
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004 1429

Multiphase BIST: A New Reseeding Technique for
High Test-Data Compression

Emmanouil Kalligeros, Xrysovalantis Kavousianos, Member, IEEE, and Dimitris Nikolos, Member, IEEE

Abstract—In this paper, a new reseeding architecture for scan-
based built-in self-test (BIST), which uses a linear feedback shift
register (LFSR) as test pattern generator, is proposed. Multiple
cells of the LFSR are utilized as sources for feeding the scan chain
of the circuit under test in different test phases. The LFSR gener-
ates the same state sequence in all phases, keeping that way the im-
plementation cost low. A seed-selection algorithm is furthermore
presented that, taking advantage of the multiphase architecture,
manages to significantly reduce the number of the required seeds
for achieving complete (100%) fault coverage. The proposed tech-
nique can be used either in a full BIST implementation or in a
test-resource partitioning scenario, since the test-data storage re-
quirements on the tester are very low. When a full BIST imple-
mentation is preferable, the multiphase architecture can also be
combined with a dynamic reseeding scheme that uses combina-
tional logic instead of a ROM in order to perform the reseedings.
This way the implementation area of the BIST circuitry is further
reduced. Experimental results demonstrate the advantages of the
proposed LFSR reseeding approach over the already known re-
seeding techniques.

Index Terms—Built-in self-test (BIST), logic circuit testing.

I. INTRODUCTION

THE designers of contemporary systems-on-a-chip (SoCs),
in order to reduce the time-to-market and the complexity

of their task, make use of various embedded cores, such as
memory and processor cores. All these cores are interconnected
together with some user-defined logic. However, the continu-
ously increasing density and complexity of such systems make
their testing a more and more challenging task.

One of the major problems of testing complex SoCs is that
of high test-data volume. The test-data storage requirements on
the tester are growing rapidly as the size of the circuit under
test (CUT) increases. As a result, test-data compression has be-
come an integral part of a circuit’s testing flow, as discussed
in [1]. Many works that try to tackle the high test-data volume
problem have been recently presented in the open literature.

Manuscript received July 26, 2003; revised January 2, 2004. This work was
supported in part by the Public Benefit Foundation “Alexander S. Onassis” via
its scholarships programs, in part by the Research Committee of Patras Uni-
versity, within the framework of the K. Karatheodoris Scholarships Program,
and in part by the State Scholarship’s Foundation of Greece via its Post-Doc-
toral research scholarships program. This work was based on “A highly regular
multi-phase reseeding technique for scan-based BIST”, which appeared in Pro-
ceedings of the 13th ACM Great Lakes Symposium on VLSI, April 2003. This
paper was recommended by Associate Editor S. Hellebrand.

E. Kalligeros and D. Nikolos are with the Computer Engineering and
Informatics Department, University of Patras, Patra 26500, Greece (e-mail:
kalliger@ceid.upatras.gr; nikolosd@cti.gr).

X. Kavousianos is with the Computer Science Department, University of
Ioannina, Ioannina 45110, Greece (e-mail: kabousia@cs.uoi.gr).

Digital Object Identifier 10.1109/TCAD.2004.833617

Several different approaches have been proposed, which use,
among others, run-length codes and their variants [2]–[4], sta-
tistical codes [5]–[7], parallel serial full scan [8], virtual scan
chains [9], combinational decompressors [10], linear decom-
pressors [11], [12], ring generators [13], and linear feedback
shift registers (LFSRs) along with modified automatic test pat-
tern generator (ATPG) tools [14]. All these works use an ex-
ternal tester to store compressed versions of the test vectors of
the CUT, which are then transferred and decompressed on-chip
by a small built-in circuit.

Another approach, which, unlike some of the above tech-
niques, requires the structure of the CUT to be known, is to try
to embed the test set of the CUT in a longer built-in self-test
(BIST) sequence. This way, both the volume and the width of
the stored patterns are reduced. BIST [15] is a very effective ap-
proach for achieving high rates of test-data compression. It can
be combined with various other techniques, but the “optimum
results,” in terms of test-data reduction, are obtained when com-
bined with reseeding [1]. Reseeding techniques [16]–[32] con-
stitute a very practical and effective solution to the problem
of high test-data volume. Recently, commercial test-automa-
tion tools that support a reseeding methodology have been an-
nounced [33]. Also, as mentioned in [25] and [26], store-and-
generate approaches like reseeding are much more flexible, than
tailoring the BIST architecture to a given deterministic test set,
as in the, otherwise very effective, mapping logic techniques of
[34]–[37] (“bit-flipping,” “bit-fixing”).

