
An Efficient Seeds Selection Method for LFSR-based Test-per-clock BIST†

E. Kalligeros, X. Kavousianos, D. Bakalis and D. Nikolos

Dept. of Computer Engineering & Informatics, Univ. of Patras, 26500, Patras, Greece

Computer Technology Institute, 61 Riga Feraiou Str., 26221, Patras, Greece

e-mail: kalliger@ceid.upatras.gr, kabousia@ceid.upatras.gr, bakalis@cti.gr, nikolosd@cti.gr

Abstract
In this paper we propose a new algorithm for seeds

selection in LFSR-based test-per-clock BIST. The proposed
algorithm uses the well-known concept of solving systems
of linear equations and, based on heuristics, minimizes the
number of seeds and test vectors while achieving 100%
fault coverage. Experimental results indicate that it
compares favorably to the other known techniques.

1. Introduction
Built-In Self-Test (BIST) is an effective approach for

testing large and complex circuits [1-2]. When BIST is
used, a Test Pattern Generator (TPG), a Test Response
Verifier and a BIST controller accompany the Circuit
Under Test (CUT) in the chip, creating this way a self-
testable circuit. Minimal test application time and
hardware overhead as well as minimal performance
degradation are essential in many BIST applications
whereas, in most applications, complete (100%) fault
coverage is also desirable.

BIST schemes can be classified into two general
categories: test-per-scan and test-per-clock. In the test-per-
scan scheme a complete or partial scan path is serially
filled by the TPG [3-5], while in the test-per-clock scheme
a new test vector is applied to the CUT at each clock cycle
[5-8]. In this paper we consider only test-per-clock BIST
schemes.

Linear Feedback Shift Registers (LFSRs) have been by
far the most popular devices for pseudo-random test
pattern generation in BIST schemes [2]. They have the
advantage of very low hardware overhead. However, for
circuits with random pattern resistant faults, high fault
coverage cannot be achieved within an acceptable test
length. Among others, reseeding is a technique which has
been proposed to solve this problem.

[6] describes a design of an LSSD-based LFSR, which
is capable of changing seeds by applying a pair of clock
pulses at the time of change. The seeds cannot be

 † This research was financially supported by the Public Benefit

Foundation "Alexander S. Onassis" via its scholarships programs and
by the Research Committee of Patras University, within the framework
of "K. Karatheodoris" scholarships programs.

predetermined, they are randomly selected and they have
the property of being uniformly distributed over the entire
LFSR pattern space. Mixed-mode BIST schemes [5, 7-8]
impose in the pseudorandom sequence deterministic test
vectors for detecting the random pattern resistant faults.

The concept of solving systems of linear equations for
finding seeds which ensure the embedding of deterministic
test vectors in sequences of pseudorandom vectors was
presented for test-per-scan BIST in [3-4]. The
straightforward application of this technique in test-per-
clock BIST schemes does not give good results with
respect to the number of seeds and the test sequence
length. Using the above concept, in this paper we give a
simple but effective algorithm which, based on heuristics,
leads to very small number of seeds, short test sequences
and complete fault coverage. Experimental results show
that the proposed technique compares favorably to the
other already known techniques.

The remaining of the paper is organized as follows:
Sections 2 and 3 present the LFSR-based reseeding
algorithm. In Section 4 the effectiveness of the proposed
algorithm is evaluated with experiments on benchmark
circuits and comparisons are made with other techniques.
Conclusions are given in Section 5.

2. Reseeding algorithm
Consider that the test sequence consists of the parts P0,

P1, P2, …, as shown in Figure 1. Each one of these parts
consists of a set of successive vectors generated by the
LFSR used as TPG. The first vector of P0 is the initial seed
of the test sequence, while the first vector of each one of
the other parts (shaded areas in Figure 1) is a new seed.
The initial seed is selected randomly, while a method for
the selection of the rest of the seeds will be given shortly.

