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Abstract. In this paper we present a new reseeding technique for test-per-clock test pattern generation suitable
for at-speed testing of circuits with random-pattern resistant faults. Our technique eliminates the need of a ROM
for storing the seeds since the reseeding is performed on-the-fly by inverting the logic value of some of the bits of
the next state of the Test Pattern Generator (TPG). The proposed reseeding technique is generic and can be applied
to TPGs based on both Linear Feedback Shift Registers (LFSRs) and accumulators. An efficient algorithm for
selecting reseeding points is also presented, which targets complete fault coverage and allows to well exploiting
the trade-off between hardware overhead and test length. Using experimental results we show that the proposed
method compares favorably to the other already known techniques with respect to test length and the hardware
implementation cost.
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1. Introduction

The traditional testing approaches, based on external
Automatic Testing Equipment (ATE), are becoming
more and more unsuitable for System-on-Chip (SOC)
testing. The reason is twofold: (a) the gap between
I/O and internal bandwidth often prevents ATEs from
testing SOCs at speed and (b) the number of externally
accessible I/O pins, although being fairly high (sev-
eral hundreds), strongly limits the controllability and
observability of the embedded modules.

Built-In Self-Test (BIST) [1–3, 6, 28, 39] has been
widely recognized as an effective approach for test-
ing SOCs, since it incorporates in the same IC the

Circuit Under Test (CUT) and its tester, enabling this
way the chip to test itself. The main components of
a BIST scheme are the Test Pattern Generator (TPG)
that produces the test patterns applied to the CUT and
the Test Response Verifier that compacts the responses
of the CUT to a single pattern called signature and
compares it with the signature of the fault-free cir-
cuit. Minimal test application time and area overhead,
negligible, if not zero, performance degradation and
at-speed testing are essential for any successful BIST
scheme. Furthermore, in most applications, complete
(100%) fault coverage is desirable.

Linear Feedback Shift Registers (LFSRs) have
been commonly used as pseudorandom test pattern
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generators in BIST schemes. Their structure is simple,
they require very small area overhead and furthermore
can be used both for test pattern generation and test
response compaction. However, for circuits with ran-
dom pattern resistant faults, high fault coverage cannot
be achieved within an acceptable test length. Several
techniques have been proposed to solve this problem
[4, 9, 12, 13, 15–17, 20, 21, 23–25, 29, 36–38].

The weighted-random testing techniques [24, 38] al-
though they reduce the test application time, in most
cases still require excessively long test sequences for
circuits with hard faults [12]. Furthermore, the hard-
ware overhead of the weighted-random pattern gener-
ators may be high [19].

Other methods are based on the appropriate selec-
tion of the initial seed [13, 21, 25]. Lempel et al. [21]
proposed an analytical method for providing a one-
seed test sequence from a LFSR with a given feedback
polynomial. Since this method uses the theory of dis-
crete logarithms to embed a set of deterministic test
patterns in a LFSR sequence, finding one seed for cir-
cuits with a lot of inputs or with a high number of
random pattern resistant faults is impractical. In [25]
several methods to tailor a LFSR to a CUT were pre-
sented, that attempt to select the most effective LFSR
and initial state for the circuit. The authors of [13]
describe a simulation-based method for computing an
efficient initial seed of a given primitive polynomial
LFSR-based TPG. The latter two techniques, whereas
they improve the resulting fault coverage, they are un-
able to fully test a CUT with many random pattern
resistant faults, using an acceptable number of test
vectors.

LFSR reseeding [15–17, 20, 23, 29, 37] has been
proposed as a possible solution to cope with this draw-
back. In [20] a test-per-scan technique is presented
where a LFSR is used to generate pseudorandom and
deterministic patterns, which are encoded as seeds. In
[29] a test-per-clock reseeding scheme based on a mod-
ified design of an LSSD-based LFSR is described. In
this scheme the seeds cannot be predetermined, they
are uniformly distributed over the entire LFSR pattern
space. This results in long test sequences in the case of
circuits with hard-to-detect faults. Test-per-scan tech-
niques for generating test patterns through reseeding of
multiple polynomial LFSRs were proposed in [15, 16,
37]. The LFSRs are used to generate both pseudoran-
dom and deterministic patterns. Deterministic patterns
are encoded with a seed and a polynomial ID, where
the seed specifies the value to be loaded in the regis-

ter and the polynomial ID selects one of the feedback
polynomials. The seeds and the polynomial IDs are
stored in a ROM. In [23], a test-per-clock scheme using
a Shift Register driven by a LFSR (LFSR/SR), along
with a discrete logarithm-based method for predicting
bit-patterns in the LFSR/SR sequence were proposed.
The authors of [17] describe an efficient algorithm
based on the Gauss elimination procedure, for selecting
multiple seed-polynomial pairs for LFSR-based BIST
schemes.

Several other methods have been proposed for cir-
cuits with hard to detect faults [4, 9, 12, 36]. Some
of them, [12, 36], are not suitable for at-speed testing
since they insert logic between the LFSR and the CUT,
while the technique proposed in [4] does not lead to
efficient solutions in terms of hardware overhead cost
[12]. To reduce the hardware overhead the technique
in [9] compromises the fault coverage.

Another easy-to-implement and flexible approach
was recently presented in [7, 8]. This technique is
based on twisted-ring counters, is as simple to imple-
ment as a LFSR-based one, it can be employed both in
test-per-clock and test-per-scan schemes and features
a very small control logic for controlling the reseeding
operation. The main disadvantage of this technique
is that, since a twisted-ring counter cannot generate
pseudorandom patterns, many seeds and hence many
ROM bits and test vectors are required to fully test the
CUT.

