
A Highly Regular Multi-Phase
Reseeding Technique for Scan-based BIST†

E. Kalligeros
Dept. of Computer Engineering &
Informatics, University of Patras,

26500, Patras, Greece

kalliger@ceid.upatras.gr

X. Kavousianos
Dept. of Computer Engineering &
Informatics, University of Patras,

26500, Patras, Greece

kabousia@ceid.upatras.gr

D. Nikolos
Computer Technology Institute

61 Riga Feraiou Street,
26221, Patras, Greece

nikolosd@cti.gr

ABSTRACT
In this paper a novel reseeding architecture for scan-based BIST,
which uses an LFSR as TPG, is proposed. Multiple cells of the
LFSR are utilized as sources for feeding the scan chain in
different test phases. The LFSR generates the same state sequence
in all phases, keeping that way the implementation cost low. Also,
a dynamic reseeding scheme is adopted for further reducing the
required hardware overhead. A seed-selection algorithm is
moreover presented that, taking advantage of the multi-phase
architecture, manages to reduce the number of the required seeds
for achieving complete (100 %) fault coverage. Experimental
results demonstrate the superiority of the proposed LFSR
reseeding approach over the already known reseeding techniques.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance.

General Terms
Algorithms, Design, Reliability, Experimentation.

Keywords
Built-In Self-Test, Scan-based schemes, Linear Feedback Shift
Registers, Reseeding.

1. INTRODUCTION
Built-In Self-Test (BIST) is an effective approach for testing large
and complex circuits [1, 2]. Minimal test application time, area
overhead and test data storage, as well as minimal performance
degradation are essential in many BIST applications. Also,
complete (100%) fault coverage is often desirable.

† This research was financially supported by the Public Benefit

Foundation “Alexander S. Onassis” via its scholarships
programs, by the Research Committee of Patras University,
within the framework of “K. Karatheodoris” scholarships
program and by the State Scholarship’s Foundation of Greece
via its Post-doctoral research scholarships program.

BIST schemes can be classified into two general categories [15]:
test-per-scan and test-per-clock. In a test-per-scan scheme a
complete or partial scan is serially filled by the Test Pattern
Generator (TPG), while in a test-per-clock scheme a new test
vector is applied to the Circuit Under Test (CUT) at each clock
cycle. In this paper we consider only test-per-scan BIST schemes.
Pseudo-random BIST is the most common and widely used BIST
approach [1-2]. Although pseudo-random BIST schemes have the
advantage of low hardware overhead, for circuits with many
random pattern resistant (hard-to-detect) faults, high fault coverage
cannot be achieved within acceptable test lengths. To alleviate this
problem deterministic patterns should be applied to the CUT.

Several sophisticated deterministic techniques have been recently
proposed in the literature [7, 13, 14]. LFSR reseeding [3, 5, 8, 9,
11, 12, 16, 17] is one of the most practical and powerful methods
for injecting deterministic patterns in a pseudo-random LFSR
sequence. IBM has recently announced test automation tools that
support an LFSR reseeding methodology [9]. Advanced test
vector encoding techniques have been proposed for reducing the
reseeding data volume [9, 11]. However, the effectiveness of these
techniques depends on the number of hard-to-detect faults of each
circuit. For circuits with many hard-to-detect faults further
reduction of the hardware overhead is necessary.

In this paper we present a new LFSR reseeding architecture for
scan-based BIST that fully exploits the encoding ability of an
LFSR seed by using more than one cells of the LFSR for feeding
the scan chain of the CUT, in different test phases. This way the
number of seeds required for achieving complete stuck-at fault
coverage is significantly reduced. For further reducing the
hardware overhead of the proposed architecture, a very regular
structure is introduced. This structure can be efficiently combined
with a dynamic reseeding scheme for LFSRs, recently proposed in
[5]. Along with the proposed architecture, an effective seed-
selection algorithm is also presented for selecting the seeds and
the LFSR cells that will finally feed the scan chain of the CUT.
Experimental results demonstrate the advantages of the proposed
reseeding approach.