� � �

5HVHHGLQJV

7HVW 6HTXHQFH

3
�

3
�

� � �3
L

3
�

Figure 1. Test sequence

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

At first we perform equivalence and dominance fault
collapsing [1] so as to reduce the set of faults to be
analyzed by the algorithm and then we proceed to define
set P0. P0 contains at most EASYVECTORS vectors, where
EASYVECTORS is a user-defined parameter. The value of
EASYVECTORS must be appropriately selected so as the
vectors of set P0 to detect the majority of the easily
detectable, by random testing, faults. The LFSR is initially
set to a random state and is let to run for EASYVECTORS -
1 clock cycles. The produced vectors comprise set P0 and
the faults detected by those vectors are considered as easy-
to-detect. If there are any vectors at the end of the P0

sequence that do not detect any additional faults, we
exclude them from P0.

The faults that remain undetected after the application
of set P0 to the CUT are considered as hard-to-detect. For
each one of these faults, e.g. fi, we choose a representative
test vector vfi, which detects that fault. At first we extract Q
test vectors for each fi using a deterministic test pattern
generation tool and we modify them to contain don't care
bits. We then choose as vfi the one with the maximum
number of don't care bits. A representative can be viewed
as an indication of how hard the corresponding fault is.
The more don't care bits a representative has, the easier it
is for the corresponding fault to be detected.

In order to minimize the number of the seeds required to
fully test the CUT, we should try to detect, in each part Pi,
as many hard-to-detect faults as possible. The proposed
algorithm exploits the existence of don't care bits in the test
vectors of the undetected faults, so as to select an
appropriate set Pi, the vectors of which can detect several
hard-to-detect faults.

Let L be the maximum number of vectors that can be
included in a part Pi (i ≥ 1). To determine a set Pi we
consider a window of L successive states of the LFSR and
we try to locate this window in such a way so as to
maximize the number of vectors vfi, vfj, …, that are covered
by the states of the LFSR belonging to the window. We
choose as last vector of Pi one of the representatives, e.g.
vfi, and by moving backwards we try to find, among the L
states of the window, the most appropriate to be used as
the seed of set Pi. The success of the method depends
heavily on the selected representative test vector vfi (the
selection procedure will be given in the next section).

Based on the characteristic polynomial of an LFSR and
its current state, we can derive all its history, that is, the
states through which the LFSR has stepped before reaching
the current state. Generally, if we have a k-stage LFSR
with external XOR gates that implements the characteristic
polynomial P(x) = xk + ak-1x

k-1 + … + a1x + 1 with a1, a2,
..., ak-1 ∈ {0, 1}, then:

Si(j-1) = Si+1(j), 1 ≤ i ≤ k - 1 and
Sk(j-1) = S1(j) ⊕ a1S2(j) ⊕ a2S3(j) ⊕ … ⊕ ak-1Sk(j),

where Si(j-1) is the value of the i-th stage of the LFSR at
the (j-1)-th clock cycle. That is, we get the j-1 state of the
LFSR from its j-th state. Similar equations can be derived

if we have an LFSR with internal XOR gates. Hence,
knowing the last state of the window we can step by step
determine all its previous states.

After the selection of the last vector of Pi, which is the
starting state of the procedure, we generate successively
the previous L-1 LFSR states, that is the states that the
window contains. The don't care bits of the last vector are
considered as variables. Since the chosen last state contains
variables, some of the bits of the states of the window will
be a function of some of those variables too.

The next step is to compare all the representative test
vectors we have derived for testing the remaining hard-to-
detect faults, with each one of the L states. We note that
the last vector of Pi is excluded from these comparisons,
since the corresponding fault is already covered. It is
evident that in order to check if a test vector v matches a
state sj of the window, we have to solve a system of k
equations of the form:

Xt1 ⊕ Xt2 ⊕ … ⊕ Xtn ⊕ bt = ct,
where bt, ct ∈ {0, 1} and k is the number of the bits of
vector v that have specific binary values. Taking into
account that the variables and the constants take binary
values and that they are related with the XOR operation
only, we conclude that the above procedure is trivial
compared to that of solving a conventional system of
equations.

Example. Assume that we have a CUT with 4 primary
inputs and as a TPG we use the LFSR with characteristic
polynomial x4+x+1.

Consider as last vector of Pi the vector 1xx0. This
vector, as far as our procedure is concerned, is equivalent
to the state 1X2X30. For L = 6 we get a window consisting
of the states shown in Figure 2.