The drawback of the LFSR-based techniques is that
the modifications required so as a register to operate
as a LFSR during testing, may result in system perfor-
mance degradation due to the additional multiplexers
in the signal path. The performance degradation and
the area required for BIST can be minimized if some
of the original building blocks of the circuit are utilized
to generate patterns and/or to compact test responses
(functional BIST). General-purpose computing struc-
tures as well as digital signal processing circuits’ datap-
aths and many other circuits contain accumulator-based
units, implementing arithmetic functions such as addi-
tion, subtraction and multiplication. The suitability
of these modules for test pattern generation and test
response compaction in test-per-clock BIST schemes
has been investigated in [10, 11, 14, 22, 31–35] and
in [5, 22, 26, 27, 30] respectively. Once again, the
problem of unacceptably long test sequences for fully
testing circuits with random pattern resistant faults oc-
curs. To cope with this problem, four approaches have
been proposed [10, 11, 32, 33]. Stroele [33] presents
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a method for suitably choosing the seed and the con-
stant value of an accumulator such that the cardinality
of the test set for a set of hard-to-detect faults to be
minimized. However the cardinality of the test set still
remains large. The approach of [32] is suitable for eas-
ily random testable circuits and it is based on reseeding.
Forward and reverse fault simulation are used to find
windows of effective test patterns and determine the
seeds of the accumulator. The methods described in
[10] and [11] are reseeding methods based on Genetic
Algorithms and several techniques on the set covering
problem respectively and can be applied to TPGs based
on functional modules as well as on LFSRs. However,
when the functional unit TPG approach is combined
with the reseeding method in the way that it is pro-
posed in [10] and [11], one of the main advantages of
the functional BIST, i.e. that no delay is inserted in the
signal paths of the circuit, due to the required modifi-
cations, is canceled. Multiplexers must be added in the
input registers of the functional unit used as TPG for
accomplishing the reseeding process.

In this paper we present a novel reseeding technique
for test-per-clock BIST schemes suitable for at-speed
testing. The reseeding takes place on-the-fly by invert-
ing the logic value of some of the bits of the next state
of the TPG. Our technique is suitable for LFSR as well
as for accumulator-based TPGs and achieves complete
fault coverage with shorter test sequences and, in most
cases, less hardware overhead than the already known
ROM-based reseeding techniques. Furthermore, in the
case of accumulator-based TPGs, our method has the
additional advantage over [10] and [11] that does not
cause system performance degradation.

The remaining of the paper is organized as follows:
Sections 2 and 3 present respectively the architec-
ture and the reseeding algorithm for the proposed
technique. In Section 4 the effectiveness of the pro-
posed technique is evaluated with experimental results
and comparisons are made with previously presented
works. Conclusions are given in Section 5.

2. The Proposed Architecture

The general scheme of our TPG is shown in Fig. 1. It
consists of a register R that holds the current state of the
TPG and the Next State Specification Logic (NSSL)
which determines the next state. The outputs of the
register are fed to the CUT as well as to the NSSL. The
key point of the proposed architecture is to invert, at
specific cycles of the Test Pattern Generation, some of

Fig. 1. General scheme of TPG.

the outputs of the register before feeding them back to
the NSSL. This is shown in Fig. 2.

The outputs of register R drive the NSSL inputs
through XOR gates, which form the Inversion Mod-
ule. The Inversion Control Module is responsible for
controlling the inversion operation by setting the inputs
of the XOR gates to the logic value 1. As will be shown
by experimental results, not all k inputs of the NSSL
need to be inverted in order for the necessary seeds to
be produced. Therefore m XORs, with m < k, are suf-
ficient for producing all the seeds needed to completely
test the circuit under test.

This inversion operation is equivalent to a reseeding
operation of the TPG since the new state produced by
the NSSL is different from the state that would have
been produced if no inversion had taken place. Note

Fig. 2. Proposed TPG architecture.
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that the Inversion Module is not placed between the
TPG and the CUT and that the new state of the register is
produced while the previous vector (state) is applied to
the CUT. Since generally the delay of the CUT is much
larger than the delay of the NSSL, we conclude that the
proposed architecture can perform at-speed testing.

Many well-known TPGs follow the general scheme
of Fig. 1. Among them the LFSR and the accumulator
have been chosen in order to evaluate the effectiveness
of the proposed scheme of Fig. 2. In the sequel we
analyze these two cases.

2.1. LFSR-Based TPG

The architecture of the proposed LFSR-based TPG is
given in Fig. 3. It consists of a LFSR (k 2-port reg-
ister cells R1, R2, . . . , Rk and the Linear Feedback
Logic), the Inversion Module (the XOR gates drawn
using dashed lines in Fig. 3), the Inversion Control
Module and a counter. The NSSL is formed by the
Linear Feedback Logic of the LFSR and the direct con-
nections between cells Ri−1 and Ri (i �= 1). We can see
that one of the inputs of each of the XORs of the In-
version Module is driven by the output of the previous
register cell and the other input by an output Cx of the
Inversion Control Module.

In normal mode of operation the register is loaded
from the functional block. In test mode, for C1 =
C2 = · · · = Ck = 0, the LFSR, after its initialization,
changes state at each clock cycle, according to its feed-
back structure. Reseeding can take place in clock time
ti by setting, in clock time ti−1, the lines C1, C2, . . . , Ck

to the suitable values. If the bit j of the state that will
be loaded in the register in time ti has to be inverted,

Fig. 3. The proposed LFSR-based TPG scheme.

then a 2-input XOR gate must exist before the cell R j

of the LFSR (one of the dashed XOR gates of Fig. 3).
In time ti−1 the control line C j that drives that XOR
gate is set to 1 by the Inversion Control Module and
the value of bit j is inverted before being stored to the
R j stage.

The Inversion Control Module is responsible for gen-
erating the required signals on the control lines Cx . It
receives the output of a counter, which counts the vec-
tors generated by the LFSR, and sets each control line
Cx to either 0 or 1 depending on the number of the
current vector. We note that the same counter can be
used for the generation of the test-end signal. During
the normal operation, the values of the control lines are
don’t cares since the register is loaded with values from
the functional block.

