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Abstract 
In this paper a new test set embedding method with re-

seeding for scan-based testing is proposed. The bit sequences 
of multiple cells of an LFSR, which is used as test pattern 
generator, are exploited for effectively encoding the test set 
of the core under test (multiphase architecture). A new algo-
rithm which comprises four heuristic criteria is introduced 
for efficiently selecting the required seeds and LFSR cells. 
Also, a cost metric for assessing the quality of the algorithm's 
results is proposed. By using this metric, the process of de-
termining proper values for the algorithm's input parameters 
is significantly simplified. The proposed method compares 
favorably with the most recent and effective test set embed-
ding techniques in the literature. 

1. Introduction 
Due to the very tight time-to-market constraints, contem-

porary digital circuits (or equivalently, digital systems) em-
bed pre-designed and pre-verified modules, called Intellectual 
Property (IP) cores. The structure of IP cores is often hidden 
from the system integrator and only a pre-computed test set T
is provided by the core vendor. In order for the required test-
ability to be achieved, proper test structures should be incor-
porated in the system. Various methods have been proposed 
for testing IP cores of unknown structure. Test set embedding 
[1]-[7] is a very successful one. According to this approach, 
the test patterns of T are encoded in a longer vector sequence, 
which is produced by a Test Pattern Generator (TPG) circuit. 
Test set embedding techniques combine reduced test-data-
storage requirements, small hardware overhead and increased 
unmodeled fault coverage, due to the application to the core 
under test (CUT) of vectors that do not belong to T.

The major problem of test set embedding methods is that 
they usually require excessively long test sequences (e.g., [2], 
[3] and [7]). For CUTs with many hard-to-detect faults, it is 
highly likely that at least two test vectors of T will be very far 
from each other in the TPG's vector sequence. Consequently, 
many clock cycles will be needed for generating all the pat-
terns of T. Reseeding is a technique that can solve this prob-
lem at the expense of some extra data storage (the required 
seeds). For that reason, test set embedding approaches with 
reseeding have been recently proposed in the literature [4], [6].
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In this paper, a new test set embedding technique with re-
seeding, suitable for the testing of sequential cores with scan, 
is presented. The multiphase TPG architecture proposed in 
[8] for mixed-mode testing, is used here for test set embed-
ding. According to the multiphase approach, the bit se-
quences of multiple cells of a Linear Feedback Shift Register 
(LFSR) are exploited for effectively encoding the test patterns 
of a CUT. It has been shown in [8] that, compared to the clas-
sical reseeding schemes that use a single LFSR cell, the mul-
tiphase architecture offers better compression capabilities. 
Nevertheless, the cornerstone of a test set embedding tech-
nique is the embedding algorithm [1], [7]. Thus, for selecting 
the appropriate seeds and LFSR cells that will be used during 
testing, a new such algorithm is introduced. The proposed 
algorithm comprises four heuristic criteria that minimize both 
the resulting seed volumes and the required execution time. 
Furthermore, a cost metric for assessing the quality of the 
algorithm's results, for various values of the input parameters, 
is presented. By using this metric, proper parameter values 
can be easily determined. The proposed technique is shown to 
be more efficient than the most recent test set embedding ap-
proaches in the literature. 

The rest of the paper is organized as follows: in Section 2 
the main characteristics of the utilized multiphase architecture 
are reviewed, while in Section 3 the proposed seed- and cell-
selection algorithm is presented (for convenience we will just 
call it seed-selection algorithm hereafter). In Section 4 the 
aforementioned cost metric is discussed and the proposed 
technique is evaluated with experimental results and compari-
sons. Section 5 concludes the paper. 

2. The multiphase architecture
We will at first present the multiphase TPG scheme for 

CUTs with a single scan chain, we will explain its main fea-
tures and afterwards we will discuss its application to multi-
ple-scan-chain architectures. 

2.1. The single-scan-chain case 
The multiphase TPG architecture for the single-scan-chain 

case is shown in Figure 1. The shaded areas correspond to the 
hardware required by the classical LFSR-based reseeding 
schemes. 