2. THE PROPOSED ARCHITECTURE
The classical scan-based reseeding approach is shown in Figure 1.

Shift Register

ROM

Linear Feedback Logic

Scan chain

Combinational Part

LFSR CUT

nk

Figure 1. Classical scan-based LFSR reseeding scheme

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’03, April 28-29, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0004…$5.00.

295

As CUT we consider a sequential circuit consisting of a
combinational part and of a scan chain of length n. The TPG
circuit consists of an LFSR with k flip-flop cells (k < n) and a
ROM for storing the seeds.
The overview of the proposed multi-phase scan-loading
architecture is shown in Figure 2. Its main feature is that more
than one LFSR cells are feeding the scan chain, each one in a
different test phase. The LFSR generates the same state sequence
in all phases thus keeping the implementation cost low. This
regularity in the TPG operation enabled us to effectively adopt in
the proposed multi-phase architecture’s environment, the dynamic
reseeding approach of [5]. This technique eliminates the need for
a ROM for storing the seeds and further reduces the required
hardware overhead.

Seed-loading
Mechanism

LFSR

Reseeding
Counter

Bit
Counter

Vector
Counter

Cell
Selection
Counter

M
ux

to Scan chain

Figure 2. The Multi-Phase scan-loading architecture

In the following, we will present the multi-phase scan-loading
architecture and its functionality in detail, while in subsection 2.2
a brief description of the adopted dynamic reseeding scheme will
be given.

2.1 The Multi-Phase Architecture
Suppose that a subset of p LFSR cells has been chosen to feed the
scan chain. Then the test session consists of p phases, and in each
phase one of the p selected cells is used to feed the scan chain. All
phases are identical considering the operation of the reseeding
scheme, with the difference that in each phase a different cell of
the LFSR is used to feed the scan-chain of the CUT and therefore
a different vector sequence is produced. Specifically in each
phase:
i. the same number of vectors are loaded in the scan chain,
ii. the same seeds in the same order and at the same clock times

are loaded in the LFSR and, as a result,
iii. the LFSR passes through the same sequence of states.

Additionally, between every two successive reseedings, the same
constant number of vectors, VectorsPerSeed, is loaded into the
scan chain. The above properties make the structure of the
proposed architecture very regular and easy to implement.

Let us now describe the operation of the proposed architecture
more thoroughly. In the beginning of every phase all counters,
except for the Cell Selection Counter, are initialized to zero. The
Cell Selection Counter is reset only once, when testing starts. Its
value is increased by one at each new phase resulting in a new
LFSR cell to feed the scan chain through the Mux. The Bit
Counter controls the scan-in operation of each produced vector,
and signals the Vector Counter to increase. The Vector Counter
checks when exactly a number of vectors equal to VectorsPerSeed
have been loaded in the scan chain. Then it signals the Reseeding
Counter to increase its value by one and as a result the next
reseeding is performed by the Seed-loading Mechanism. That is,
the Seed-loading Mechanism synchronizes the reseedings

according to the values of the Bit and the Vector Counter and
loads the appropriate seed according to the value of the Reseeding
Counter. The Seed-loading Mechanism can be a ROM as in the
classical reseeding approach or a combinational logic (Inversion
Control Module) as will be described in the following subsection.
When all the reseedings of a phase have been performed, the
Reseeding Counter signals the Cell Selection Counter to increase
and the next phase is initiated. Assuming that in each test phase R
reseedings are performed, then the total number of clock cycles of
the test session is: TotalClockCycles= p * R * VectorsPerSeed * n.

An important feature of the multi-phase architecture is that its
hardware overhead, which is mainly the hardware overhead of the
Seed-loading Mechanism does not depend on the number of test
phases, since its operation as well as that of the LFSR is the same
in all phases.

We should also note that the proposed architecture does not
require any modifications of the scan chain of the CUT, being that
way fully compatible with standard scan design.