Usually, in a reseeding BIST scenario, a mixed-mode ap-
proach is adopted, according to which, pseudorandom along
with deterministic patterns are applied to the CUT for de-
tecting the random-pattern-testable (easy-to-detect) and the
random-pattern-resistant (hard-to-detect) faults, respectively. In
some mixed-mode cases, the deterministic patterns are inserted
among the pseudorandom ones. The application of determin-
istic patterns to the CUT is performed by loading, at specific
times during testing, new (precalculated) initial states (seeds)
to the test pattern generator (TPG). These seeds will expand to
deterministic test vectors as the TPG runs. The most acceptable
and widely used TPGs, when a mixed-mode approach is used,
are LFSRs.

The original idea of encoding test patterns as LFSR seeds by
solving systems of linear equations was proposed in [16]. This
technique needs an LFSR of length for encoding each
test cube, where is the maximum number of defined bits
in the test cubes testing the hard-to-detect faults of the CUT.
The proposed LFSR length ensures that the prob-
ability of not finding a seed for a test cube is less than . In
[17], a method for improving the encoding efficiency of LFSR

0278-0070/04$20.00 © 2004 IEEE

1430 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

Fig. 1. Classical reseeding scheme for scan-based BIST.

reseeding by using multiple-polynomial LFSRs was proposed.
By using 16 polynomials instead of one, the length of the LFSR
was reduced to . However, the encoding efficiency of both
[16] and [17] is limited, since there are many test cubes that
contain fewer than bits, which should be encoded using

or bits respectively. Two approaches for ad-
dressing this problem have been proposed. The first one [18],
[19] tries to encode more than one test cubes in just one seed by
applying test-cube merging and concatenation, while the other
uses variable-length seeds [20]–[22].

In [23] and [24], the reseeding technique is applied to BIST
schemes based not on LFSRs but on twisted-ring counters. This
approach is as simple to implement as an LFSR-based one and
features a very small control logic for controlling the reseeding
operation. Its main disadvantage is that a twisted-ring counter
cannot offer high encoding efficiency and as a result many
seeds are required for fully testing the CUT. In [25], a reseeding
scheme based on folding counters (twisted-ring counters with
programmable feedback) is presented. Although it manages
to significantly reduce the test-data storage requirements, this
is done at the expense of a nonstandard configuration of the
scan chain of the CUT, which is costly. This problem is solved
in [26], where the properties of folding counters are exploited
in order to reduce the number of the required seeds (vertical
compression), while an LFSR and a small control logic are
used for decompressing the seeds into folding counter states
(horizontal compression). The method of [26] [two-dimen-
sional (2-D) compression] needs more memory for storing its
seeds than that of [25], with the advantage that the nonstandard
scan chain configuration of [25] is no longer required. The
technique proposed in [27], by using an external tester, reseeds
the LFSR dynamically and partially (not all the LFSR register is
changed) reducing this way the test-data storage requirements
considerably.

The reseeding schemes presented in [28]–[32], instead of
loading the seeds from a memory, generate them dynamically
during testing, by means of some additional combinational
logic. In [28], a very simple scheme with an equally simple
but fast reseeding algorithm are presented, which, however,
lead to fairly good results, especially as far as the test-se-
quence length is concerned. In [29], a much more sophisticated
reseeding architecture in conjunction with a powerful compres-
sion algorithm are proposed. The number of required seeds is
significantly reduced, while the proposed architecture, com-

bined with the dynamic reseeding scheme of [28], minimizes
the hardware overhead of the BIST circuitry. The authors of
[30] use a dynamic scheme similar to that of [28] but with a
more efficient reseeding algorithm, which is further improved
in [31]. Finally, in [32], the work of [31] is enhanced with a
seed-encoding technique based on running the TPG a variable
number of clock cycles before loading a new seed.