LFSR state
State

Number
S1(j-1)
= S2(j)

S2(j-1)
= S3(j)

S3(j-1)
= S4(j)

S4(j-1) =
S1(j) ⊕ S2(j)

6 1 X2 X3 0 Last State
5 X2 X3 0 X2 ⊕ 1
4 X3 0 X2 ⊕ 1 X2 ⊕ X3

3 0 X2 ⊕ 1 X2 ⊕ X3 X3

2 X2 ⊕ 1 X2 ⊕ X3 X3 X2 ⊕ 1
1 X2 ⊕ X3 X3 X2 ⊕ 1 X3 ⊕ 1

Figure 2. Backward state generation

We remind that the states are generated from the last
one to the first one and the last state (1X2X30) is numbered
as state L (state 6). If we want to check if test vector 0x01
matches state 1 of Figure 2, we should solve the following
system of equations:

{X2 ⊕ X3 = 0, X2 ⊕ 1 = 0, X3 ⊕ 1 = 1}
From the first equation we have X2 = X3. We eliminate

variable X2 by replacing it with X3 in the remaining
equations and as a result the second equation becomes
X3 ⊕ 1 = 0 or equivalently X3 = 1. Using this result in the
third equation we get 1 ⊕ 1 = 1, which is a contradiction.
Thus, vector 0x01 does not match the LFSR state 1.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

On the contrary, if we check 0x01 against state 3, the
following system of equations is derived:

{0 = 0, X2 ⊕ X3 = 0, X3 = 1}
The above equations do not lead to a contradiction and

therefore test vector 0x01 matches state 3. v

Definition 1. As elimination of a variable Xi we define the
replacement of that variable by an expression of the form
Xj1 ⊕ Xj2 ⊕ … ⊕ Xjn ⊕ b, where Xj1, Xj2, …, Xjn are
variables different from Xi and b ∈ {0, 1}. v

Definition 2. A vector v matches a state m of the LFSR
window when the corresponding system of equations does
not lead to any contradictions. v

If test vector v matches state m of set Pi, this means that
Pi has the potential to cover v in its m-th state. In order for
vector v to be covered by state m of Pi, a number of
variables in the generated LFSR states must be replaced by
expressions which include variables and/or constant logic
values. The variables that must be replaced are the
eliminated variables in the "state m = vector v" system of
equations. If this is the case, set Pi must include state m
and consequently all states between m and L (Figure 3).
The test vectors of the undetected faults are categorized
according to the number of don't care bits they contain and
are checked against the window states according to their
category. This categorization will be clarified in Section 3.

By solving systems of equations like those shown
above, we check every test vector against all the L states of
the window. If a vector matches a state, then we count the
number of variables that must be eliminated in order for
the test vector to be covered by that specific state. When
we have checked all the test vectors against all the L states,
we choose to include in set Pi the test vector which
eliminates the fewer variables in one of the above L states,
by replacing those variables with the appropriate
expressions resulting from the corresponding "state -
vector" equations. The argument behind this choice is that
by keeping as many variables as possible in the states of
the window, we increase the probability of a test vector
detecting another undetected fault to match a window state.
Therefore, the number of hard-to-detect faults covered by
set Pi is maximized.

After having selected the appropriate vector (and hence
its corresponding fault) to be covered, we update the L
states of the window and we repeat the same process using
the test vectors that test the remaining hard-to-detect faults.
When no test vector matches any of the L states or all the
undetected faults are covered, set Pi is finally defined. As
seed we choose the state with the smallest state number
(see Figure 3), in which a test vector was included in set Pi

(Pi contains all states between that state and state L). We
should note that the whole process of checking all the
vectors against all the states can be significantly speeded
up by stopping solving a "state - vector" system when it
eliminates more variables than the, up to that point, best
state - vector pair.

����� P ���/

Y

WHVW YHFWRU Y PDWFKHV VWDWH P

YDULDEOHV

UHSODFHPHQW

3
L
PXVW LQFOXGH VWDWH P

����� P ���/

Figure 3. Inclusion of vector v in set Pi

Since some of the vectors may detect more than one
hard-to-detect faults, after determining a new part Pi of the
test sequence, we run fault simulation, so as to drop all
faults detected by that part.

By repeating the above procedure we determine parts
Pi+1, Pi+2 … until all the faults of the CUT are covered.