2.2 The Dynamic Reseeding Scheme
The dynamic reseeding scheme that the proposed architecture
incorporates is shown in Figure 3. The reseedings are performed
by inverting, at certain clock cycles, the outputs of some of the
LFSR cells before being stored to their adjacent cells. This is
achieved by means of additional exclusive-OR (XOR) gates, as
shown in Figure 3 (these XOR gates are drawn using dashed
lines). A detailed description of the dynamic reseeding scheme
can be found in [5].

Ck
...C3

C2
C1

Inversion
Control
Module

R1

Linear Feedback Logic

... RkR2 R3

Figure 3. The adopted reseeding scheme

The main advantage of the dynamic reseeding scheme is that it
controls just a few LFSR cells at each reseeding, reducing that
way the overall hardware overhead required for the reseeding
control logic.

3. THE RESEEDING ALGORITHM
In this section we present an efficient algorithm for selecting the
seeds and the LFSR cells, which will feed the scan chain
throughout the test pattern generation procedure. The main goals
of this algorithm are complete fault coverage and minimization of
the necessary seeds. The algorithm consists of two parts: (1) the
selection of a subset of the LFSR cells for testing the easy-to-
detect faults and (2) the selection of the seeds and some additional
LFSR cells for detecting the hard faults. The second part also
contains a test sequence reduction procedure.

3.1 Selection of an Initial Set of LFSR Cells for
Testing the Easy-To-Detect Faults
Let VectorsForEasyFaults and NumberOfInitialCells be user-
defined parameters which denote the maximum number of vectors
for detecting the easy faults and the maximum number of LFSR
cells that will be selected to feed the scan chain for detecting the
easy faults respectively. Each of the selected LFSR cells will feed

296

the scan chain with the same number of vectors, therefore each
selected cell will produce
T = VectorsForEasyFaults / NumberOfInitialCells vectors. We
fault simulate T vectors produced by each one of the cells of the
LFSR and we select the NumberOfInitialCells cells that maximize
the coverage of the faults. The initial seed is selected randomly.

According to the proposed architecture the number of successive
vectors shifted in the scan chain of the CUT from an LFSR cell
between two successive reseedings is constant and equal to the
user-defined parameter VectorsPerSeed. If T > VectorsPerSeed
we divide the sequence of the T vectors in T/VectorsPerSeed
successive subsequences, during which the LFSR is let evolve
based only on its feedback structure, i.e. no inversions occur. The
faults that have not been detected by this procedure are identified
as hard-to-detect and test cubes are extracted for them using the
ATALANTA Test Pattern Generator tool [10].

3.2 Selection of Seeds and Additional LFSR
Cells for Testing the Hard-To-Detect Faults
The procedure that will be described in this subsection determines
a seed and some additional LFSR cells for feeding the scan chain
of the CUT in order to detect as many hard faults as possible,
starting from that seed. The LFSR cells that will finally feed the
scan chain of the CUT, are mainly defined in this part of the
algorithm by trying to encode as many test cubes as possible to
just one seed. This is primarily achieved by exploiting the bit-
sequences produced by more than one cells of the LFSR.