Example 1. Consider that the CUT has 4 inputs and
that we have a 4-bit LFSR with initial seed 1010. The
sequence that is generated by the LFSR is shown at
the left side of Fig. 4 (the LFSR implements the char-
acteristic polynomial x4 + x + 1). Consider also that
the easy faults of the circuit are detected by the first
3 vectors of that sequence, while the remaining faults,
which are hard-to-detect, need the vectors 0x01, 1000
and 1111 in order to be tested (x denotes a don’t care
value). We observe that, without reseeding, the first 12
vectors are required for testing the circuit. If during the
generation of state 3 of the LFSR, we invert the bit that
will be stored to the third cell (B3), state 0001, instead
of 0011, will be generated (see the right side of Fig. 4).
This state detects the fault that needs vector 0x01 to
be tested. At the next clock cycle the required vector
1000 will be produced. During the generation of vector
5, with the inversion of the third and the fourth bit of
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Fig. 4. Example LFSR sequence.

Fig. 5. Example LFSR-based TPG.

the LFSR (B3 and B4 respectively), vector 1111 will
be derived. We can see that the reseeded LFSR covers
all faults within 6 clock cycles, while without reseed-
ing 12 cycles were needed. The implementation of the
proposed TPG, that is the vector counter, the Inversion
Control Module and the LFSR along with the XORs
that perform the inversions is shown in Fig. 5.

We presented the proposed scheme using a LFSR
with the feedback implemented with external XOR
gates. It is obvious that our scheme can also be used
when the XOR gates of the feedback are located be-
tween the stages of the register, as shown in Fig. 6
(the LFSR implements the characteristic polynomial
x6 + x + 1).

2.2. Accumulator-Based TPG

The architecture of the proposed accumulator-based
TPG is shown in Fig. 7. The accumulator consists of a

k-bit register and a circuit performing addition or sub-
traction. In the sequel we consider only the addition but
the applicability of the proposed scheme is straightfor-
ward for the subtraction operation too. The Inversion
Control Module is placed between the inputs of the
adder and the outputs of the register.

It has been reported in [34] that accumulators with
stored carry feedback perform better than the accu-
mulators without carry feedback. For that reason we
suppose that the carry out of the adder is stored in a flip-
flop and is used in the next clock cycle. After being
initialized, the accumulator adds in every clock cycle
the constant value, the current contents of the register
and the content of the flip-flop and stores the result back
to the register.

Example 2. Consider that the circuit under test has 4
inputs and that we have a 4-bit accumulator with ini-
tial seed 0111 and constant value 0111. The sequence
of test vectors that are generated by the accumulator
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Fig. 6. The proposed TPG using a LFSR with internal XORs.

Fig. 7. The proposed accumulator-based TPG circuit.

is given at the left side of Fig. 8. Consider that our
circuit has 3 hard-to-detect faults that are tested by the
vectors x011, 0001 and 1001. Also consider that all
the easy to detect faults are detected by the first two
vectors of the sequence generated by the accumula-
tor. We can see that, without reseeding, the first twelve
vectors are required for testing our circuit. Now sup-
pose that we invert the value of R2 line during the
addition for the generation of vector 2. Then vector
0011 will be generated which covers the desirable vec-
tor x011 (see the right side of Fig. 8). In the same
way, the inversion of the value of lines R2 and R4

at the next addition, generates the vector 0001. The
next vector that will be generated by the accumulator
is the vector 1001. We can easily see that all the faults
are now detected by the first 5 vectors produced by
the reseeded accumulator. The implementation logic,
that is the counter, the Inversion Control Module and
the Inversion Module are shown in Fig. 9 (lines I1 to
I4 are the adder inputs). We assume that in normal

mode the counter remains at the 00 state (vector 0),
so C2 = C4 = 0.

We note that when the accumulator is used to test
more than one circuits, the inversion control logic can
be easily designed in such a way so as to generate the
m control signals taking into account all the under test
circuits.

It is obvious that the selection of the points at which
the TPG will be reseeded, is crucial to the hardware
overhead imposed by the proposed architecture. In the
following section we present an efficient algorithm that
selects the reseeding points and the proper seed at each
point, so as to minimize the overall hardware overhead.

3. Reseeding Algorithm

According to the proposed method, the test sequence
consists of the parts P0, P1, P2, P3, . . . as shown in
Fig. 10. Each one of these parts is comprised of suc-
cessive vectors produced by the TPG, while the first
vector of each part, except P1, is a new seed produced
by inverting some of the bits of the register (shaded
areas in Fig. 10).

The flowchart of the algorithm is given in Fig. 11.
Its main objective is to select the parts Pi and the cor-
responding seeds effectively, in order to minimize the
cardinality of the test set and the required hardware, that
is, the Inversion Control Module and the XOR gates
needed for realizing the inversions. The outline of the
algorithm of Fig. 11 is similar to that of the algorithm
we recently presented in [18] for accumulator-based
TPGs. However, the algorithm proposed in this paper
uses a different cost function in the heuristic process of
selecting the best points for reseeding and a different
approach for determining the maximum length of each
Pi part (i > 0), thus leading to better results as far as
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Fig. 8. Example accumulator sequence.

Fig. 9. Inversion and Inversion Control Modules
of the example accumulator-based TPG.

both the hardware overhead and the cardinality of the
test set are concerned.

The initial state of the TPG is set to a random value
and the first vectors produced constitute the set P0,
which is capable of detecting all easy-to-detect faults.
Specifically, successive test vectors are generated until

the last T of them fail to detect any additional faults.
All vectors generated, excluding the last T , form the
set P0. We note that P0 detects the vast majority of the
faults of the CUT. Let f0 be the faults of the CUT, which
cannot be detected by the vectors of set P0. We consider
them as hard-to-detect faults. For each hard-to-detect
fault we extract Q test vectors using a deterministic
test pattern generation tool. Each test vector in the
sequence is modified to a test cube with don’t care bits.