Possibly, some of the easy-to-detect faults that were
tested by set P0 can also be detected by some of the vectors
of the sets P1, P2, ... Thus some of the first vectors of the
test sequence may be redundant. In order to minimize the
cardinality of the test set, after the determination of all of
the Pi parts of the test sequence, we perform reverse
simulation [9] and we adjust the initial seed so as to
exclude the redundant test vectors.

3. Optimizations of the proposed algorithm
In this section we will clarify the criteria used to

determine the values of some critical parameters of the
algorithm and specifically the last state of each set Pi and
the size L of the window of successive states (L includes
the last state of the window). We will also define how the
representative test vectors are categorized according to the
number of don't care bits they contain. The selection of
these parameters must be done very carefully in order to
balance the number of the seeds and the total number of
test vectors needed to fully test the CUT.

We will at first discuss how the selection of the last
state of set Pi is made. Remember that the more don't care
bits a representative has, the easier the corresponding fault
is detected. There are two scenarios that can be followed.
According to the first one, among all the representatives,
the one with the maximum number of don't cares (which
corresponds to the easiest of the undetected faults) is
chosen to be the last state of Pi. Since, following this
scenario, we first choose the representatives with the
higher number of don't cares, a great number of matches
take place at the first parts P1, P2, …, Pk, where k is a small
number, and a lot of undetected faults are covered in these
parts of the sequence. On the contrary, at the last parts of
the procedure, representatives with very few don't cares
remain. So the number of matches is restricted and the
number of faults detected by each part Pi, with i high, is
limited. The above imply that excluding the last parts from
the resulting test sequence, the number of undetected faults
will be small. Therefore, it is expected that this scenario
will give better results, in terms of number of seeds, in the
cases that complete (100 %) fault coverage is not required.

The second scenario is to select among the
representatives, the one with the smallest number of
variables as the last state of Pi. The notion behind this

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

choice is that by choosing to cover the hardest of the
undetected faults in the beginning, we will avoid detecting
them at the end of the test sequence by performing
successive reseedings. By starting with the fewest don't
cares we do not anticipate covering as many faults as in the
first steps of the first scenario. On the contrary we expect
the easiest of the undetected faults to be more uniformly
distributed over the parts Pi of the test sequence, so as all
faults to be detected without having to waste a few
reseedings at the end of the test sequence for the hardest of
them. The comments concerning the two possible
scenarios were verified with experiments. Taking into
account that our target is the 100% fault coverage of the
CUT, we selected the second one.

An example is given in Figure 4 for the benchmark
circuit s420. We can see that the second scenario leads to a
more uniform distribution of the faults which are detected
by each part Pi, as well as to complete (100%) fault
coverage with a smaller number of seeds. On the other
hand, if we decide to limit the number of reseedings,
following the first scenario and using the parts P1 to P6 we
achieve 97.62 % fault coverage, while for achieving the
same fault coverage with the second scenario we need two
more seeds (parts P1 to P8).

Figure 4. Hard-to-detect faults distribution over the reseedings
for the circuit s420 using as last vector of each set Pi: a) the

representative with the maximum number of don't care bits and b)
the representative with the minimum number of don't care bits

(EASYVECTORS = 4000, L the same for both experiments)

The determination of parameter L is also critical for the
performance of the proposed algorithm. Our goal is to try
to cover as many undetected faults as possible in each set
Pi of the test sequence (i > 0). Apart from keeping as many
variables as possible in the states of the window, another
technique to achieve this goal is to distribute all the
variables in all the stages of the window states. In this way,
the bit values of the states of the window will be given by a
variety of expressions containing many variables. As a
result, it would be easier for the test vectors to match the
window states. Therefore, L should be equal to or greater
than the number of the primary inputs of the CUT, since, in
that case, some of the states of the window are derived
after a full-length rotation of the LFSR and thus variables
appear in every bit of the window states. We
experimentally confirmed the above considerations and we
decided that parameter L should be a multiple of the
number of the primary inputs of the CUT.