The selection of a new seed and of the appropriate LFSR cells is
done by solving systems of linear equations based on the feedback
structure of the LFSR [8]. Initially, the logic value stored in cell q
of the LFSR is represented by the binary variable aq. Therefore,
the initial state {E1(1), E2(1), …, Ek(1)} of the LFSR consists of k
variables, {a1, a2,…, ak}, where k is the LFSR length and
E1(1)=a1, E2(1)=a2, …, Ek(1)=ak. Then, we let the LFSR evolve
for n*VectorsPerSeed states (i.e. as if it was generating
VectorsPerSeed vectors), where the i-th LFSR state is equal to
{E1(i), E2(i), …, Ek(i)} and each one of the E1(i), E2(i), …, Ek(i) is
a binary expression containing one or more variables from the set
{a1, a2, …, ak} (the variables in each binary expression are related
together with the modulo-2, i.e. XOR, operation only). We define
as EVi(j) (Expression Vector) the set of binary expressions
produced by the i-th cell of the LFSR during the generation of
vector j. EVi(j) is the j-th vector produced by the i-th cell of the
LFSR, if its initial state is equal to {a1, a2, …, ak}. Let t = {t1 t2 …
tn}, tr ∈ {0, 1, x} with 1 ≤ r ≤ n, be a test cube detecting fault f (x
denotes a don’t care value). If the system of linear equations
EVi(j) = t, which is {Ei((j-1)*n + r) = tr, if tr ≠ x}, 1≤r≤n, can be
solved, then a test vector detecting fault f can be produced by cell
i of the LFSR during the j-th n-tuplet of clock cycles after its
reseeding. If this system has a solution, then some of the variables
{a1, a2, …, ak} can be replaced by expressions containing other
binary variables and/or constants (0 or 1). If we replace these
variables in the initial state of the LFSR {E1(1), E2(1), …, Ek(1)}
we get a seed that will produce a test vector for detecting fault f
from LFSR cell i, after j n-tuplets of clock cycles.

The first step of the seed-selection procedure is to construct all
sets of binary expressions EVi(j) with i∈ [1, k] and
j∈ [1,VectorsPerSeed]. Then, a weight is assigned to each hard
fault, equal to the average number of defined bits of its test cubes.
The larger the weight is, the more “difficult” is for the algorithm

to find a seed for detecting this fault. The seed-selection algorithm
tries to encode the test cubes of the hard-to-detect faults in LFSR
seeds according to the following two rules [6]: a) at each step as
few variables as possible are replaced and b) the more “difficult”
faults, according to their weight, have to be covered first.

Initially, from the set of test cubes that detect the fault with the
greater weight, the algorithm selects the one with the fewest
defined bits and attempts to solve one of the systems EVi(j)=t, for
all i, j. The first system that can be solved is selected. Such a
solution always exist according to [11], given that the LFSR
length k is slightly greater than the maximum number of defined
bits of the test cubes. The selected solution leads to the
replacement of some variables as explained above. These
variables are replaced in all EVi(j) sets and, in that way, we get
new reduced sets EV’i(j). Then for each test cube t of the
remaining hard-to-detect faults, the algorithm attempts to solve
the systems EV’i(j)=t, for all i, j. All the systems that can be
solved are inserted in the set ValidSolutions and, from those, a
system that corresponds to the fault with the greatest weight is
selected first. The system is solved and some more variables are
replaced. This time the replacement of these variables is done only
in the systems of the set ValidSolutions. Many of the systems of
this set will no longer be solvable, due to the replacement of those
variables. Such systems are dropped from the set and the selection
procedure is repeated, until the set ValidSolutions becomes empty.
During the selection of a system EVi(j)=t, EV’i(j)=t etc., along
with the replacement of the appropriate variables, the algorithm
also selects cell i for feeding the scan chain.

The successive replacements of the variables of the initial state of
the LFSR, a1, a2, …, ak, with binary expressions, leads gradually
to their replacement with constant values (0 or 1). The resulting
state is the required seed. Any variables not replaced by constant
values are set to a random value. Starting from that seed, we fault
simulate all the VectorsPerSeed vectors from each selected cell
and we drop any additionally detected faults. The whole seed-
selection procedure is then repeated targeting a new seed, until
complete fault coverage is achieved.

Finally, after having determined all the necessary seeds for
achieving complete fault coverage, a test sequence reduction
procedure is performed. This procedure attempts to reduce the
number of the derived seeds, the VectorsPerSeed and the number
of selected LFSR cells by fault simulating the vectors that
correspond to each seed in various permutations.

