
Efficient Multiphase Test Set Embedding for Scan-based Testing

E. Kalligeros1,2, X. Kavousianos1 and D. Nikolos2

1Computer Science Dept., University of Ioannina, 45110 Ioannina, Greece
2Computer Engineering & Informatics Dept., University of Patras, 26500 Patras, Greece

kalliger@ceid.upatras.gr, kabousia@cs.uoi.gr, nikolsd@cti.gr

Abstract
In this paper a new test set embedding method with re-

seeding for scan-based testing is proposed. The bit sequences
of multiple cells of an LFSR, which is used as test pattern
generator, are exploited for effectively encoding the test set
of the core under test (multiphase architecture). A new algo-
rithm which comprises four heuristic criteria is introduced
for efficiently selecting the required seeds and LFSR cells.
Also, a cost metric for assessing the quality of the algorithm's
results is proposed. By using this metric, the process of de-
termining proper values for the algorithm's input parameters
is significantly simplified. The proposed method compares
favorably with the most recent and effective test set embed-
ding techniques in the literature.

1. Introduction
Due to the very tight time-to-market constraints, contem-

porary digital circuits (or equivalently, digital systems) em-
bed pre-designed and pre-verified modules, called Intellectual
Property (IP) cores. The structure of IP cores is often hidden
from the system integrator and only a pre-computed test set T
is provided by the core vendor. In order for the required test-
ability to be achieved, proper test structures should be incor-
porated in the system. Various methods have been proposed
for testing IP cores of unknown structure. Test set embedding
[1]-[7] is a very successful one. According to this approach,
the test patterns of T are encoded in a longer vector sequence,
which is produced by a Test Pattern Generator (TPG) circuit.
Test set embedding techniques combine reduced test-data-
storage requirements, small hardware overhead and increased
unmodeled fault coverage, due to the application to the core
under test (CUT) of vectors that do not belong to T.

The major problem of test set embedding methods is that
they usually require excessively long test sequences (e.g., [2],
[3] and [7]). For CUTs with many hard-to-detect faults, it is
highly likely that at least two test vectors of T will be very far
from each other in the TPG's vector sequence. Consequently,
many clock cycles will be needed for generating all the pat-
terns of T. Reseeding is a technique that can solve this prob-
lem at the expense of some extra data storage (the required
seeds). For that reason, test set embedding approaches with
reseeding have been recently proposed in the literature [4], [6].

This research was co-funded by the European Union in the framework of the
program “Pythagoras I ” of the “Operational Program for Education and
Initial Vocational Training” of the 3rd Community Support Framework of
the Hellenic Ministry of Education, funded by 25% from national sources
and by 75% from the European Social Fund (ESF).

In this paper, a new test set embedding technique with re-
seeding, suitable for the testing of sequential cores with scan,
is presented. The multiphase TPG architecture proposed in
[8] for mixed-mode testing, is used here for test set embed-
ding. According to the multiphase approach, the bit se-
quences of multiple cells of a Linear Feedback Shift Register
(LFSR) are exploited for effectively encoding the test patterns
of a CUT. It has been shown in [8] that, compared to the clas-
sical reseeding schemes that use a single LFSR cell, the mul-
tiphase architecture offers better compression capabilities.
Nevertheless, the cornerstone of a test set embedding tech-
nique is the embedding algorithm [1], [7]. Thus, for selecting
the appropriate seeds and LFSR cells that will be used during
testing, a new such algorithm is introduced. The proposed
algorithm comprises four heuristic criteria that minimize both
the resulting seed volumes and the required execution time.
Furthermore, a cost metric for assessing the quality of the
algorithm's results, for various values of the input parameters,
is presented. By using this metric, proper parameter values
can be easily determined. The proposed technique is shown to
be more efficient than the most recent test set embedding ap-
proaches in the literature.

