ; IRi) we increase the weight of the edgeIMj ! IRi by
w=t, wheret is the number of the test vectors of faultf which can be
applied under the current state of the graph andw the number of them
which remove edgeIMj ! IRi.

The weight of the edges will be used for the estimation of the costs
of test vectors and faults. There are some useful properties regarding
the weights of the edges.

1) Consider that all edges of nodeIMj have large weights. Then many
test vectors will require the removal of these edges and considering
that at least one of them must not be removed we come to the de-
duction that there is a strong possibility that some faults may be
left uncovered. For that reason, we preserve these edges as long as
possible, by avoiding selecting test vectors removing them. A good
estimation of this property is given by

RemoveFreedom(IMj) =
IR 2R

1

Weight (IMj ! IRi)

whereR is the set of nodesIRi connected via an edge withIMj .
Smaller values ofRemoveFreedom(IMj) indicate greater number
of faults that will remain uncovered. This is due to the fact that
if a test vector removing an edge of nodeIMj is selected, then a
large number of test vectors will not be produced by the groupings
represented by the state of the graph.

2) Suppose that some edges of nodeIMj have large weights, while the
others have small but not zero. In this case, there are far more test
vectors removing edges with large weights than vectors removing
edges with small weights. Therefore, the edges with large weights
are more likely to be removed during the execution of the algorithm.
Hence, the best policy is to prefer selecting vectors that remove
the edges with large weights and preserve edges with the smaller
weights. The reason is that edges with large weights are expected
to be removed by many test vectors. If we remove all edges with
small weights, taking into account that at least one edge cannot be
removed (the last one), then it is obvious that this edge will have
large weight. This means that many faults may become uncovered.
A good estimation of this property is given by

RemoveDanger(v; IMj) =
IR 2R

1

Weight (IMj ! IRi)

wherev is a test vector andR� is the set of all nodesIRi which
satisfy the conditionthe selection of test vectorv removes the edge
IMj ! IRi. The larger theRemoveDanger(v; IMj) is, the larger
is the number of faults which will become undetected if vectorv is
selected.

3) When an edge of nodeIMj has zero weight, then a vector for
removing this edge does not exist. Therefore, no matter what re-
movals are going to be made at the node, this edge will never be
removed. For that reason, such a node should not be taken into ac-
count in our decisions since always guarantees a valid solution.

Based on the above observation we define the cost of a test vector as

VectorCost(v) =
IM 2M

RemoveDanger (v; IMj)

RemoveFreedom (IMj)

866 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

whereM is the set of all nodesIMj excluding those fulfilling property
3. The larger the cost of a vectorv is, the less test vectors can be pro-
duced by the grouping ifv is selected.

The cost of a faultf , with Vf denoting the set of its test vectors, is
then estimated as

FaultCost(f) =
v2V

WeightVector(v):

A larger fault cost indicates that it is harder for the algorithm to
cover it.

REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital Systems
Testing and Testable Design. New York: Computer Science Press,
1990.

[2] P. H. Bardell, W. H. McAnney, and J. Savir,Built-In Test for VLSI:
Pseudo-Random Techniques. New York: Wiley, 1987.

[3] V. Agrawal, C. Kime, and K. Saluja, “A tutorial on built-in self-test part
1: Principles,”IEEE Design Test Computers, pp. 73–82, Mar. 1993.

[4] H.-J. Wunderlich, “BIST for systems-on-a-chip,”Integration, VLSI J.,
vol. 26, no. 1-2, pp. 55–78, Dec. 1998.

[5] M. Bushnell and V. Agrawal,Essentials of Electronic Testing: Kluwer,
2000.

[6] K.-T. Chen and C.-J. Lin, “Timing driven test point insertion for full-scan
and partial-scan BIST,” inProc. Int. Test Conf., 1995, pp. 506–514.

[7] A. Stroele and H.-J. Wunderlich, “TESTCHIP: A chip for weighted
random pattern generation, evaluation, and test control,”IEEE J. Solid-
State Circuits, vol. 26, pp. 1056–1063, July 1991.

[8] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in test for circuits with scan based on reseeding of multiple-poly-
nomial linear feedback shift registers,”IEEE Trans. Comput., vol. 44,
pp. 223–233, Feb. 1995.

[9] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” inProc. Int. Conf.
Computer-Aided Design, 1996, pp. 337–343.

[10] S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, “A mixed mode BIST
scheme based on reseeding of folding counters,” inProc. Int. Test Conf.,
2000, pp. 778–784.

[11] N. A. Touba and E. J. McCluskey, “Bit-fixing in pseudorandom se-
quences for scan BIST,”IEEE Trans. Computer-Aided Design, vol. 20,
pp. 545–555, Apr. 2001.

[12] K. Chakrabarty, B. T. Murray, and V. Iyengar, “Built-in test pattern gen-
eration for high-performance circuits using twisted-ring counters,” in
Proc. IEEE VLSI Test Symp., 1999, pp. 22–27.

[13] N. A. Touba and E. J. McCluskey, “Test point insertion based on path
tracing,” inProc. VLSI Test Symp., 1996, pp. 2–8.