The main characteristic of the multiphase scheme is that, 
instead of generating a long vector sequence from a single 
LFSR cell for each seed, it feeds the scan chain of the CUT 
with shorter vector sequences from multiple LFSR cells. This 
feature is demonstrated by a simple example in Figure 2. 
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Figure 1. Multiphase architecture for CUTs with a single scan chain 
Let us assume that we have to encode the test cubes (test 

vectors with 'x' values) of test set T in the pseudorandom se-
quence generated by an LFSR and that each LFSR seed is 
expanded to six test vectors (i.e., six test vectors are gener-
ated starting from each LFSR seed). In the classical LFSR 
reseeding schemes, only a single cell of the LFSR (usually the 
last one) is utilized and the test vectors are generated as 
shown in Figure 2.a. According to the multiphase technique, 
more than one LFSR cells are selected for feeding the scan 
chain of the CUT. In the example of Figure 2.b three cells 
(namely 1, i and l) have been chosen by the seed-selection 
algorithm and, as a result, two test vectors are generated by 
each one of them, starting from the same initial seed. That is, 
each seed is expanded to the predetermined number of test 
vectors (which is equal to 6 in our example) in different test 
phases (hence the name multiphase). For the same seed, the 
only thing that differentiates two test phases is the LFSR cell 
that feeds the scan chain of the CUT. 

Figure 2. Classical vs. proposed TPG scheme 
More formally, let us consider that p LFSR cells have been 

chosen by the seed-selection algorithm and that w test vectors 
are generated by each selected cell for each seed (p = 3 and 
w=2 in the example of Figure 2). The LFSR is loaded with 
the first seed and is let produce w test vectors from the first of 
the p selected cells. Then the value of the Cell Counter is 
increased by one and thus a different LFSR cell is ready to 
feed the scan chain through the multiplexer. The LFSR is 
loaded again with the first seed (this is possible even when 
an external tester is used [9]) and w test vectors are generated, 
this time from the second selected cell. The same procedure is 
repeated until each of the p cells has been used for generating 
w test vectors starting from the first seed. The Cell Counter is 
then reset and the LFSR is loaded with the second seed. 
Eventually, all p cells will be used for generating w test vec-
tors for all seeds. Assuming R seeds, the overall test-sequence 
length will be equal to: 

Test-sequence length = w · p · R

As shown in [8], the encoding ability of an LFSR seed is 
enhanced when multiple LFSR cells are used instead of one, 
since the potential of various shifted versions of the LFSR’s 
m-sequence is exploited. That is, instead of having to use new 
seeds for test cubes that cannot be encoded together in the 
same cell's vector sequence, we may embed them in different 
cells' sequences, which are though generated by the same 
seed. This way, fewer seeds are required for embedding a 
CUT's test set in a pseudorandom LFSR sequence and, con-
sequently, the test data storage requirements are reduced. 

We should note that both normal and inverted outputs of 
the LFSR cells may be used for feeding the scan chain of the 
CUT, as it will be discussed in Section 3. 

If an external tester is used for providing the seeds, the 
number of clock cycles required for loading them serially in 
the LFSR may be significant compared to the actual test ap-
plication time. This problem can be solved by using a shadow 
register, as described in [10]. Contrary to the LFSR, the same 
seed should be loaded only once in the shadow register. 

As for the additional hardware overhead of the multiphase 
architecture, it is confined to that of the extra multiplexer. 
The overhead of the Cell Counter is counterbalanced by the 
reduction of Vector Counter's length. Since Vector and Cell 
Counters are combined together so as to control the genera-
tion of w · p vectors, it can be easily proven that their aggre-
gate length is at most one bit greater than that of a single 
counter controlling the generation of the same number of vec-
tors (classical schemes). Therefore, splitting Vector Counter 
into Vector and Cell Counters imposes minimal additional 
hardware overhead (at most one flip-flop).