The rest of the paper is organized as follows: in Section 2
the main characteristics of the utilized multiphase architecture
are reviewed, while in Section 3 the proposed seed- and cell-
selection algorithm is presented (for convenience we will just
call it seed-selection algorithm hereafter). In Section 4 the
aforementioned cost metric is discussed and the proposed
technique is evaluated with experimental results and compari-
sons. Section 5 concludes the paper.

2. The multiphase architecture
We will at first present the multiphase TPG scheme for

CUTs with a single scan chain, we will explain its main fea-
tures and afterwards we will discuss its application to multi-
ple-scan-chain architectures.

2.1. The single-scan-chain case
The multiphase TPG architecture for the single-scan-chain

case is shown in Figure 1. The shaded areas correspond to the
hardware required by the classical LFSR-based reseeding
schemes.

The main characteristic of the multiphase scheme is that,
instead of generating a long vector sequence from a single
LFSR cell for each seed, it feeds the scan chain of the CUT
with shorter vector sequences from multiple LFSR cells. This
feature is demonstrated by a simple example in Figure 2.

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

Figure 1. Multiphase architecture for CUTs with a single scan chain
Let us assume that we have to encode the test cubes (test

vectors with 'x' values) of test set T in the pseudorandom se-
quence generated by an LFSR and that each LFSR seed is
expanded to six test vectors (i.e., six test vectors are gener-
ated starting from each LFSR seed). In the classical LFSR
reseeding schemes, only a single cell of the LFSR (usually the
last one) is utilized and the test vectors are generated as
shown in Figure 2.a. According to the multiphase technique,
more than one LFSR cells are selected for feeding the scan
chain of the CUT. In the example of Figure 2.b three cells
(namely 1, i and l) have been chosen by the seed-selection
algorithm and, as a result, two test vectors are generated by
each one of them, starting from the same initial seed. That is,
each seed is expanded to the predetermined number of test
vectors (which is equal to 6 in our example) in different test
phases (hence the name multiphase). For the same seed, the
only thing that differentiates two test phases is the LFSR cell
that feeds the scan chain of the CUT.

Figure 2. Classical vs. proposed TPG scheme
More formally, let us consider that p LFSR cells have been

chosen by the seed-selection algorithm and that w test vectors
are generated by each selected cell for each seed (p = 3 and
w=2 in the example of Figure 2). The LFSR is loaded with
the first seed and is let produce w test vectors from the first of
the p selected cells. Then the value of the Cell Counter is
increased by one and thus a different LFSR cell is ready to
feed the scan chain through the multiplexer. The LFSR is
loaded again with the first seed (this is possible even when
an external tester is used [9]) and w test vectors are generated,
this time from the second selected cell. The same procedure is
repeated until each of the p cells has been used for generating
w test vectors starting from the first seed. The Cell Counter is
then reset and the LFSR is loaded with the second seed.
Eventually, all p cells will be used for generating w test vec-
tors for all seeds. Assuming R seeds, the overall test-sequence
length will be equal to:

Test-sequence length = w · p · R

As shown in [8], the encoding ability of an LFSR seed is
enhanced when multiple LFSR cells are used instead of one,
since the potential of various shifted versions of the LFSR’s
m-sequence is exploited. That is, instead of having to use new
seeds for test cubes that cannot be encoded together in the
same cell's vector sequence, we may embed them in different
cells' sequences, which are though generated by the same
seed. This way, fewer seeds are required for embedding a
CUT's test set in a pseudorandom LFSR sequence and, con-
sequently, the test data storage requirements are reduced.

We should note that both normal and inverted outputs of
the LFSR cells may be used for feeding the scan chain of the
CUT, as it will be discussed in Section 3.

If an external tester is used for providing the seeds, the
number of clock cycles required for loading them serially in
the LFSR may be significant compared to the actual test ap-
plication time. This problem can be solved by using a shadow
register, as described in [10]. Contrary to the LFSR, the same
seed should be loaded only once in the shadow register.