In this paper, we present a new LFSR reseeding architecture
for scan-based BIST that fully exploits the encoding ability of an
LFSR seed by using more than one cells of the LFSR for feeding
the scan chain of the CUT, in different test phases. This way
the number of seeds required for achieving complete (100%)
stuck-at fault coverage is significantly reduced. For keeping the
hardware overhead of the proposed architecture low, a very reg-
ular structure is introduced. This structure can be efficiently
combined with the dynamic reseeding scheme, recently pro-
posed in [28]. However, the proposed architecture is generic and
can be also combined with a ROM in a full BIST environment
or with an external tester in a test resource partitioning imple-
mentation. Along with the proposed architecture, an effective
seed-selection algorithm is also presented for selecting the seeds
and the LFSR cells that will finally feed the scan chain of the
CUT.

The remaining of the paper is organized as follows. Sec-
tion II provides the motivation for this work, Sections III
and IV present the proposed architecture and the reseeding
algorithm, respectively, while in Section V its applicability to a
multiple scan chain environment is discussed. In Section VI, the
effectiveness of the proposed technique is evaluated with ex-
perimental results and comparisons with previously presented
works. Section VII describes how the dynamic reseeding
scheme of [28] can be applied to the proposed architecture
and hardware overhead results are given for demonstrating the
advantages of the dynamic scheme over ROM-based imple-
mentations. The paper is concluded in Section VIII.

II. MOTIVATION

The classical reseeding approach for scan-based BIST, as-
suming a single scan chain, is shown in Fig. 1.

As CUT, we consider a sequential circuit consisting of a com-
binational part and of memory elements (flip-flops), which
form a scan chain of equal length. The TPG circuit consists of an
LFSR with flip-flop cells and a ROM for storing the
seeds. The LFSR is periodically loaded with a new seed, starting

KALLIGEROS et al.: MULTIPHASE BIST: NEW RESEEDING TECHNIQUE FOR HIGH TEST-DATA COMPRESSION 1431

Fig. 2. External-XOR LFSR with characteristic polynomial x + x+ 1.

from which it generates a predefined number of test vectors. An
LFSR cell (usually the last one) is selected for feeding the scan
chain of the CUT.

An LFSR seed can be calculated by solving a system of linear
equations [16], [18], [27]. Let us assume, for example, that as
TPG we use the LFSR of Fig. 2 () and that the scan chain
of the CUT is of length seven ().

For finding a seed so as the LFSR to generate a test vector
compatible with a test cube, let say 1x10xx1 (x denotes a
don’t care), we represent the value of each seed bit with
a binary variable . That is, the required seed is initially
equal to . For filling the CUT’s scan chain
the LFSR should pass through seven states, starting from
seed as shown in Fig. 3 (binary expression

denotes the exclusive-OR -XOR- operation of vari-
ables , and).

In order to find an appropriate seed for test cube 1x10xx1, the
resulting binary expressions from the last LFSR cell should be
equal to the corresponding care bits of 1x10xx1. Since the last
bit of state 1, which has been shifted first in the scan chain, is
the rightmost binary expression when the scan-in operation is
finished, we have:

By solving the above system of linear equations, we get
, and , i.e., the required seed is . In-

deed, if we replace with 0, the LFSR will generate vector
1110001, while if we set vector 1010111 will be gen-
erated. Instead of replacing variable randomly, we could try
to encode another test cube in seed in order to take ad-
vantage of the free variable . However, if we consider only
the last LFSR cell, the encoding ability of the initial seed is not
fully exploited. On the other hand, if we could use some of the
other LFSR cells too, more test cubes would be probably com-
pressed to a single LFSR seed.

As an example, we assume that after having determined the
necessary seed for test cube 1x10xx1, we would like to encode
test cube 1x00xx1 in the same seed, if possible. However, none
of the resulting systems of linear equations is solvable if we con-
sider only the last LFSR cell (the maximum window of symbolic
vectors that could be generated by the last cell was examined).
If we could use some of the other cells though, we could get
a vector compatible with test cube 1x00xx1 from the inverted
output of the first cell, by replacing with 1. This can be justi-
fied by solving the system of linear equations that corresponds
to the first LFSR cell for the test cube that is complementary to

1x00xx1 (0x11xx0). The generated bit sequences are shown in
Fig. 4.

From the above example, it is obvious that the encoding
ability of an LFSR seed would have been better exploited if
more than one LFSR cells had been selected for feeding the
scan chain of the CUT, in different test phases of course. That is
the main idea behind the proposed multiphase LFSR reseeding
scheme that will be presented in detail in the following section.
It should be underlined that, although the above example
was based on an external-XOR LFSR, such LFSRs are not
convenient for feeding a CUT’s scan chain from various cells,
since the phase shift between the bit sequences of any pair of
their cells is bounded by the LFSR length. However, as will be
seen in the evaluation section of the paper, when internal-XOR

LFSRs are used, the seeds’ encoding ability improves as the
number of utilized cells increases.