2.2. The multiple-scan-chain case
When the CUT contains multiple scan chains, the multi-

phase architecture is modified in such a way that both, fulfils 
the requirement of low linear dependency of the bit sequences 
shifted in the scan chains of the CUT, as well as takes advan-
tage of the various shifted versions of the LFSR's m-sequence 
generated by different LFSR cells. In Figure 3 the block dia-
gram of the multiphase TPG, for that case is given. 

Figure 3. Multiphase architecture for CUTs with multiple scan chains
The main difference from the architecture of the previous 

subsection is the multiphase Phase Shifter module, which is 
inserted between the multiplexer and the scan chains. The 
purpose of this module is twofold: it minimizes the linear 
dependencies among the bit sequences shifted in the scan 
chains, as well as, by receiving the output of the multiplexer, 
it feeds the scan chains of the CUT with different shifted ver-
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sions of the LFSR’s m-sequence. A more detailed diagram of 
the multiphase Phase Shifter is shown in Figure 4. 
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Figure 4.  The multiphase Phase Shifter
The multiphase Phase Shifter is initially designed as a 

normal phase shifter, as proposed by the authors of [11]. 
Then, an extra input is added to each XOR tree, which is 
driven by the multiplexer of the multiphase architecture. At 
each test phase a different LFSR cell is selected to drive, 
through the multiplexer, that extra input. This way the shifting 
function of each of the Phase Shifter’s outputs is altered and a 
different part of the LFSR's m-sequence is generated. This is 
essentially equivalent to the use of different LFSR cells in the 
single scan chain case. In the case of multiple scan chains, the 
multiplexer can also drive the XOR trees' extra input with the 
constant 0 value. When this happens, the Phase Shifter oper-
ates as if the additional input was not present and therefore, 
as it was originally designed to shift the bit sequences. This is 
done for exploiting the potential of the original phase shifter. 
We should note that when the output of an LFSR cell (let 
assume cell i) is fed to the XOR trees, there is some probabil-
ity that the resulting inter-chain separation, for some of the 
phase shifter's output sequences, will be smaller than the 
maximum scan-chain length. This may reduce the encoding 
ability of the scheme when cell i drives the XOR trees, but it 
is highly unlikely that the same will be true for many LFSR 
cells. Therefore, the encoding efficiency of the scheme re-
mains unaffected, since such cells will not be chosen by the 
seed-selection algorithm. 

Compared to the classical LFSR-reseeding schemes, the 
multiple-scan-chain multiphase architecture requires only one 
additional multiplexer (as in the single-scan-chain case) and 
an extra XOR gate per scan chain. We should mention that 
the additional XOR trees’ input does not affect their propaga-
tion delay when the number of the rest inputs is not equal to a 
power of 2, since the number of tree-levels does not increase. 
In the opposite case, the phase shifter's delay is increased by 
one XOR-gate delay.

3. Selection of seeds and LFSR cells
The seed-selection algorithm receives as inputs a test-cube 

set T and the user-defined parameters p (maximum number of 
cells to be selected) and w (number of vectors generated by 

each selected cell for each seed, i.e. window size). Its goal is 
to calculate R seeds and select at most p cells so that each test 
cube of T is compatible with at least one of the w vectors 
generated by each of the p LFSR cells, for all R seeds. The 
set of chosen seeds should be as small as possible. 

The search space of the seed-selection algorithm is shown 
in Figure 5. It is initially comprised of w rows of 2·l symbolic 
vectors (sv), where l is the LFSR length. Symbolic vector svi,j
is the jth vector that would have been shifted in the scan 
chain(s) of the CUT, when using the ith LFSR cell, if each bit 
of the initial state of the LFSR has been equal to a binary 
variable. Since we also consider the inverted outputs of the 
LFSR cells, for each svi,j in the search space there is also its 
complementary jisv , . We should note that for the multiple-
scan-chain case there is an additional column of symbolic 
vectors on the right side of the search space, which corre-
sponds to the constant zero value of the multiplexer. 