As for the additional hardware overhead of the multiphase
architecture, it is confined to that of the extra multiplexer.
The overhead of the Cell Counter is counterbalanced by the
reduction of Vector Counter's length. Since Vector and Cell
Counters are combined together so as to control the genera-
tion of w · p vectors, it can be easily proven that their aggre-
gate length is at most one bit greater than that of a single
counter controlling the generation of the same number of vec-
tors (classical schemes). Therefore, splitting Vector Counter
into Vector and Cell Counters imposes minimal additional
hardware overhead (at most one flip-flop).

2.2. The multiple-scan-chain case
When the CUT contains multiple scan chains, the multi-

phase architecture is modified in such a way that both, fulfils
the requirement of low linear dependency of the bit sequences
shifted in the scan chains of the CUT, as well as takes advan-
tage of the various shifted versions of the LFSR's m-sequence
generated by different LFSR cells. In Figure 3 the block dia-
gram of the multiphase TPG, for that case is given.

Figure 3. Multiphase architecture for CUTs with multiple scan chains
The main difference from the architecture of the previous

subsection is the multiphase Phase Shifter module, which is
inserted between the multiplexer and the scan chains. The
purpose of this module is twofold: it minimizes the linear
dependencies among the bit sequences shifted in the scan
chains, as well as, by receiving the output of the multiplexer,
it feeds the scan chains of the CUT with different shifted ver-

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

sions of the LFSR’s m-sequence. A more detailed diagram of
the multiphase Phase Shifter is shown in Figure 4.

XO
R

tre
e 1

XO
R

tre
e 2

XO
R

tre
e mLFSR

outputs

Multiplexer
output

. .
.

to scan chain 1

to scan chain 2

to scan chain m

Figure 4. The multiphase Phase Shifter
The multiphase Phase Shifter is initially designed as a

normal phase shifter, as proposed by the authors of [11].
Then, an extra input is added to each XOR tree, which is
driven by the multiplexer of the multiphase architecture. At
each test phase a different LFSR cell is selected to drive,
through the multiplexer, that extra input. This way the shifting
function of each of the Phase Shifter’s outputs is altered and a
different part of the LFSR's m-sequence is generated. This is
essentially equivalent to the use of different LFSR cells in the
single scan chain case. In the case of multiple scan chains, the
multiplexer can also drive the XOR trees' extra input with the
constant 0 value. When this happens, the Phase Shifter oper-
ates as if the additional input was not present and therefore,
as it was originally designed to shift the bit sequences. This is
done for exploiting the potential of the original phase shifter.
We should note that when the output of an LFSR cell (let
assume cell i) is fed to the XOR trees, there is some probabil-
ity that the resulting inter-chain separation, for some of the
phase shifter's output sequences, will be smaller than the
maximum scan-chain length. This may reduce the encoding
ability of the scheme when cell i drives the XOR trees, but it
is highly unlikely that the same will be true for many LFSR
cells. Therefore, the encoding efficiency of the scheme re-
mains unaffected, since such cells will not be chosen by the
seed-selection algorithm.

Compared to the classical LFSR-reseeding schemes, the
multiple-scan-chain multiphase architecture requires only one
additional multiplexer (as in the single-scan-chain case) and
an extra XOR gate per scan chain. We should mention that
the additional XOR trees’ input does not affect their propaga-
tion delay when the number of the rest inputs is not equal to a
power of 2, since the number of tree-levels does not increase.
In the opposite case, the phase shifter's delay is increased by
one XOR-gate delay.

3. Selection of seeds and LFSR cells
The seed-selection algorithm receives as inputs a test-cube

set T and the user-defined parameters p (maximum number of
cells to be selected) and w (number of vectors generated by

each selected cell for each seed, i.e. window size). Its goal is
to calculate R seeds and select at most p cells so that each test
cube of T is compatible with at least one of the w vectors
generated by each of the p LFSR cells, for all R seeds. The
set of chosen seeds should be as small as possible.