4. EXPERIMENTAL RESULTS
The results of the proposed method for the ISCAS ‘85 and the
ISCAS ‘89 benchmark circuits that contain a large number of
hard-to-detect faults are shown in Table 1. The size of the LFSRs
used was determined by the maximum number of defined bits
(smax) that a test cube, detecting a hard-to-detect fault, contained.
According to [11], an LFSR of size s ∈ [smax-5, smax+2] suffices
for generating test cubes with smax defined bits. For boosting the
encoding procedure, we used LFSRs, the size of which ranged
from smax+5 to smax+30. The corresponding primitive polynomials
were generated with the tools that can be found in [18]. We note
that in our experiments we used internal-XOR LFSRs, while the
value of parameter VectorsForEasyFaults was set to 5000,
NumberOfInitialCells was set to 5 and VectorsPerSeed varied
from 10 to 20.

297

Table 1. Experimental results for the ISCAS circuits

Circuit Scan
Elements

LFSR
length

Additional
XORs

Source
cells # Seeds # Vectors

c2670 233 66 66 17 31 10880
c7552 207 130 130 16 29 11680
s838 66 45 45 27 13 8775

s9234 247 55 55 19 84 26600
s13207 700 35 35 19 42 33212
s15850 611 50 50 27 69 58860
s38417 1664 110 110 32 138 116640
s38584 1464 70 70 21 35 22680

We compare the proposed reseeding architecture with the 2-D
Compression approach of [11], which is the scan-based reseeding
technique with the best hardware overhead results for the
benchmark circuits which contain many random pattern resistant
faults, in the open literature. It features a relatively small control
module and requires test sequences of acceptable length. Also, it
does not require any rearrangements of the scan chain of the CUT.

Table 2. Comparisons

Seeds # Vectors Hardware Overhead
(gate equivalents) Circuit

[11] Pro-
posed [11] Pro-

posed
Reduct.

(%) [11] Pro-
posed

Reduct.
(%)

c2670 28 31 16552 10880 34.27 393 401 -1.95
c7552 36 29 17488 11680 33.21 1451 598 59.04
s838 26 13 11742 8775 25.27 338 202 40.82

s9234 95 84 33560 26600 20.74 1097 675 38.76
s13207 58 42 50658 33212 34.44 393 298 24.66
s15850 112 69 78544 58860 25.06 989 568 42.83
s38417 267 138 454555 116640 74.34 2976 2180 26.74
s38584 59 35 96435 22680 76.48 893 473 47.09

As can be seen from Table 2, the proposed technique leads to
fairly better results in terms of test vectors compared to the
approach of [11]. This is mainly due to the fact that the proposed
seed-selection algorithm achieves excellent test cube encoding,
i.e. it manages to reduce significantly the number of the required
seeds, while using just a few VectorsPerSeed.

For the calculation of the hardware overhead of the proposed
architecture, we have used a commercial synthesis tool for
synthesizing the Inversion Control Module and the required
Multiplexer for selecting among the LFSR cells and, to the
synthesis results, we have added the hardware overhead of the
additional XOR gates. We should note that 1 gate equivalent
corresponds to a 2-input NAND gate. For the 2-D Compression
approach, we have described the required control modules
presented in [11] in Verilog HDL and we have synthesized them
using the same tool as for the synthesis of the Inversion Control
Modules of the proposed architecture. For translating the ROM
bits to gate equivalents, we have taken into account the estimation
of [4] that, on average, 0.25 gates are required for each memory
cell of a ROM. For both approaches we have not considered the
Bit Counter, whereas to the hardware overhead of the proposed
one we have added any extra gate equivalents that may result from
any difference in the registers’ length (counters and LFSRs).

From Table 2 we observe that in all circuits, the superiority of the
proposed method over [11] is obvious. The reseeding algorithm
manages to reduce the required number of seeds and, as a result,
the hardware overhead of the proposed architecture is
significantly lowered. We finally note that the proposed
technique, for the smaller benchmark circuits with hard-to-detect

faults (s420, s641, s713, s953, s1196, s1238, s5378), requires on
average 21.4 % less hardware overhead than the approach of [11].