After determining the part P0, we have to select the
rest of the sets Pi so as to cover the remaining hard-to-
detect faults. We denote as SLi the maximum length of
set Pi , with i ≥ 1. In other words, a reseeding operation
can be performed after at most SLi vectors from the
previous reseeding or from the last vector of set P0.
The criteria we use to specify a reseeding point and
how SLi is determined are critical for the performance
of our algorithm.

We will at first discuss how the algorithm selects,
among the SLi vectors of set Pi , the most suitable point
for reseeding. Let HV be the set of all the test cubes
extracted for testing the hard-to-detect faults. First, all
SLi states of a set Pi are generated by the TPG and
examined in order to find out if some of them match
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Fig. 10. Test sequence.

Fig. 11. The proposed algorithm’s flowchart.

any test cubes of HV without a reseeding. If this is the
case, we select the last TPG state that is compatible
with a test cube as the first vector of the next set Pi+1.
If there is no TPG state that matches a test cube of HV
without reseeding, we select as the next seed of the
TPG the test vector of HV that requires from a TPG
state si within SLi the fewest bit inversions in order to
be matched. As reseeding point we select the state si

(si is the first vector of Pi+1). If two or more vectors
require the same minimum number of bit inversions,
we choose the one that needs the smallest number of
additional XOR gates in order to be generated in the
TPG sequence.

In order to check how many and which bit inversions
are required for a LFSR state si to match a test cube
v ∈ HV , we use the following procedure: we compare
v against si bit-by-bit, starting from the least significant
one (LFSR stage 1). If at some point, let us say at the
j-th bit, v and si do not match, that is their j-th bits are
both defined and complementary, then, for si to match
v, an inversion must occur at the j−1 bit of state si−1

(stage k is considered to be the previous of stage 1).
Thus we invert bit j−1 of si−1, we re-produce the i-th
LFSR state (s ′

i ) and we follow the same procedure for
s ′

i and v starting from bit j + 1. The same method is
used for the case of accumulator-based TPGs with the
difference that if vector v and state si do not match at
bit j , we invert the j-th bit of si−1.

Example 3. Consider the case of a 4-bit adder-based
accumulator used as TPG and assume that si = 0111,
v = 10x1, si−1 = 0100, constant value = 0011 and that
the carry input added to si−1 is equal to 0. Considering
as least significant bit the rightmost one, we observe
that with respect to the first two bits, state si matches
v. For complementing the third bit of si , the third bit
of si−1 must be inverted. Thus, si−1 becomes 0000
and s ′

i = 0011. Again, the fourth bit of si−1 must be
inverted and therefore si−1 becomes 1000 and, with 2
bit inversions, si finally matches test cube v. So, in
order for the i-th state of the TPG to match test cube
v, we should invert bits 3 and 4 of state i − 1, before
feeding them to the adder.

The value of SLi , i > 0, can be determined in two
ways. According to the first one, we use a user-defined
parameter called MAXVECTORS, which declares the
maximum acceptable number of test vectors required
to fully test the CUT. For each set Pi (i > 0), SLi can
be derived by the formula:

SLi = MVi−1/ fi−1 (1)

where fi−1 is the number of the remaining hard-to-
detect faults after i − 1 reseedings and MVi−1 is the
number of vectors which can be applied for detecting
these fi−1 faults. That is:

MVi−1 = MAXVECTORS −
i−1∑

j=0

|Pj |

When the value of SLi is derived by the above formula,
the final test length strongly depends on the value of
MAXVECTORS.
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If the circuit under test has random-pattern resistant
faults, then the vectors generated between two succes-
sive reseedings can detect very few if not zero addi-
tional faults than those detected by just the two seed
vectors. In such cases, we observed that if we choose
the value of SLi directly equal to 1, 3 or 5 (SLi is con-
stant for all Pi sets with i > 0), we can get smaller test
sets with less hardware overhead. The latter can be
attributed to the fact that the tool that synthesizes the
control logic exploits the fact that the distances between
the reseedings are small, to make groupings in the con-
trol logic and therefore the final hardware overhead is
much smaller than in the case that SLi is calculated by
relation (1).

After determining a new part Pi of our test set, with
the value of SLi derived either by relation (1) or defined
by the user, we run fault simulation so as to drop all
faults detected by Pi . At this step of our algorithm we
also update the set HV by throwing out all the vectors
that test the faults detected by set Pi and we calculate
the values fi and MVi (when SLi is not user-defined)
for the next part Pi+1.

Some of the easy-to-detect faults that are tested with
the test vectors of set P0 can also be detected by some
test vectors of the sets P1, P2, . . . Therefore some of the
first vectors of the test sequence may be redundant. In
order to minimize the cardinality of the test set, reverse
simulation [32] is performed after determining all the
Pi sets. That is, we fault simulate all the test vectors
in reverse order and if, at some point (let us say at
vector v), we reach 100% fault coverage, we exclude
the remaining vectors from the test sequence and we
set v as the new initial seed.

4. Experimental Results

In order to evaluate the effectiveness of the proposed
technique, we implemented the algorithm described
in Section 3 in C programming language and per-
formed several simulations for both LFSR-based and
accumulator-based TPGs. The ISCAS ’85 and the
combinational part of ISCAS ’89 benchmarks circuits
were used as CUT. The primitive polynomials for the
LFSRs used in the experiments were taken from [6].

Tables 1 and 2 present results for the LFSR-based
TPGs, while Tables 3 and 4 present results for the
accumulator-based TPGs. In Tables 1, 3 and 2, 4
we present results for the cases that MAXVECTORS
(maximum number of vectors to test the CUT) and SLi

(maximum number of vectors between two consecutive

Table 1. Results for 3 different values of MAXVECTORS for the
LFSR-based TPGs.