The search space of the seed-selection algorithm is shown
in Figure 5. It is initially comprised of w rows of 2·l symbolic
vectors (sv), where l is the LFSR length. Symbolic vector svi,j
is the jth vector that would have been shifted in the scan
chain(s) of the CUT, when using the ith LFSR cell, if each bit
of the initial state of the LFSR has been equal to a binary
variable. Since we also consider the inverted outputs of the
LFSR cells, for each svi,j in the search space there is also its
complementary jisv , . We should note that for the multiple-
scan-chain case there is an additional column of symbolic
vectors on the right side of the search space, which corre-
sponds to the constant zero value of the multiplexer.

Figure 5. The search space of the seed-selection algorithm
At first, the seed-selection algorithm generates the above

described search space by simulating the LFSR symbolically.
Then, for each test cube t of set T, it traverses the search
space from the right to the left, row by row and, by solving
the linear systems svi,j = t and tsv ji, , tries to verify if a vec-
tor compatible to t can be generated at each search space po-
sition. If the corresponding system is solvable, then such a
vector exists. In order to be generated, the initial LFSR state
should be updated according to the solution of the system
(i.e., assuming Gauss-Jordan elimination, all the variables
belonging in the pivot columns of the system should be re-
placed by linear expressions of the free variables). In other
words, if system svi,j = t is solvable, then test cube t can be
encoded at the corresponding position of the search space.

After selecting a solvable system for a test cube t of T, the
binary variables in the initial LFSR state are updated as de-
scribed above. Test cube t is removed from T and the algo-
rithm's search space is generated again. After that, the sym-
bolic vectors contain only the free variables of the selected
system. Another solvable system is then chosen and the same
procedure is repeated until no system is solvable for any of
the cubes of T. At this point, a new seed has been determined.
The seed-selection algorithm continues to generate seeds this
way, until all the test cubes have been removed from T.

As the seed-selection algorithm traverses the search space
for each test cube, it selects a solvable system svi,j=t or tsv ji,

(and consequently cube t to be encoded), according to a set of

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

heuristic criteria. Two basic seed-volume-minimization rules
are followed by the application of the aforementioned crite-
ria: I) the "hardest" cubes have to be encoded first (cube ti is
considered harder than tj if it is more difficult for ti to be en-
coded, along with other cubes, in a seed's vector sequences -
we will explain later how we recognize a hard cube), and II)
the system, the solution of which requires the replacement of
the fewest variables, should be selected at each step of the
algorithm. The reason for using the second rule is obvious:
fewer replaced variables when encoding a test cube, mean
more variables remaining in the linear systems in the follow-
ing algorithm iterations and thus increased probability of
solving some of those systems (or equivalently, increased
probability of encoding another cube in the same seed's se-
quences). As for the first rule, its thorough justification is pro-
vided in [12]. Its essence is that by trying to handle the hard-
est cubes in the early steps of the algorithm, we avoid having
seeds that encode very few (or just one) test cubes in its final
steps. Such seeds increase the seed count considerably. As an
example, let us consider a test set with four cubes, t1, t2, t3 and
t4, from which t1 and t2 are the hardest. If we encode t3 and t4
in the first seed's sequences, then t1 and t2 cannot be encoded
in the same seed since they are hard, and thus 3 seeds would
be totally needed. On the contrary, if we started with t1, then
one of the non-hard test cubes (let say t3) could be also en-
coded in the same seed. The same holds for t2 and t4, and
therefore, only 2 seeds are required in this second scenario.