Figure 5. The search space of the seed-selection algorithm
At first, the seed-selection algorithm generates the above 

described search space by simulating the LFSR symbolically. 
Then, for each test cube t of set T, it traverses the search 
space from the right to the left, row by row and, by solving 
the linear systems svi,j = t and tsv ji, , tries to verify if a vec-
tor compatible to t can be generated at each search space po-
sition. If the corresponding system is solvable, then such a 
vector exists. In order to be generated, the initial LFSR state 
should be updated according to the solution of the system 
(i.e., assuming Gauss-Jordan elimination, all the variables 
belonging in the pivot columns of the system should be re-
placed by linear expressions of the free variables). In other 
words, if system svi,j = t is solvable, then test cube t can be 
encoded at the corresponding position of the search space. 

After selecting a solvable system for a test cube t of T, the 
binary variables in the initial LFSR state are updated as de-
scribed above. Test cube t is removed from T and the algo-
rithm's search space is generated again. After that, the sym-
bolic vectors contain only the free variables of the selected 
system. Another solvable system is then chosen and the same 
procedure is repeated until no system is solvable for any of 
the cubes of T. At this point, a new seed has been determined. 
The seed-selection algorithm continues to generate seeds this 
way, until all the test cubes have been removed from T.

As the seed-selection algorithm traverses the search space 
for each test cube, it selects a solvable system svi,j=t or tsv ji,

(and consequently cube t to be encoded), according to a set of 
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heuristic criteria. Two basic seed-volume-minimization rules 
are followed by the application of the aforementioned crite-
ria: I) the "hardest" cubes have to be encoded first (cube ti is 
considered harder than tj if it is more difficult for ti to be en-
coded, along with other cubes, in a seed's vector sequences - 
we will explain later how we recognize a hard cube), and II) 
the system, the solution of which requires the replacement of 
the fewest variables, should be selected at each step of the 
algorithm. The reason for using the second rule is obvious: 
fewer replaced variables when encoding a test cube, mean 
more variables remaining in the linear systems in the follow-
ing algorithm iterations and thus increased probability of 
solving some of those systems (or equivalently, increased 
probability of encoding another cube in the same seed's se-
quences). As for the first rule, its thorough justification is pro-
vided in [12]. Its essence is that by trying to handle the hard-
est cubes in the early steps of the algorithm, we avoid having 
seeds that encode very few (or just one) test cubes in its final 
steps. Such seeds increase the seed count considerably. As an 
example, let us consider a test set with four cubes, t1, t2, t3 and 
t4, from which t1 and t2 are the hardest. If we encode t3 and t4
in the first seed's sequences, then t1 and t2 cannot be encoded 
in the same seed since they are hard, and thus 3 seeds would 
be totally needed. On the contrary, if we started with t1, then 
one of the non-hard test cubes (let say t3) could be also en-
coded in the same seed. The same holds for t2 and t4, and 
therefore, only 2 seeds are required in this second scenario. 

However, the above two rules lead to conflicting deci-
sions. A very good metric for identifying a hard cube is the 
number of defined bits it includes. The more defined bits in a 
cube, the more variables will be replaced when solving a lin-
ear system and hence the fewer variables will remain for en-
coding the rest test cubes. It is obvious though that this metric 
contradicts with the min-replaced-variables rule. Therefore, 
the order in which these two rules will be applied is critical 
and depends on the testing conditions. We have verified 
through extensive simulations that when a lot of variables are 
available (i.e., a long LFSR is used), better compression re-
sults are achieved by primarily replacing as few of them as 
possible (rule II). Since for each seed there are a lot of avail-
able variables, we can always encode many cubes in one 
seed, even hard ones. Hence, in this case rule II has higher 
priority than rule I. On the contrary, when a smaller LFSR is 
used, as in our case (i.e., scan-based testing), the application 
order of the two rules should be inverted. The early encoding 
of the hardest cubes (rule I) becomes the primary target. 