Number Number Hardware
of primary MAX- Inverting of test overhead

Circuit inputs VECTORS XORs vectors (gate equiv.)

c880 60 1000 15 472 52

1500 14 1117 46

1900 8 980 29a

c1355 41 700 15 1046 24a

1000 10 1416 15

1200 13 1449 18

c1908 33 2000 19 2825 54

3000 17 2896 56

4000 6 3107 33

c2670 233 5000 83 2553 425

10000 87 6035 440

12000 82 1281 414

c7552 207 5000 187 4151 1014

10000 188 8271 1057

12000 181 7614 1051

s420 34 8000 21 2505 150

10000 21 4133 158

12000 21 9276 149

s641 54 2000 20 1722 63

3000 19 2355 67

4000 18 3128 69

s713 54 2000 18 2082 61

3000 16 1666 65

4000 16 2839 69

s820 23 450 14 458 211

500 17 496 208

520 18 515 198

s838 66 8000 57 1702 422

10000 58 3537 423

12000 58 1935 437

s953 45 3000 16 2807 84

5000 8 2733 87

7000 6 4210 58

s1196 32 10000 8 6767 77

15000 4 11553 49

18000 5 10419 53a

s1238 32 5000 18 4914 99

8000 6 7246 80

9000 9 7257 77a

s1423 91 1000 32 737 111

1300 24 1096 99

1500 26 1155 101

(Continued on next page.)
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Table 1. (Continued).

Number Number Hardware
of primary MAX- Inverting of test overhead

Circuit inputs VECTORS XORs vectors (gate equiv.)

s5378 214 6000 34 7646 173

8000 41 9909 178

10000 27 8802 180

s9234 247 3000 137 11950 1060

5000 138 11159 1030

10000 135 13771 1016

aDenotes the best results between Tables 1 and 2 in terms of hardware
overhead. Among results with similar hardware overhead, the one
with the shortest test sequence is chosen.

reseedings) are used as user-defined parameters respec-
tively. In the case that MAXVECTORS is used as a
user-defined parameter, SLi is given by relation (1).
Each result presented is the best out of 10 trials. For
each trial the initial seed was randomly selected. In
the fourth and the fifth column of these tables we give
the number of the XOR gates that must be inserted
in order to produce the seeds and the total number of
test vectors required to achieve complete (100%) fault
coverage for single stuck-at faults respectively. The
sixth column shows the hardware overhead required by
the inverting XORs and the Inversion Control Module.
The hardware overhead is given in terms of gate equiv-
alents, assuming that 1 gate equivalent corresponds to
a 2-input NAND gate. The test vector counter has
not been taken into account in the derivation of the
hardware overhead, since, in the majority of the LFSR
and accumulator-based TPG schemes, such a counter
is used. Also, for the LFSR-based TPG, the cost of

Fig. 12. Hardware overhead—test length trade-off for s1196.

the modification of a register to a shift register has not
been taken into account in the hardware overhead, since
the same modifications are required by any test-per-
clock LFSR-based TPG and by the twisted-ring coun-
ters approach of [7] to which we compare. We note that
for the majority of the experiments we performed, we
set parameter T (has been defined in Section 3) to the
value 500. In some cases where we wanted to produce
smaller test sequences (e.g. s820 for LFSRs), T was set
to 300.

From Tables 1 and 3 we can see that, in general, the
total number of vectors required for testing the CUT
(fifth column), does not exceed the value of parame-
ter MAXVECTORS. In some cases this is not true as
a consequence of the fact that the value that has been
given to MAXVECTORS is small compared to the vec-
tors needed by the algorithm in order to detect the easy
faults. Since the majority of the circuits used as bench-
marks have random-pattern resistant faults, from Ta-
bles 1–4 we can easily verify that by using SLi as the
user-defined parameter, we get, in most cases, better
results with respect to the hardware overhead and the
cardinality of the test set. We should finally note that
when SLi is user-defined, the test length strongly de-
pends on the number of vectors needed for detecting
the easy-to-detect faults. Hence we cannot assert that
for greater values of SLi we get longer test sequences.

As the value of MAXVECTORS increases, more ef-
ficient solutions in terms of hardware overhead are ob-
tained. This is not true in many cases of Tables 1 and
3, since, each experiment was performed using a ran-
dom initial seed. If for the same circuit we had used
the same initial seed, then the results would have been
like those depicted in Fig. 12 for the s1196 benchmark
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Table 2. Results for 4 different values of SLi for the LFSR-
based TPGs.

Number Number Hardware
of primary Inverting of test overhead

Circuit inputs SLi XORs vectors (gate equiv.)

c880 60 1 20 720 42

3 11 868 40

5 12 550 45

10 11 719 36

c1355 41 1 29 1180 42

3 14 1239 18

5 13 1295 18

10 10 1186 15

c1908 33 1 23 2880 49

3 17 2405 58

5 13 3327 25a

10 25 1799 82

c2670 233 1 74 1002 373a

3 84 1192 408

5 81 949 411

10 83 1158 425

c7552 207 1 184 3958 1012a

3 181 3808 1016

5 187 3384 1045

10 191 4058 1055

s420 34 1 28 1876 125a

3 28 953 152

5 29 1541 143

10 25 1219 148

s641 54 1 15 1565 48

3 20 1705 63

5 19 1084 61a

10 19 2143 58

s713 54 1 23 2148 67

3 17 1826 62

5 19 1963 59a

10 21 1659 66

s820 23 1 18 498 182a

3 19 524 194

5 17 494 186

10 13 760 174

s838 66 1 57 1625 423

3 60 1844 426

5 63 1929 420

10 61 1223 423a

s953 45 1 11 3147 54a

3 13 4963 64

Table 2. (Continued).

Number Number Hardware
of primary Inverting of test overhead

Circuit inputs SLi XORs vectors (gate equiv.)