III. PROPOSED ARCHITECTURE

The overview of the proposed multiphase scan-based archi-
tecture is shown in Fig. 5.

The proposed scheme has two modes of operation: 1) the
easy-fault-detection mode and 2) the hard-fault-detection
mode. Although this distinction appears in every mixed-mode
scheme, in the proposed one the operation of the scheme in
these two modes differs significantly. During the easy-fault
detection, the LFSR runs in autonomous mode and feeds the
scan chain of the CUT from a single cell (the last one). The user
defines the value of parameter VectorsForEasyFaults, which
denotes the maximum number of vectors that can be used for
detecting the easy faults. Only the Bit and Vector Counters
are enabled during the easy-fault-detection mode. The Bit
Counter controls the scan-in operation of each produced vector
and signals the Vector Counter to increase, while the Vector
Counter increases until a number of pseudorandom patterns
equal to VectorsForEasyFaults have been applied to the CUT.
The Reseeding and the Cell Selection Counters are initially
reset like the Bit and Vector Counters, but they retain their
initial zero value throughout the easy-fault-detection mode
(i.e., they are disabled). The scheme’s operation switches from
the easy-vault-detection mode to the hard-fault-detection one
when VectorsForEasyFaults pseudorandom patterns have been
applied to the CUT, that is when Vector Counter reaches value
VectorsForEasyFaults-1.

For better explaining the proposed architecture’s operation
during the hard-fault-detection mode, we assume that a subset
of LFSR cells has been chosen to feed the scan chain (this
subset includes the last cell used for generating the initial pseu-
dorandom patterns). The hard-fault-detection part of the test ses-
sion consists of test phases, and in each phase, one of the
selected cells is used to feed the scan chain. All phases are iden-
tical considering the operation of the LFSR and the reseeding
scheme, with the difference that in each phase a different cell of
the LFSR is used to feed the scan-chain of the CUT and, there-
fore, a different pattern sequence is generated. Specifically, in
each phase:

1) the same number of test vectors is loaded in the scan chain,
2) the same seeds in the same order and at the same time

instants are loaded in the LFSR and, as a result
3) the LFSR passes through the same sequence of states.

1432 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

Fig. 3. Generating seven states starting from seed fa ; a ; a ; a g.

Fig. 4. Using multiple LFSR cells for generating test vectors.

Fig. 5. Multiphase scan-based TPG architecture.

Furthermore, between every two successive reseedings, the
same constant, user-defined number of vectors, VectorsPerSeed,
is loaded into the scan chain. The above properties make the
structure of the proposed architecture very regular and easy
to implement. The test sequence generated by the multiphase
TPG is of the form shown in Fig. 6.

Let us now describe the operation of the proposed architecture
in the hard-fault-detection mode more thoroughly. To simplify
the description, we have omitted the capture cycle required after
a test vector has been shifted in the scan chain. As we previously
mentioned, at the end of the easy-fault-detection mode, Vector
Counter’s value is equal to VectorsForEasyFaults-1, while the
Reseeding and the Cell Selection Counters are equal to 0 (Bit
Counter’s value is , where is the scan chain length). In
the next clock edge, the first Reseeding is performed. The Vector
Counter signals the Reseeding Counter to increase by one and
VectorsPerSeed test vectors are about to be generated, starting

from the seed that has been loaded in the LFSR. A new Re-
seeding is performed when the Vector Counter has counted Vec-
torsPerSeed patterns and, of course, Bit Counter’s value is
(which means that the last test vector of the previous seed has
been loaded in the scan chain). We note that when performing
a reseeding, Vector Counter’s value is properly reduced, so as
after the application of the VectorsPerSeed patterns of the new
seed, to be equal to VectorsForEasyFaults-1. This way the only
value of the Vector Counter that needs to be checked in all re-
seedings is VectorsForEasyFaults-1. When all the reseedings of
a phase have been performed, the Reseeding Counter signals the
Cell Selection Counter to increase and the next phase is initiated
(Seed 1 is reloaded in the LFSR). The value of the Cell Selection
Counter is increased by one at each new phase, thus enabling a
different LFSR cell to feed the scan chain through the multi-
plexer. As for the Seed-loading Mechanism, it can be a ROM as
in the classical reseeding approach, a combinational logic for re-
ducing the hardware requirements of the BIST circuitry as will
be described in Section VII or it can even be eliminated and
replaced by an external tester in a test resource partitioning sce-
nario.