After the above analysis, it is easy to determine heuristic 
criteria for selecting a solvable system at each iteration of the 
algorithm. Four such criteria are proposed in this paper. The 
first two have been previously described. Particularly, among 
the solvable systems, those corresponding to the test cubes 
with the maximum number of defined bits are first selected 
(first criterion). From them, the systems that their solution 
eliminates the fewest variables in the initial LFSR state are 
chosen (second criterion). However, a third criterion is re-
quired for further distinguishing the selected systems. Its goal 

is to refine the hardest-cube-first rule, since the min-replaced-
variables one was fully covered by the second criterion. Spe-
cifically, from the systems chosen by the first two criteria, 
those that correspond to the test cube which can be encoded 
in the fewest search space positions are preferred (third crite-
rion). This is another indication of how hard a test cube is. 
Finally, if there are more than one systems selected by the 
third criterion (for the same, hardest cube of course), we 
choose the one that is higher in the search space. This last 
criterion is used for shortening the resulting test sequence. 

As far as the cell selection is concerned, it is driven by the 
above described system-selection procedure. That is, when a 
linear system svi,j = t or svi,j = t is chosen by the algorithm, 
cell i is also selected. When the number of selected LFSR 
cells reaches value p, then the search space is confined to p
columns (those corresponding to the p cells chosen). 

Various optimizations can be adopted for reducing the 
execution time of the seed-selection algorithm. The "select 
the hardest cube first" feature of the algorithm allows the 
categorization of the test cubes of T in cube-groups. Each 
cube-group contains only test cubes with the same number of 
defined bits. The groups are sorted in descending order start-
ing from the one that contains the cubes with the maximum 
number of defined bits. In the process of selecting a new 
seed, the algorithm considers solely the test cubes of the first 
group and only when no cube of that group can be further 
encoded, proceeds to the next group. This reduces signifi-
cantly the number of traverses of the search space and conse-
quently, the number of linear systems solved at each step of 
the algorithm. Also, when a test cube is considered, the posi-
tions in the search space that a linear system can be solved for 
that cube are marked, so that if the same cube has to be re-
examined (after the selection of another cube in the same 
group), only these positions are checked. 

We should also mention that the selection of the hardest 
cube at each step of the algorithm speeds up the execution 
time considerably, since more variables are replaced in the 
initial LFSR state and thus, fewer systems are solvable and 
are examined in the following iterations. The search time of 
the algorithm is furthermore reduced when, after the first 
cubes have been chosen, the number of selected cells be-
comes equal to the value of parameter p, which causes the 
confinement of the search space from 2·l to p columns. Since 
also, a binary linear system can be solved much faster than a 
conventional one due to the fast modulo-2 operations per-
formed during its solution [8], short running times of the de-
scribed seed-selection algorithm have been achieved. 

4. Evaluation and comparisons 
For evaluating the effectiveness of the proposed method, 

we implemented the seed-selection algorithm of the previous 
section in C programming language and we conducted a se-
ries of experiments for the largest ISCAS’89 benchmark cir-
cuits with many hard-to-detect faults, assuming 64 scan 
chains. The required test sets were obtained by using the Ata-
lanta ATPG tool [13]. The characteristic polynomials of the 
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LFSRs were selected to be primitive and the multiphase 
Phase Shifters were designed according to the work of [11], 
adding an extra input to each XOR tree (total cost: 3 XOR 
gates per tree). 

The selection of the size of the algorithm's search space 
(w·p) is critical, since it affects both the resulting seed vol-
umes and test-sequence lengths. For that reason a cost metric 
is introduced for identifying the proper search-space size for 
each circuit. Specifically, a series of experiments are per-
formed for every benchmark circuit, keeping the value of 
parameter p (max number of selected cells) constant, while 
modifying the value of parameter w (window size). This is 
done for simplifying the experimental procedure, since similar 
results are derived when both parameters p and w are modi-
fied. Let max_seeds and max_sequence be respectively the 
maximum number of seeds and the maximum test-sequence 
length among the results of all the experiments, for the same 
circuit. Usually, the experiment with the smallest search space 
provides max_seeds, while the one with the largest search 
space provides max_sequence. For every experiment, we cal-