[14] J. Hartmann and G. Kemnitz, “How to do weighted random testing for
BIST,” in Proc. Int. Conf. Computer-Aided Design, 1993, pp. 568–571.

[15] C. Okmen, M. Keim, R. Krieger, and B. Becker, “On optimizing BIST-
architecture by using OBDD-based approaches and genetic algorithms,”
in Proc. VLSI Test Symp., 1997, pp. 426–431.

[16] C.-A. Chen and S. K. Gupta, “A methodology to design efficient BIST
test pattern generators,” inProc. Int. Test Conf., 1995, pp. 814–823.

[17] , “Efficient BIST TPG design and test set compaction via input
reduction,”IEEE Trans. Computer-Aided Design, vol. 17, pp. 692–705,
Aug. 1998.

[18] K. Chakrabarty, B. Murray, J. Liu, and M. Zhu, “Test width compression
for built-in self test,” inProc. Int. Test. Conf., 1997, pp. 327–337.

[19] I. Hamzaoglu and J. Patel, “Reducing test application time for built-in-
self-test test pattern generators,” inProc. VLSI Test Symp., 2000, pp.
369–375.

[20] N. A. Touba and E. J. McCluskey, “Synthesis of mapping logic for gen-
erating transformed pseudo-random patterns for BIST,” inProc. Int. Test
Conf., 1995, pp. 674–682.

[21] M. F. Alshaibi and C. R. Kime, “MFBIST: A BIST method for random
pattern resistant circuits,” inProc. Int. Test Conf., 1996, pp. 176–185.

[22] C. Fagot, P. Girard, and C. Landrault, “On using machine learning for
logic BIST,” in Proc. Int. Test Conf., 1997, pp. 338–346.

[23] L. R. Huang, J. Y. Jou, and S. Y. Kuo, “Gauss-elimination-based gener-
ation of multiple seed-polynomial pairs for LFSR,”IEEE Trans. Com-
puter-Aided Design, vol. 16, pp. 1015–1024, Sept. 1997.

[24] S. Chiusano, P. Prinetto, and H. J. Wunderlich, “Non-intrusive BIST for
systems-on-a-chip,” inProc. Int. Test Conf., 2000, pp. 644–651.

BDS: A BDD-Based Logic Optimization System

Congguang Yang and Maciej Ciesielski

Abstract—This paper describes a novel logic decomposition theory
and a practical logic synthesis system,BDS. It is based on a new binary
decision diagrams (BDD) decomposition technique which supports all
types of decomposition structures, includingAND, OR, XOR, and complex
MUX , both algebraic and Boolean. As a result, the method is very
efficient in synthesizing both AND/OR and XOR-intensive functions. It
also has a capability to handle very large circuits, as it employs the
BDD decomposition in the partitioned Boolean network environment.
The experimental results show that BDD-based logic decomposition is
a promising alternative to the existing logic optimization approaches.
In particular, it offers a superior runtime advantage over traditional
logic synthesis systems.

Index Terms—BDD, logic optimization, synthesis.

I. INTRODUCTION

Traditional logic optimization methodology, based on algebraic
factorization [1], [2], has gained tremendous success and emerged as
a dominant method in logic synthesis. However, while near optimal
results can be obtained forAND/OR-intensive functions of control
and random logic, results are far from satisfactory for arithmetic
and XOR-intensive logic functions, which can be more compactly
represented as a combination ofAND/OR and XOR expressions.
Although logic optimization methods based on Boolean factorization
can potentially offer better results than algebraic methods, they failed
to compete with algebraic techniques due to their high computational
complexity. We believe that this failure of Boolean optimization
techniques is caused by inappropriate data structure used to represent
Boolean functions. The predominant cube representation used by
those techniques naturally favors algebraic-based methods and is not
suitable for Boolean operations. Consequently, Boolean operations
such asMUX and XOR received less attention from the onset of
logic synthesis research.

We believe that logic synthesis methods will keep evolving with
the emergence of newer and more efficient logic representations, and
in particular with the accumulation of expertise in binary decision
diagrams (BDDs). This paper presents the first results of research
that address this new opportunity. It presents a novel theory and a
set of efficient techniques for logic decomposition based on BDD
representation. We show that logic optimization can be efficiently
carried out through an iterative BDD decomposition and manipulation.
Our approach proves to be very efficient for bothAND/OR- and
XOR-intensive functions. To the best of our knowledge, this is the first
unified logic optimization methodology that allows one to optimize
such diverse classes of logic functions. We also present a practical
and complete BDD-based logic optimization system,BDS, that can
handle arbitrarily large circuits. It employs the BDD decomposition
techniques in the partitioned Boolean network environment.

Manuscript received July 13, 2001. This work was supported in part by the
National Science Foundation under Contract CCR-9901254. This paper was rec-
ommended by Associate Editor E. Macii.

C. Yang is with Chameleon Systems, Inc., San Jose, CA 95134 USA (e-mail:
cyang@chameleonsystems.com).

M. Ciesielski is with the Department of Electrical and Computer Engi-
neering, University of Massachusetts at Amherst, Amherst, MA 01003-4410
USA (e-mail: ciesiel@ecs.umass.edu).

Publisher Item Identifier S 0278-0070(02)05630-0.

0278-0070/02$17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