5 16 3436 83

10 13 3576 83

s1196 32 1 16 6266 89

3 16 4063 76

5 15 4728 86

10 18 3880 116

s1238 32 1 20 7788 83

3 17 5151 102

5 16 7356 91

10 14 4773 97

s1423 91 1 39 1102 71a

3 35 1185 83

5 30 1085 95

10 32 942 97

s5378 214 1 43 9222 188

3 36 8469 143a

5 32 7403 164

10 34 7473 176

s9234 247 1 144 11207 948a

3 138 14658 995

5 136 12726 1039

10 138 18498 1013

aDenotes the best results between Tables 1 and 2 in terms
of hardware overhead. Among results with similar hardware
overhead, the one with the shortest test sequence is chosen.

circuit. These results were taken by using the same ran-
dom initial state in all four MAXVECTORS cases. In
this figure, the trade-off between the cardinality of the
test set and the hardware overhead of the application of
the proposed technique is obvious. By increasing the
value of parameter MAXVECTORS, smaller TPGs that
require more test application time for fully testing the
CUT are derived. The designer can choose the solution
that better suits to his/her case.

Applying their reseeding method, the authors of [10]
have come to the conclusion that the efficiency of the
reseeding technique in accumulator-based TPGs is as
high as its efficiency in the classical LFSR-based TPGs.
From Tables 1–4 we reach to the same conclusion. For
similar values of the input parameters, we obtain sim-
ilar results for both the required test vectors and the
imposed hardware overhead (see for example c1355,
s5378, s9234). Therefore, Tables 1–4 further validate
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Table 3. Results for 3 different values of MAXVECTORS for the
accumulator-based TPGs.

Number Number Hardware
of primary MAX- Inverting of test overhead

Circuit inputs VECTORS XORs vectors (gate equiv.)

c880 60 1000 12 999 33a

1500 15 1634 27

1900 9 1341 39

c1355 41 700 24 1102 38

900 18 1072 28

1100 8 1090 13a

c1908 33 2000 16 3413 35

3000 14 3738 26

4000 11 3321 33a

c2670 233 5000 103 2233 581

10000 93 5557 561

12000 90 6507 532

c7552 207 3000 187 5175 1097

4000 189 3791 1106

5000 194 5454 1081

s420 34 2000 29 3185 172

4000 25 3442 189

5000 25 4397 201

s641 54 3000 18 2668 63

5000 14 3537 70

6000 14 4180 61

s713 54 4000 17 2757 71

7000 12 3227 59

9000 14 2877 58

s820 23 3000 15 4490 48

5000 5 4031 51

10000 5 4986 36

s838 66 4000 65 3839 788

6000 66 5690 782

7000 66 6270 810

s953 45 3000 14 4552 64

4000 14 3817 60

9000 5 6346 59

s1196 32 5000 11 4806 68

7000 12 6669 65

10000 9 7400 76

s1238 32 5000 15 5702 87

6000 16 6032 65

7000 13 5652 80

s1423 91 2000 16 1515 48a

3000 13 2131 53

4000 12 3392 45

Table 3. (Continued).

Number Number Hardware
of primary MAX- Inverting of test overhead

Circuit inputs VECTORS XORs vectors (gate equiv.)

s5378 214 6000 39 8541 191a

8000 42 7350 238

10000 34 9109 202

s9234 247 3000 141 13784 1198

5000 145 10223 1235

10000 150 12570 1187

aDenotes the best results between Tables 3 and 4 in terms of hardware
overhead. Among results with similar hardware overhead, the one
with the shortest test sequence is chosen.

the statement that reseeding with accumulator-based
TPGs is equally efficient to reseeding with LFSR-based
TPGs.

In Tables 5 and 6 we compare the results of the
proposed technique for LFSR-based TPGs against the
mixed-mode twisted-ring counter approach of [7], the
results obtained for LFSRs in [10] using genetic al-
gorithms and the LFSR-based TPG scheme of [17].
Among the results given in Tables 1 and 2, we chose
those with the smallest hardware overhead. Also,
among results with similar hardware overhead, we
chose the one requiring the fewest test vectors. We
note that a dash (-) in the tables means that no results
have been provided by the authors of the referenced
paper for the corresponding benchmark circuit.

In Table 5 we compare the four techniques with re-
spect to the number of test vectors they require for
fully testing the CUT. We note that in [7] and in [17]
the seeds are loaded serially in the register. The same
assumption was made for [10] (no hint was given by its
authors about this matter) since this approach is com-
monly used and results in the minimum hardware over-
head. Thus, the test application time for the techniques
of [10] and [17] is calculated by the formula:

Test Application Time

= (Test Vectors − Seeds)x f1 + (Seeds x PI)x f2,

where Test Vectors and Seeds are the number of the test
vectors and seeds needed by each technique for fully
testing the CUT, PI is the number of primary inputs
of the corresponding circuit, f1 is the functional fre-
quency of the CUT and f2 is the scan-in frequency of
the seeds. For the technique of [7], the corresponding
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Table 4. Results for 4 different values of SLi for the
accumulator-based TPGs.

Number Number Hardware
of primary Inverting of test overhead

Circuit inputs SLi XORs vectors (gate equiv.)

c880 60 1 12 1514 26

3 11 1219 32

5 12 1760 30

10 17 895 40

c1355 41 1 15 1434 19

3 13 1321 19

5 16 1364 28

10 12 1272 17

c1908 33 1 24 3890 40

3 16 3321 50

5 18 4568 41

10 14 3275 54

c2670 233 1 107 1249 542a

3 104 2081 576

5 100 1507 598

10 103 1558 611

c7552 207 1 192 3763 1019a

3 190 3241 1109

5 197 4592 1114

10 187 4273 1074

s420 34 1 30 1492 183a

3 31 1895 206

5 30 3114 191

10 31 3025 197

s641 54 1 21 1915 65

3 23 2592 62

5 23 2001 75

10 23 1567 72a

s713 54 1 24 1608 74

3 19 956 73a

5 23 1056 75

10 20 991 74

s820 23 1 12 2599 53a

3 10 3749 39

5 10 3882 35

10 13 4998 48

s838 66 1 66 1592 765a

3 65 3222 820

5 66 2037 773

10 64 1964 795

s953 45 1 13 1519 82a

3 13 4956 52

Table 4. (Continued).