culate the ratios 
seedsmax

seeds
_

 and 
sequencemax

lengthsequencetest
_

__ ,

where seeds and test_sequence_length are respectively the 
seed-volume and test-sequence-length results of each experi-
ment. The smaller these ratios are, the better are considered 
the corresponding results (i.e., the smaller hardware and test-
sequence costs are paid). Consequently, the sum of the above 
ratios provides a good indication of an experiment's total cost. 
Depending on the implementation, hardware overhead may 
be more important than test-sequence length or vice versa. 
Therefore, the two ratios must be properly weighted. Specifi-

cally, we multiply 
seedsmax

seeds
_

 with factor k. Values of k > 1 

mean that a small seed volume is more important than a short 
test sequence (i.e., seed reduction is of higher priority), while 
values of k < 1 mean the opposite. Thus, the proposed cost 
metric is calculated by the following relation:

cemax_sequen
lengthsequencetest

max_seeds
seedskcCost metri __  (1) 

Since the seed-volume reduction is our primary target, in our 
experiments we set k = 2. A graphical representation of the 
cost metric with k = 2, for various search-space sizes for 
s13207 is shown in Figure 6. 

Figure 6.  The proposed cost metric with k=2, for various search-
space sizes for s13207

As can be seen, for very small search spaces the increased 
number of seeds leads to increased cost-metric values. The 
same holds for very large search-space sizes due to the result-
ing lengthy test sequences. However, the proposed metric's 
values are higher in the former than in the latter case, as a 

result of the greater weight of the 
seedsmax

seeds
_

 ratio in relation 

(1) [k = 2]. The smallest and hence best metric values occur 
for moderate-sized search spaces.  As we move from small to
greater search-space sizes, decreasing metric values mean that 
by allowing longer test sequences we get considerably smaller 
seed-volume results, while increasing metric values indicate 
that longer test sequences do not offer significant seed-
volume reductions. After the best search-space size has been 
determined, various combinations of parameters w and p are 
examined (keeping w·p =constant =best search-space size) and 
the one leading to the smallest seed count is finally selected. 

In Table 1 we provide the results of the proposed technique 
for 64 scan chains, having determined the values of parame-
ters w and p as explained above. In columns 6 and 7 the re-
sulting seed volumes and test-sequence lengths are presented.

Table 1. The results of the proposed technique 

Circuit
Test-set 

size
(# vectors)

LFSR 
length 

Window 
size (w)

Selected 
cells (p)

#Seeds 
(R)

Test- 
sequence

length 
s13207 2217 24 12 29 112 38976 
s15850 2391 39 12 26 144 44928 
s38417 6322 85 10 30 516 154800 
s38584 8317 56 20 25 77 38500 

We compare the proposed technique against the multi-
plexer-based, Reconfigurable Interconnection Network (RIN) 
approach of [5]. This method has been shown to be the most 
successful scan-based test set embedding technique in the 
literature, in terms of both the required test-data storage and 
test-sequence length. In [5], a Mux network (RIN) is used for 
directly connecting to the scan chains of the CUT, the outputs 
of various cells of an LFSR in different test configurations. 
The Muxes of the RIN are constructed using tristate gates. 
Two strategies are proposed in [5] for tackling the problem of 
highly clustered care bits in test cubes: scan cell reorganiza-
tion and the insertion of an extra level of multiplexers be-
tween the outputs of the RIN and the inputs of the scan chains 
of the CUT (Interleaving Muxes). Due to the fact that scan 
cell reorganization is usually an unacceptable approach, in the 
comparisons we considered only the strategy of the extra in-
terleaving level. 