However, the above two rules lead to conflicting deci-
sions. A very good metric for identifying a hard cube is the
number of defined bits it includes. The more defined bits in a
cube, the more variables will be replaced when solving a lin-
ear system and hence the fewer variables will remain for en-
coding the rest test cubes. It is obvious though that this metric
contradicts with the min-replaced-variables rule. Therefore,
the order in which these two rules will be applied is critical
and depends on the testing conditions. We have verified
through extensive simulations that when a lot of variables are
available (i.e., a long LFSR is used), better compression re-
sults are achieved by primarily replacing as few of them as
possible (rule II). Since for each seed there are a lot of avail-
able variables, we can always encode many cubes in one
seed, even hard ones. Hence, in this case rule II has higher
priority than rule I. On the contrary, when a smaller LFSR is
used, as in our case (i.e., scan-based testing), the application
order of the two rules should be inverted. The early encoding
of the hardest cubes (rule I) becomes the primary target.

After the above analysis, it is easy to determine heuristic
criteria for selecting a solvable system at each iteration of the
algorithm. Four such criteria are proposed in this paper. The
first two have been previously described. Particularly, among
the solvable systems, those corresponding to the test cubes
with the maximum number of defined bits are first selected
(first criterion). From them, the systems that their solution
eliminates the fewest variables in the initial LFSR state are
chosen (second criterion). However, a third criterion is re-
quired for further distinguishing the selected systems. Its goal

is to refine the hardest-cube-first rule, since the min-replaced-
variables one was fully covered by the second criterion. Spe-
cifically, from the systems chosen by the first two criteria,
those that correspond to the test cube which can be encoded
in the fewest search space positions are preferred (third crite-
rion). This is another indication of how hard a test cube is.
Finally, if there are more than one systems selected by the
third criterion (for the same, hardest cube of course), we
choose the one that is higher in the search space. This last
criterion is used for shortening the resulting test sequence.

As far as the cell selection is concerned, it is driven by the
above described system-selection procedure. That is, when a
linear system svi,j = t or svi,j = t is chosen by the algorithm,
cell i is also selected. When the number of selected LFSR
cells reaches value p, then the search space is confined to p
columns (those corresponding to the p cells chosen).

Various optimizations can be adopted for reducing the
execution time of the seed-selection algorithm. The "select
the hardest cube first" feature of the algorithm allows the
categorization of the test cubes of T in cube-groups. Each
cube-group contains only test cubes with the same number of
defined bits. The groups are sorted in descending order start-
ing from the one that contains the cubes with the maximum
number of defined bits. In the process of selecting a new
seed, the algorithm considers solely the test cubes of the first
group and only when no cube of that group can be further
encoded, proceeds to the next group. This reduces signifi-
cantly the number of traverses of the search space and conse-
quently, the number of linear systems solved at each step of
the algorithm. Also, when a test cube is considered, the posi-
tions in the search space that a linear system can be solved for
that cube are marked, so that if the same cube has to be re-
examined (after the selection of another cube in the same
group), only these positions are checked.

We should also mention that the selection of the hardest
cube at each step of the algorithm speeds up the execution
time considerably, since more variables are replaced in the
initial LFSR state and thus, fewer systems are solvable and
are examined in the following iterations. The search time of
the algorithm is furthermore reduced when, after the first
cubes have been chosen, the number of selected cells be-
comes equal to the value of parameter p, which causes the
confinement of the search space from 2·l to p columns. Since
also, a binary linear system can be solved much faster than a
conventional one due to the fast modulo-2 operations per-
formed during its solution [8], short running times of the de-
scribed seed-selection algorithm have been achieved.

4. Evaluation and comparisons
For evaluating the effectiveness of the proposed method,

we implemented the seed-selection algorithm of the previous
section in C programming language and we conducted a se-
ries of experiments for the largest ISCAS’89 benchmark cir-
cuits with many hard-to-detect faults, assuming 64 scan
chains. The required test sets were obtained by using the Ata-
lanta ATPG tool [13]. The characteristic polynomials of the

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

LFSRs were selected to be primitive and the multiphase
Phase Shifters were designed according to the work of [11],
adding an extra input to each XOR tree (total cost: 3 XOR
gates per tree).