Number Number Hardware
of primary Inverting of test overhead

Circuit inputs SLi XORs vectors (gate equiv.)

5 14 3796 81

10 14 4188 80

s1196 32 1 14 4081 70a

3 16 4846 83

5 15 6187 66

10 15 5574 87

s1238 32 1 17 4498 72a

3 15 4675 88

5 17 4544 95

10 16 5971 63

s1423 91 1 48 1275 110

3 31 3059 66

5 17 2569 43

10 27 2043 54

s5378 214 1 46 10144 165

3 42 11399 163

5 50 6316 224

10 39 6947 218

s9234 247 1 148 10138 1186a

3 143 16822 1163

5 143 16471 1192

10 141 13557 1191

aDenotes the best results between Tables 3 and 4 in terms
of hardware overhead. Among results with similar hardware
overhead, the one with the shortest test sequence is chosen.

test application time is derived by the formula:

Test Application Time

= 3xSeeds xPIx f1 + Seeds x PIx f2,

which characterizes the operation of the proposed TPG.
However, in Table 5 we have not taken into account
clock cycles needed for loading the seeds, since this
loading may be done using a greater clock frequency
than that used for applying the test vectors to the CUT.
From Table 5 it is obvious that, although we do not take
into account the reseeding time, our method favorably
compares to those of [7, 10] and [17] (the reduction
percentages are given in columns 4, 6 and 8). Specif-
ically our method requires on average 67.2%, 40.3%
and 47.3% fewer test vectors compared to [7, 10] and
[17] respectively. The above percentages will become
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Table 5. Test vector comparisons for the case of LFSR-based TPGs.

Twisted-ring counters [7] LFSR-based TPGs of [10] Gauss elimination [17]

Reduction Reduction Reduction
Circuit

Proposed
technique

(test vectors) Test vectors (%) Test vectors (%) Test vectors (%)

c880 980 – – 1829 46.4 1596 38.6

c1355 1046 – – 1334 21.6 1447 27.7

c1908 3327 – – 3759 11.5 3659 9.1

c2670 1002 58930 98.3 10206 90.2 7300 86.3

c7552 3958 76447 94.8 – – 31282 87.3

s420 1876 10816 82.7 10843 82.7 5775 67.5

s641 1084 11458 90.5 2430 55.4 2345 53.8

s713 1963 11296 82.6 2759 28.6 2069 5.1

s820 498 – – 527 5.5 6036 91.7

s838 1223 15742 92.2 9273 86.8 17526 93.0

s953 3147 10810 70.9 4834 34.9 7146 56.0

s1196 10419 11152 6.6 18776 38.5 7991 −23.3

s1238 7257 10864 33.2 7713 5.9 8185 11.3

s1423 1102 – – 1308 15.7 2993 63.2

s5378 8469 10642 20.4 – – 8400 −0.8

s9234 11207 – – – – 108638 89.7

Table 6. Hardware overhead comparisons for the case of LFSR-based TPGs.

Twisted-ring counters [7] LFSR-based TPGs of [10] Gauss elimination [17]

P-LFSR +
ROM bits Control logic Bit counter ROM bits Control Bit counter ROM bits Control bit counter

Circuit

Proposed
technique

(gate equiv.) (gate equiv.)a (gate equiv.) (gate equiv.) (gate equiv.)a logic (gate equiv.) (gate equiv.)a logic (gate equiv.)

c880 29 – – – 0 0 0 30 H 284

c1355 24 – – – 0 0 0 0 0 0

c1908 25 – – – 0 0 0 17 H 165

c2670 373 4019 38 27 1922 H 27 757 H 1052

c7552 1012 5486 38 27 – – – 880 H 938

s420 125 60 22 20 77 H 20 51 H 169

s641 61 108 26 20 81 H 20 68 H 257

s713 59 95 22 20 95 H 20 54 H 257

s820 182 – – – 196 H 16 23 H 117

s838 423 462 31 23 710 H 23 182 H 314

s953 54 56 22 20 45 H 20 45 H 218

s1196 53 88 26 16 32 H 16 32 H 157

s1238 77 64 26 16 40 H 16 48 H 157

s1423 71 – – – 91 H 20 68 H 424

s5378 143 0 14 27 – – – 214 H 969

s9234 948 – – – – – – 1297 H 1114

aWe have taken into account the assumption made in [17], that, on average, 0.25 gates are required for each memory cell of a ROM.
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larger if we take into account the reseeding times re-
quired by those three techniques. We remind that the
proposed technique produces the seeds on-the-fly.

As far as the hardware overhead comparison is con-
cerned, we assume that for all four schemes, the ini-
tialization of the TPGs takes place by resetting their
registers. Also, all of them, except for the proposed
one, need a bit counter for controlling the serial loading
of the seeds in the registers. The twisted-ring counter-
based scheme of [7] imposes very small hardware over-
head for the control module but it has to make use of
many ROM bits. As a result, in the cases of circuits with
many random pattern resistant faults (c2670, c7552,
s838), despite of the very small control logic needed,
extensive use of ROM must be made. For the rest of
the cases the hardware overhead imposed by the pro-
posed technique is similar to that of [7] without taking
into consideration the ROM bits required for storing
the seeds. The genetic algorithm approach of [10], al-
though it reduces the number of the required seeds, it
still needs a ROM, which imposes considerable hard-
ware overhead. Also, the overhead H of the logic that
controls the TPG scheme must be added to the over-
all hardware overhead required by this method. Since
not enough information has been given in [10], we are
unable to calculate this hardware overhead. Finally,

Table 7. Test vector comparisons for the case of accumulator-based TPGs.