According to [5], the number of tristate gates of each Mux 
of the RIN is equal to the number of either the test configura-
tions, or the cells of the LFSR used, whichever is smaller. By 
doing so, the authors ensure that the minimum number of 
tristate gates will be used. However, if the number of configu-
rations is greater than the size of the LFSR, some extra gates 
will be needed in order to actually connect each configuration 
control line Di to a tristate gate that is used in more than one 
configurations. That is, for controlling a tristate gate in multi-
ple configurations, an extra gate, which receives as inputs the 
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respective configurations’ control lines, is required. If we 
assume that the overhead of each extra gate is at least 4 tran-
sistors, then the overall hardware overhead of the RIN will be 
equal to or greater than that of a RIN in which a single tristate 
gate (4 transistors) is used in each Mux for every configura-
tion. Consequently, the easiest and fairest way to compare the 
two techniques is to assume that the number of tristate buffers 
of each Mux of the RIN is equal to the number of configura-
tions’ control lines (Di), as shown in Figure 2.b of [5]. 

Taking into consideration all the above, we have estimated 
the hardware overhead of [5] by summing the transistors re-
quired for the implementation of the Muxes of the RIN and 
the interleaving level, as well as of the ROM for storing some 
necessary control bits. We assumed that for each tristate 
buffer 4 transistors are needed as mentioned in [5], while the 
area that each ROM bit occupies is considered to be equal to 
that of 1 transistor [14]. Moreover, for every configuration 
control line (Di) we have calculated the overhead of the in-
verter required for generating the signal Di', which, combined 
with the Di, controls the inputs enable and enable' of the 
tristate buffers, respectively. The hardware overhead of the 
proposed approach was calculated as the sum of the transis-
tors required for the implementation of the multiphase phase 
shifter, the Mux that drives the extra inputs of the phase 
shifter's XOR trees, plus the transistors that correspond to the 
ROM bits that should be stored (as above, we assumed that 1 
ROM bit occupies 1 transistor area). The hardware overhead 
of the multiphase phase shifter is equal to 24·Number of scan 
chains, since 3 standard transmission-gate-based XORs were 
used for the realization of each XOR tree. Such a XOR gate 
requires 8 transistors for its implementation. We should note 
that, for the calculation of the hardware overhead of the ap-
proach of [5] we did not take into account the excessive wir-
ing of the RIN and the interleaving level. As for the rest of 
the control logic of the two compared schemes, it is very 
small and imposes similar area overhead and, for that reason, 
it has not been considered in the comparisons. 
Table 2. Hardware overhead and test-sequence length comparisons 

 Hardware Overhead Test-sequence length 

Circuit [5] 
(#trans.) 

Proposed 
(#trans.) 

Reduction
(%) 

[5] 
(#vec.) 

Proposed 
(#vec.) 

Reduction
(%) 

s13207 19409 4398 77.34 75047 38976 48.06 
s15850 19420 7308 62.37 179580 44928 74.98 
s38417 52524 45576 13.23 616835 154800 74.90 
s38584 18323 5998 67.27 291425 38500 86.79 

In Table 2, the hardware overhead (columns 2-4) and the 
test-sequence length (columns 5-7) comparisons between the 
proposed technique and that of [5] are presented. It is obvious 
that the multiphase approach outperforms the RIN-based one 
in both cases. As far as the hardware overhead is concerned, 
although the technique of [5] has minimal test-data storage 
requirements, its total implementation cost is much greater 
than that of the multiphase scheme. This is due to the small 
seed-counts achieved by the presented seed-selection algo-
rithm. As for the test-sequence length comparisons, the supe-
riority of the proposed approach, which performs reseedings, 

is clear, as can be seen in columns 5-7 of Table 2. 

5. Conclusions 
A new test set embedding approach with reseeding for 

scan-based testing has been proposed in this paper. The pre-
sented approach combines the multiphase TPG architecture of 
[8] with a new, very effective seed- and cell-selection algo-
rithm, which consists of four heuristic criteria. The values of 
the input parameters of the algorithm can be easily deter-
mined by calculating a simple cost metric that is also intro-
duced. Experimental results and comparisons demonstrate the 
advantages of the proposed technique. 
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