The selection of the size of the algorithm's search space
(w·p) is critical, since it affects both the resulting seed vol-
umes and test-sequence lengths. For that reason a cost metric
is introduced for identifying the proper search-space size for
each circuit. Specifically, a series of experiments are per-
formed for every benchmark circuit, keeping the value of
parameter p (max number of selected cells) constant, while
modifying the value of parameter w (window size). This is
done for simplifying the experimental procedure, since similar
results are derived when both parameters p and w are modi-
fied. Let max_seeds and max_sequence be respectively the
maximum number of seeds and the maximum test-sequence
length among the results of all the experiments, for the same
circuit. Usually, the experiment with the smallest search space
provides max_seeds, while the one with the largest search
space provides max_sequence. For every experiment, we cal-

culate the ratios
seedsmax

seeds
_

 and
sequencemax

lengthsequencetest
_

__ ,

where seeds and test_sequence_length are respectively the
seed-volume and test-sequence-length results of each experi-
ment. The smaller these ratios are, the better are considered
the corresponding results (i.e., the smaller hardware and test-
sequence costs are paid). Consequently, the sum of the above
ratios provides a good indication of an experiment's total cost.
Depending on the implementation, hardware overhead may
be more important than test-sequence length or vice versa.
Therefore, the two ratios must be properly weighted. Specifi-

cally, we multiply
seedsmax

seeds
_

 with factor k. Values of k > 1

mean that a small seed volume is more important than a short
test sequence (i.e., seed reduction is of higher priority), while
values of k < 1 mean the opposite. Thus, the proposed cost
metric is calculated by the following relation:

cemax_sequen
lengthsequencetest

max_seeds
seedskcCost metri __ (1)

Since the seed-volume reduction is our primary target, in our
experiments we set k = 2. A graphical representation of the
cost metric with k = 2, for various search-space sizes for
s13207 is shown in Figure 6.

Figure 6. The proposed cost metric with k=2, for various search-
space sizes for s13207

As can be seen, for very small search spaces the increased
number of seeds leads to increased cost-metric values. The
same holds for very large search-space sizes due to the result-
ing lengthy test sequences. However, the proposed metric's
values are higher in the former than in the latter case, as a

result of the greater weight of the
seedsmax

seeds
_

 ratio in relation

(1) [k = 2]. The smallest and hence best metric values occur
for moderate-sized search spaces. As we move from small to
greater search-space sizes, decreasing metric values mean that
by allowing longer test sequences we get considerably smaller
seed-volume results, while increasing metric values indicate
that longer test sequences do not offer significant seed-
volume reductions. After the best search-space size has been
determined, various combinations of parameters w and p are
examined (keeping w·p =constant =best search-space size) and
the one leading to the smallest seed count is finally selected.

In Table 1 we provide the results of the proposed technique
for 64 scan chains, having determined the values of parame-
ters w and p as explained above. In columns 6 and 7 the re-
sulting seed volumes and test-sequence lengths are presented.

Table 1. The results of the proposed technique

Circuit
Test-set

size
(# vectors)

LFSR
length

Window
size (w)

Selected
cells (p)

#Seeds
(R)

Test-
sequence

length
s13207 2217 24 12 29 112 38976
s15850 2391 39 12 26 144 44928
s38417 6322 85 10 30 516 154800
s38584 8317 56 20 25 77 38500

We compare the proposed technique against the multi-
plexer-based, Reconfigurable Interconnection Network (RIN)
approach of [5]. This method has been shown to be the most
successful scan-based test set embedding technique in the
literature, in terms of both the required test-data storage and
test-sequence length. In [5], a Mux network (RIN) is used for
directly connecting to the scan chains of the CUT, the outputs
of various cells of an LFSR in different test configurations.
The Muxes of the RIN are constructed using tristate gates.
Two strategies are proposed in [5] for tackling the problem of
highly clustered care bits in test cubes: scan cell reorganiza-
tion and the insertion of an extra level of multiplexers be-
tween the outputs of the RIN and the inputs of the scan chains
of the CUT (Interleaving Muxes). Due to the fact that scan
cell reorganization is usually an unacceptable approach, in the
comparisons we considered only the strategy of the extra in-
terleaving level.