5. CONCLUSIONS
We have described a highly regular LFSR-based reseeding
architecture for scan-based BIST. The scan-chain of the CUT is
fed by more than one cells of the LFSR, in different test phases
while the reseedings are performed dynamically without using a
ROM. These features combined with a very effective seed-
selection algorithm, lead to significantly better results in terms of
hardware overhead and test sequence length, compared to already
published reseeding techniques.

6. REFERENCES
[1] M. Abramovici, M. A. Breuer & A. D. Friedman, Digital

Systems Testing and Testable Design, Computer Sc. Press,
NY, 1990.

[2] P. H. Bardell, W. H. McAnney & J. Savir, Built-In Test for
VLSI: PseudoRandom Techniques, John Wiley & Sons, 1987.

[3] S. Hellebrand et al., “Built-In Test for Circuits with Scan
Based on Reseeding of Multiple-Polynomial Linear Feedback
Shift Registers”, IEEE Trans. Comp., Feb. 1995, pp. 223-233.

[4] L. R. Huang et al., “Gauss-Elimination-Based Generation of
Multiple Seed-Polynomial Pairs for LFSR”, IEEE Trans. on
CAD, vol. 16, no. 9, Sept. 1997, pp. 1015-1024.

[5] E. Kalligeros et al., “A ROMless LFSR Reseeding Scheme
for Scan-based BIST”, Proc. of ATS, Nov. 2002, pp. 206-211.

[6] E. Kalligeros et al., “An Efficient Seeds Selection Method for
LFSR-based Test-per-clock BIST”, Proc. 3rd IEEE ISQED,
San Jose, CA, USA, March 2002, pp. 261-266.

[7] G. Kiefer et al., “Application of Deterministic Logic BIST on
Industrial Circuits”, Proc. of ITC, Oct. 2000, pp. 105-114.

[8] B. Koenemann, “LFSR-Coded Test Patterns for Scan
Design”, Proc. of ETC, April 1991, pp. 237-242.

[9] C. V. Krishna et al., “Test Vector Encoding Using Partial
LFSR Reseeding”, Proc. of ITC, Oct.-Nov. 2001, pp. 885-893.

[10] H. K. Lee & D. S. Ha, “ATALANTA: An efficient ATPG for
compbinational circuits”, Dept. of Elect. Eng., Virginia
Polytechnic Inst. and State Univ., Blacksburg, VA, USA,
Tech. Rep. 93-12, 1993.

[11] H.-G. Liang et al., “Two-Dimensional Test Data Compres-
sion for Scan-Based Deterministic BIST”, Proc. of ITC, Oct.-
Nov. 2001, pp. 894-902.

[12] J. Rajski et al., “Test Data Decompression for Multiple Scan
Designs with Boundary Scan”, IEEE Trans. on Computers,
vol. 47, no. 11, Nov. 1998, pp. 1188-1200.

[13] J. Rajski et al., “Embedded Deterministic Test for Low Cost
Manufacuring Test”, Proc. of ITC, Oct. 2002, pp. 301-310.

[14] N. A. Touba & E. J. McCluskey, “ Bit-Fixing in Pseudo-
random Sequences for Scan BIST”, IEEE Trans. on CAD,
vol. 20, no. 4, April 2001, pp. 545-555.

[15] H.-J. Wunderlich, “BIST for Systems-on-a-chip”, Integration,
the VLSI Journal, vol. 26, no. 1-2, December 1998, pp. 55-78.

[16] N. Zacharia et al., “Decompression of Test Data Using
Variable-Length Seed LFSRs”, Proc. 13th VTS, Apr.-May
1995, pp. 426-433.

[17] N. Zacharia et al., “Two Dimensional Test Data
Decompressor for Multiple Scan Designs”, Proc. of ITC, Oct.
1996, pp. 186-194.

[18] “A Primitive Polynomial Search Program”, http://users2.ev1.
net/~sduplichan/primitivepolynomials/primitivepolynomials.h
tm.

298

	1. INTRODUCTION
	
	
	2. THE PROPOSED ARCHITECTURE