One final adjustment to the proposed algorithm is to
classify the representatives vfi, with fi ∈ {set of hard-to-
detect faults}, to two categories or priority classes. Since
the representatives with few don't care bits are the hardest
to match a state of the window and if they do so, a lot of
variables should be eliminated so as to be included in a set
Pi, those representatives are rarely selected by the
algorithm. This can cause reseedings that detect very few
faults at the end of the test sequence, as it was described
above. Let Umin be the smallest number of undefined bits
that a representative vfi has and Uavg the average number of
undefined bits of all the representatives. (Uavg - Umin) / 2 is
the middle of the distance between Umin and Uavg. Before
we begin defining sets Pi, with i > 0, we scan all the
representatives and those that the number of their don't
care bits lies between Umin and Umin + (Uavg - Umin) / 2, are
marked to be of high priority. All the other representatives
have normal priority. Thus, we first check the
representatives of high priority against the window states
and if some of them match any of the window states, we
select the one that eliminates the fewer variables as
described in the previous section. If this is not the case, we
proceed to those of normal priority.

4. Experimental results
In order to validate the effectiveness of the proposed

technique, we implemented the algorithm described in
Sections 2 and 3 in C programming language and
performed experiments using ISCAS '85 and ISCAS '89
benchmark circuits with random pattern resistant faults. In
the case of ISCAS '89, we considered only their
combinational part. The primitive polynomials of the
LFSRs used in the experiments were taken from [2].

In Table 1 we present results for 2 different values of
parameter EASYVECTORS and 4 different values of
parameter L. In each pair of columns, after the first column
of each table, we give the number of seeds and the total
number of test vectors required to achieve complete
(100%) fault coverage of the CUT. The notation “L = k x”
(k = 3, 6, 20, 40) means that the parameter L is equal to k
times the number of the primary inputs of the CUT.

For circuits with many primary inputs, increasing the
value of L does not improve the performance of the
algorithm. For that reason, some results are omitted from
Table 1. For each circuit, the best among all the results is
shaded. As best result we consider the one with the fewer
seeds or the one with the smallest number of test vectors
among results with similar numbers of seeds. Each result
in Table 1 was taken after a single run of the proposed
algorithm, starting from a random initial seed.

In general we expect that, as EASYVECTORS and L
increase, we will get test sequences requiring less seeds
and more test vectors for fully testing the CUT. The results
given in Table 1 follow this general trend. Exceptions to
this rule are due to the random selection of the initial seed,
the reverse simulation process and the fact that for some

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

Table 1. The results of the proposed technique for EASYVECTORS = 3000 and EASYVECTORS = 5000

EASYVECTORS = 3000 EASYVECTORS = 5000
L = 3x L = 6x L = 20x L = 40x L = 3x L = 6x L = 20x L = 40xCircuit

seeds vecs seeds vecs seeds vecs seeds vecs seeds vecs seeds vecs seeds vecs seeds vecs
c2670 13 6225 11 11297 - - - - 13 6225 11 11328 - - - -
c7552 26 14178 24 18389 - - - - 25 11261 22 22809 - - - -
s420 16 2687 14 3234 14 3343 12 6636 16 2635 13 4160 11 3450 10 5097
s641 5 2650 4 2701 4 1499 4 2844 5 3010 4 3395 4 2981 4 2364
s713 5 1965 4 2249 5 1472 4 2795 4 2547 4 1820 4 4537 4 3305
s820 6 3033 6 2916 7 3294 6 4373 6 4610 4 4964 6 5919 5 5108
s838 25 2395 23 4497 - - - - 21 5235 21 6646 - - - -
s953 5 3071 6 3466 3 3159 4 3721 4 4340 5 4671 5 5963 4 6164
s1196 9 3432 9 3183 9 4290 7 5745 7 4837 5 5060 8 5037 5 6852
s1238 13 3343 10 3322 8 4498 7 5689 9 4641 7 4934 8 4909 4 6592
s1423 3 2341 3 1457 2 3376 3 2957 3 4068 3 4462 3 3614 3 3619
s5378 4 4222 5 5132 - - - - 4 6579 4 6435 - - - -
s9234 20 13785 - - - - - - 20 15813 - - - - - -

Table 2. Seeds and test vectors comparisons for complete fault coverage

Proposed Twisted-ring counters [5] Gauss elimination [7] LFSR-based TPGs of [8]
Circuit