According to [5], the number of tristate gates of each Mux
of the RIN is equal to the number of either the test configura-
tions, or the cells of the LFSR used, whichever is smaller. By
doing so, the authors ensure that the minimum number of
tristate gates will be used. However, if the number of configu-
rations is greater than the size of the LFSR, some extra gates
will be needed in order to actually connect each configuration
control line Di to a tristate gate that is used in more than one
configurations. That is, for controlling a tristate gate in multi-
ple configurations, an extra gate, which receives as inputs the

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

respective configurations’ control lines, is required. If we
assume that the overhead of each extra gate is at least 4 tran-
sistors, then the overall hardware overhead of the RIN will be
equal to or greater than that of a RIN in which a single tristate
gate (4 transistors) is used in each Mux for every configura-
tion. Consequently, the easiest and fairest way to compare the
two techniques is to assume that the number of tristate buffers
of each Mux of the RIN is equal to the number of configura-
tions’ control lines (Di), as shown in Figure 2.b of [5].

Taking into consideration all the above, we have estimated
the hardware overhead of [5] by summing the transistors re-
quired for the implementation of the Muxes of the RIN and
the interleaving level, as well as of the ROM for storing some
necessary control bits. We assumed that for each tristate
buffer 4 transistors are needed as mentioned in [5], while the
area that each ROM bit occupies is considered to be equal to
that of 1 transistor [14]. Moreover, for every configuration
control line (Di) we have calculated the overhead of the in-
verter required for generating the signal Di', which, combined
with the Di, controls the inputs enable and enable' of the
tristate buffers, respectively. The hardware overhead of the
proposed approach was calculated as the sum of the transis-
tors required for the implementation of the multiphase phase
shifter, the Mux that drives the extra inputs of the phase
shifter's XOR trees, plus the transistors that correspond to the
ROM bits that should be stored (as above, we assumed that 1
ROM bit occupies 1 transistor area). The hardware overhead
of the multiphase phase shifter is equal to 24·Number of scan
chains, since 3 standard transmission-gate-based XORs were
used for the realization of each XOR tree. Such a XOR gate
requires 8 transistors for its implementation. We should note
that, for the calculation of the hardware overhead of the ap-
proach of [5] we did not take into account the excessive wir-
ing of the RIN and the interleaving level. As for the rest of
the control logic of the two compared schemes, it is very
small and imposes similar area overhead and, for that reason,
it has not been considered in the comparisons.
Table 2. Hardware overhead and test-sequence length comparisons

 Hardware Overhead Test-sequence length

Circuit [5]
(#trans.)

Proposed
(#trans.)

Reduction
(%)

[5]
(#vec.)

Proposed
(#vec.)

Reduction
(%)

s13207 19409 4398 77.34 75047 38976 48.06
s15850 19420 7308 62.37 179580 44928 74.98
s38417 52524 45576 13.23 616835 154800 74.90
s38584 18323 5998 67.27 291425 38500 86.79

In Table 2, the hardware overhead (columns 2-4) and the
test-sequence length (columns 5-7) comparisons between the
proposed technique and that of [5] are presented. It is obvious
that the multiphase approach outperforms the RIN-based one
in both cases. As far as the hardware overhead is concerned,
although the technique of [5] has minimal test-data storage
requirements, its total implementation cost is much greater
than that of the multiphase scheme. This is due to the small
seed-counts achieved by the presented seed-selection algo-
rithm. As for the test-sequence length comparisons, the supe-
riority of the proposed approach, which performs reseedings,

is clear, as can be seen in columns 5-7 of Table 2.