Adder-based TPGs of [10] Adder-based TPGs of [11]

Reduction Reduction
Circuit

Proposed technique
(test vectors) Test vectors (%) Test vectors (%)

c880 999 2104 52.5 3935 74.6

c1355 1090 1151 5.3 1816 40.0

c1908 3321 3773 12.0 3845 13.6

c2670 1249 10179 87.7 168072 99.3

c7552 3763 – – 286725 98.7

s420 1492 5510 72.9 111899 98.7

s641 1567 4475 65.0 69473 97.7

s713 956 9082 89.5 – –

s820 2599 5311 51.1 7075 63.3

s838 1592 6694 76.2 833217 99.8

s953 1519 7871 80.7 16855 91.0

s1196 4081 10000 59.2 – –

s1238 4498 7356 38.9 15551 71.1

s1423 1515 3100 51.1 6916 78.1

s5378 8541 – – 22848 62.6

s9234 10138 – – 182100 94.4

the Gauss elimination approach of [17] uses a pro-
grammable LFSR (P-LFSR) that requires additionally
to the logic of the register, two gates and one D flip-flop
per LFSR stage. Thus, although it achieves to signifi-
cantly reduce the use of ROM, this additional hardware
overhead is big enough to make the approach of [17]
worse than the proposed technique (except for the case
of c1355 and possibly that of s820). From Table 6,
excluding circuits c880, c1355 and c1908, we can see
that our technique requires on average 34.9%, 21.9%
and 59.1% less area overhead than the techniques given
in [7, 10] and [17] respectively. Note that the above
results would have been even more favorable to our
technique if we could estimate the hardware overhead
of the control logic (H) for the techniques proposed
in [10] and [17]. Experiments with the small and rel-
atively “easy-to-test” benchmark circuits c880, c1355
and c1908 show that the adoption of the proposed tech-
nique leads to significantly smaller test sequences with
negligible additional hardware overhead.

The comparison of the proposed technique with the
techniques given in [10] and [11] for adder-based TPGs
is made in Tables 7 and 8. In this case we consider
parallel loading of the seeds in the TPG registers of [10]
and [11] since this results in minimum test application
time as well as minimum hardware overhead. This
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Table 8. Hardware overhead comparisons for the case of accumulator-based TPGs.

Adder-based TPGs of [10] Adder-based TPGs of [11]

ROM bits Control Multiplexers ROM bits Control Multiplexers
Circuit

Proposed
technique

(gate equiv.) (gate equiv.)a logic (gate equiv.) (gate equiv.)a logic (gate equiv.)

c880 33 0 0 0 0 0 0

c1355 13 0 0 0 0 0 0

c1908 33 0 0 0 0 0 0

c2670 542 3728 H 559 1981 H 559

c7552 1019 – – – 3830 H 497

s420 183 102 H 82 51 H 82

s641 72 108 H 130 54 H 130

s713 73 108 H 130 – – –

s820 53 23 H 55 0 0 0

s838 765 330 H 158 2277 H 158

s953 82 45 H 108 0 0 0

s1196 70 48 H 77 – – –

s1238 72 48 H 77 16 H 77

s1423 48 91 H 218 0 0 0

s5378 191 – – – 214 H 514

s9234 1186 – – – 5558 H 593

aWe have taken into account the assumption made in [17], that, on average, 0.25 gates are required for each memory
cell of a ROM.

is due to the fact that in both cases (serial or parallel
seed loading) n multiplexers, where n is the length
of the register, are required, while in the serial case
an additional bit counter is needed. With respect to
the number of test vectors required for fully testing
the CUT (see Table 7), the proposed method leads to
substantially better results. In particular, it needs on
average 57,1% and 77,4% fewer test vectors than the
approaches of [10] and [11] respectively.

As far as the hardware overhead is concerned,
as we mentioned above, both [10] and [11] require
multiplexers in order for the seeds to be loaded in the
TPG registers. Therefore, the proposed technique (see
Table 8), in most cases, requires less hardware over-
head than that of [10] and [11], even if we do not take
into account the hardware overhead imposed by the
control logic (we exclude the small combinational cir-
cuits c880, c1355 and c1908). If we also consider the
area for the controlling logic (H), then the area over-
head of the proposed technique is expected to be even
smaller than the area overhead of [10] and [11]. We
note that the method of [11], compared to that of [10],
manages to test more circuits with only one seed (s820,
s953, s1423) and in general reduces the storage require-
ments by reducing the number of the seeds that need to

be stored. However, this is achieved at the expense of
the test application time, which is significantly length-
ened.

We have to remind that the hardware required for the
reseeding applied in [10] and [11] may affect system
performance while our method does not affect it, since
the additional logic is added to a non-critical path of
the system.

We finally note that the algorithm described in
Section 3 is fairly simple and needs for each simu-
lation from very few minutes (c880, c1355, s641) to
approximately one hour for the bigger circuits (c7752,
s9234), in a Pentium III, 500 MHz system, excluding
the run-time for the ATPG. Although a home ATPG
tool was used, it can be easily replaced by any other,
more efficient, commercial tool.

5. Conclusion

Reseeding has been proposed as an effective technique
for testing circuits with random-pattern resistant faults,
since it can achieve complete fault coverage within an
acceptable number of test vectors. In this paper a new
reseeding technique for test pattern generation, suitable
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for test-per-clock, at-speed testing, BIST schemes, was
proposed. The generation of the seeds is performed
on-the-fly by the inversion of the logic values of some
of the bits of the TPG’s next state. Experimental re-
sults on the ISCAS ’85 and the combinational part of
ISCAS ’89 benchmark circuits for both LFSR and ac-
cumulator based TPGs, showed that the proposed tech-
nique requires fewer test vectors and, in most cases, less
hardware for its implementation than the other already
known LFSR- and accumulator-based reseeding tech-
niques, for complete testing of the circuits under test.
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