Seeds Test
vectors Seeds Test

vectors
Test Vectors

reduction
Seeds

+ polyn.
Test

vectors
Test Vectors

reduction Seeds Test
vectors

Test Vectors
reduction

 c2670 13 6225 70 58930 89.4 % 15 7300 14.7 % 34 10206 39.0 %
 c7552 25 11261 107 76447 85.3 % 19 31282 64.0 % - - -
 s420 11 3450 8 10816 68.1 % 8 5775 40.3 % 10 10843 68.2 %
 s641 4 1499 9 11458 86.9 % 7 2345 36.1 % 7 2430 38.3 %
 s713 4 1820 8 11296 83.9 % 6 2069 12.0 % 8 2759 34.0 %
 s820 6 2916 - - - 6 6036 51.7 % 35 527 -81.9 %
 s838 21 5235 29 15742 66.7 % 13 17526 70.1 % 44 9273 43.5 %
 s953 3 3159 6 10810 70.8 % 6 7146 55.8 % 5 4834 34.7 %
 s1196 5 5060 12 11152 54.6 % 6 7991 36.7 % 5 18776 73.1 %
 s1238 4 6592 9 10864 39.3 % 8 8185 19.5 % 6 7713 14.5 %
 s1423 3 1457 - - - 5 2993 51.3 % 5 1308 -10.2 %
 s5378 4 4222 1 10642 60.3 % 6 8400 49.7 % - - -
 s9234 20 13785 - - - 23 108638 87.3 % - - -

Table 3. Hardware overhead comparisons

Proposed
technique

Twisted-ring
counters [5] Gauss elimination [7] LFSR-based

TPGs of [8]

Circuit

Number
of

Primary
Inputs

ROM
bits

(gate
equiv.)*

Control
logic

ROM
bits

(gate
equiv.)*

Control
logic
(gate

equiv.)

ROM
bits

(gate
equiv.)*

Control
logic

P-LFSR
(gate

equiv.)

ROM
bits

(gate
equiv.)*

Control
logic

 c2670 233 757 108 4078 65 874 H1 1025 1981 H2
 c7552 207 1294 164 5537 65 983 H1 911 - -
 s420 34 94 96 68 42 68 H1 150 85 H2
 s641 54 54 59 122 46 95 H1 238 95 H2
 s713 54 54 54 108 42 81 H1 238 108 H2
 s820 23 36 73 - - 35 H1 101 201 H2
 s838 66 347 119 479 54 215 H1 290 726 H2
 s953 45 34 58 68 42 68 H1 198 56 H2
 s1196 32 40 73 96 42 48 H1 141 40 H2
 s1238 32 32 66 72 42 64 H1 141 48 H2
 s1423 91 68 54 - - 114 H1 400 114 H2
 s5378 214 214 68 54 41 321 H1 942 - -
 s9234 247 1235 143 - - 1420 H1 1087 - -
*: We have taken into account the assumption made in [7], that, on average, 0.25 gate equivalents are

required for each memory cell of a ROM.

circuits the seeds are already too few and any further
reduction is difficult to be done.

In Tables 2 and 3 we compare the proposed method
against the methods presented in [5], [7] and [8]. Among the

results given in Table 1 the best, for each circuit, was
chosen. We note that a dash (-) in the comparison tables
means that no results have been provided by the authors of
the referenced paper for the corresponding circuit.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

In Table 2 we compare the four techniques with respect
to the number of seeds and test vectors they require for fully
testing the CUT. For all of them we assume serial loading of
the seeds in the LFSR register. However, in the comparisons
we do not consider the clock cycles needed for loading the
seeds, but we just compare the cardinalities of the applied
test sets. We note that the Gauss elimination approach [7]
needs a programmable LFSR (P-LFSR), since, along with
each seed, it also calculates a new characteristic polynomial
and reprograms the LFSR at each reseeding. Thus, in the
seventh column of Table 2 we give the sum of the seeds and
the characteristic polynomials that need to be stored. From
Table 2 we can see that, in the majority of cases, the
proposed technique requires less seeds and shorter test
sequences than those of [5], [7] and [8].