5. Conclusions
A new test set embedding approach with reseeding for

scan-based testing has been proposed in this paper. The pre-
sented approach combines the multiphase TPG architecture of
[8] with a new, very effective seed- and cell-selection algo-
rithm, which consists of four heuristic criteria. The values of
the input parameters of the algorithm can be easily deter-
mined by calculating a simple cost metric that is also intro-
duced. Experimental results and comparisons demonstrate the
advantages of the proposed technique.

References
[1] M. Lempel, S. Gupta and A. Breuer, "Test Embedding with Dis-
crete Logarithms", IEEE Trans. on CAD, vol. 14, May 1995, pp.
554-566.
[2] D. Kagaris, S. Tragoudas and A. Majumdar, "On the Use of
Counters for Reproducing Deterministic Test Sets", IEEE Trans. on
Comp., vol. 45, Dec. 1996, pp. 1405-1419.
[3] D. Kagaris and S. Tragoudas, "On the Design of Optimal
Counter-based Schemes for Test Set Embedding", IEEE Trans. on
CAD, vol. 18, Feb. 1999, pp. 219-230.
[4] S. Swaminathan and K. Chakrabarty, "On Using Twisted-Ring
Counters for Test Set Embedding in BIST", J. of El. Testing, Th.
and Appl., Kluwer Academic Publishers, vol. 17, no. 6, Dec. 2001,
pp. 529-542.
[5] L. Li and K. Chakrabarty, "Test Set Embedding for Determinis-
tic BIST Using a Reconfigurable Interconnection Network", IEEE
Trans. on CAD, vol. 23, Sept. 2004, pp. 1289-1305.
[6] E. Kalligeros, D. Kaseridis, X. Kavousianos and D. Nikolos,
"Reseeding-based Test Set Embedding with Reduced Test Se-
quences", in Proc. of Int. Symp. on Quality El. Des., March 2005,
pp. 226-231.
[7] I. Voyiatzis, "Test Vector Embedding into Accumulator-
Generated Sequences: A Linear-Time Solution", IEEE Trans. on
Comp., vol. 54, Apr. 2005, pp. 476-484.
[8] E. Kalligeros, X. Kavousianos and D. Nikolos, "Multiphase
BIST: A New Reseeding Technique for High Test Data Compres-
sion", IEEE Trans. on CAD, vol. 23, Oct. 2004, pp. 1429-1446.
[9] X. Liu, M. S. Hsiao, S. Chakravarty and P. J. Thadikaran, "Effi-
cient Techniques for Transition Testing", ACM Trans. on Des.
Autom. of El. Syst., vol. 10, no. 2, Apr. 2005, pp. 258-278.
[10] P. Wohl, J. A. Waicukauski, S. Patel and M. B. Amin, "Effi-
cient Compression and Application of Deterministic Patterns in a
Logic BIST Architecture", in Proc. of Des. Autom. Conf., June
2003, pp. 566-569.
[11] J. Rajski, N. Tamarapalli and J. Tyszer, "Automated Synthesis
of Phase Shifters for Built-In Self-Test Applications", IEEE Trans.
on CAD, vol. 19, Oct. 2000, pp. 1175-1188.
[12] E. Kalligeros, X. Kavousianos, D. Bakalis and D. Nikolos, "An
Efficient Seeds Selection Method for LFSR-based Test-Per-Clock
BIST", in Proc. of Int. Symp. on Quality El. Des., March 2002, pp.
261-266.
[13] H. K. Lee and D. S. Ha, "Atalanta: An Efficient ATPG for
Combinational Circuits", TR, 93-12, Dep't of Electrical Eng., Vir-
ginia Polytechnic Institute and State University, 1993.
[14] L. R. Huang, J. -Y. Jou and S. -Y. Kuo, "Gauss-Elimination-
Based Generation of Multiple Seed-Polynomial Pairs for LFSR",
IEEE Trans. on CAD, vol. 16, Sept. 1997, pp. 1015-1024.

Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED’06)
0-7695-2523-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