The hardware overhead comparisons are given in Table
3. Since in all four techniques the seeds are loaded serially,
we do not take into account the bit counter required for
controlling the loading process. Also, we do not consider the
cost of modifying a register to a shift register, since this cost
is common for all the techniques we compare. The hardware
overhead is given in terms of gate equivalents, assuming
that 1 gate equivalent corresponds to a 2-input NAND gate.

The twisted-ring counter-based scheme of [5] imposes
very small hardware overhead for the control module but it
has to use many ROM bits, especially for circuits with many
random pattern resistant faults (c2670, c7552, s838). For
these circuits, we can see from Table 3 that the proposed
technique is far better than that of [5]. For the rest, the use of
our method results in significantly smaller test sequences,
with less hardware overhead (except for s420 and s5378).
For the realization of the P-LFSRs, the technique of [7]
requires, additionally to the logic of the register, two gates
and one D flip-flop per LFSR stage. Thus, this technique,
although it achieves to significantly reduce the use of ROM,
leads to an increased hardware overhead, due to the P-
LFSRs, compared to the proposed technique. Also the
hardware overhead H1 of the logic that controls the TPG
scheme must be added to the overall hardware overhead
required by this method. Since not enough information has
been given in [7], we were unable to calculate this hardware
overhead. Finally, our approach compares favorably to that
of [8] with respect to the required ROM (except for the case
of s420), but, as in the case of [7], we cannot estimate the
cost for the logic that controls the TPG scheme (H2). We
expect though, that this logic would be similar or greater
than that used by the proposed technique, since in most
cases the technique of [8] has to perform more reseedings.

We should finally mention that the execution time of the
proposed algorithm is not very long. For the larger circuits
we needed only a few hours for each simulation, while for
the smaller circuits less than 0.5 hours in an Intel Pentium
III, 500 MHz system, excluding the run-time for the ATPG.
Although a home ATPG tool was used, it can be easily
replaced by any other, more efficient commercial tool.

5. Conclusions
An efficient algorithm for seeds selection in LFSR-based

test-per-clock BIST was presented. Experimental results
using ISCAS'85 and the combinational part of ISCAS'89
benchmark circuits with random pattern resistant faults
show the superiority of the proposed method, with respect to
the number of seeds and test vectors as well as the hardware
overhead, against the already known methods.

References
[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital
Systems Testing and Testable Design, Computer Science Press,
New York, NY, 1990.

[2] P. H. Bardell, W. H. McAnney and J. Savir, Built-In Test for
VLSI: Pseudo-Random Techniques, Johh Wiley & Sons, New
York, NY, 1987.

[3] B. Koenemann, "LFSR-Coded Test Patterns for Scan Design",
Proc. of European Test Conference, Munich, Germany, April 1991,
pp. 237-242.

[4] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman and B.
Courtois, "Built-In Test for Circuits with Scan Based on Reseeding
of Multiple-Polynomial Linear Feedback Shift Registers", IEEE
Trans. on Computers, vol. 44, no. 2, February 1995, pp. 223-233.

[5] K. Chakrabarty, B. T. Murray and V. Iyengar, "Built-in Test
Pattern Generation For High-Performance Circuits Using Twisted-
Ring Counters", Proc. of 17th IEEE VLSI Test Symposium, Dana
Point, CA, USA, April 1999, pp. 22-27.

[6] J. Savir and W. McAnney, "A Multiple Seed Linear Feedback
Shift Register", IEEE Trans. on Computers, vol. 41, no. 2,
February 1992, pp. 250-252.

[7] L. R. Huang, J. Y. Jou and S. Y. Kuo, "Gauss-Elimination-
Based Generation of Multiple Seed-Polynomial Pairs for LFSR",
IEEE Trans. on CAD, vol. 16, no. 9, September 1997, pp. 1015-
1024.

[8] S. Chiusano, P. Prinetto and H. J. Wunderlich, "Non-Intrusive
BIST for Systems-on-a-Chip", Proc. of International Test
Conference, Atlantic City, NJ, USA, October 2000, pp. 644-651.

[9] A. P. Stroele & F. Mayer, “Methods to Reduce Test
Application Time for Accumulator-based Self-Test”, Proc. of 15th
IEEE VLSI Test Symposium, Monterey, CA, USA, April-May
1997, pp. 48-53.

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