Assuming that in each phase reseedings are performed,
then the test sequence length is given by the following relation
(see Fig. 6):

Test Sequence Length

(1)

An important feature of the multiphase architecture is that,
practically, the hardware overhead of the Seed-loading Mech-
anism does not depend on the number of phases, since its
operation as well as that of the LFSR is the same in all of them.
Taking into consideration that, apart from the Seed-loading
Mechanism, the hardware overhead of the rest control logic

KALLIGEROS et al.: MULTIPHASE BIST: NEW RESEEDING TECHNIQUE FOR HIGH TEST-DATA COMPRESSION 1433

Fig. 6. Test sequence generated by the multiphase TPG architecture.

is negligible, we conclude that the overall hardware overhead
of the proposed architecture does not depend on the number
of phases included in the test sequence (only the size of the
multiplexer and probably that of the Cell Selection Counter
increase when a new phase is added).

We have to note that both normal and inverted outputs of the
LFSR cells may be used to feed the scan chain, as in the example
of the previous section. We should also stress that the proposed
architecture does not require any modifications of the scan chain
of the CUT, being this way fully compatible with standard scan
design.

IV. RESEEDING ALGORITHM

In this section, we present an efficient algorithm for selecting
the seeds and the LFSR cells, which will feed the scan chain
of the CUT throughout testing. The main goal of this algorithm
is to minimize the number of seeds required for fully (100%)
testing the CUT. This way, the hardware required for the imple-
mentation of the proposed scheme will be minimized as well.
The reseeding algorithm consists of three parts: 1) the easy-
fault-detection part, which is then followed by some test-cube
preprocessing steps; 2) the seed and cell-selection part for de-
tecting the hard faults; and 3) the test sequence-reduction part.

A. Easy-Fault Detection and Preprocessing

The first part of the proposed algorithm is rather straightfor-
ward. The user defines the value of parameter VectorsForEasy-
Faults as mentioned above, the LFSR is set to a random initial
state and VectorsForEasyFaults random patterns are applied to
the CUT from the last LFSR cell, for testing the easy-to-detect
faults. This pseudorandom part of the test sequence detects the
vast majority of the faults of the CUT. The remaining faults are
identified as hard-to-detect and multiple test cubes are extracted
for each one of them by using the ATALANTA ATPG tool [38].

Only a small subset of the extracted test cubes is selected for
participating in the second part of the algorithm. This subset
detects all hard faults and has much smaller cardinality than the
initial test-cube set. The selection procedure (fault-simulation
preprocessing) is fairly fast and targets both the optimization of
the seed volume results and the run-time reduction of the second
and main part of the reseeding algorithm.

At first, we fault simulate all the test cubes of the hard-to-
detect faults that have been extracted with ATALANTA and we
record, for each one, the set of hard faults it detects. To each hard
fault a fault index is also assigned, which is equal to
the number of times has been detected after the application of
all test cubes. This is also an indication of how “hard” is (is

“harder” than if , since is tested by more
test cubes). A quality metric is then calculated for each test cube
, which is equal to the mean value of the indices of the

faults that test cube detects. The easier the faults detected by
a test cube are, the greater the corresponding metric is.

A minimal set of test cubes has to be selected such that all
the hard-to-detect faults of the CUT can be tested by the test
cubes of the selected set. For solving this set-covering problem,
we use a simple, greedy heuristic algorithm. At each iteration of
the algorithm, we select the test cube that detects the largest set
of hard-to-detect faults and we eliminate those faults and their
corresponding test cubes (except for the selected one), so as not
to be considered by the seed-selection procedure. If we have to
choose between two test cubes, which detect the same maximum
number of hard faults, we select the one with the smaller metric
(i.e., the one that detects the hardest faults). By repeating the
above described step, we finally end up with a small subset of
test cubes that test all the hard-to-detect faults of the CUT.

The role of the fault-simulation preprocessing is to enhance
the quality of the test-cube set, by filtering out redundant cubes.
In that way, not only the running time of the seed-selection al-
gorithm is significantly reduced, but its efficiency is improved
as well, since only test cubes that test many hard-to-detect faults
are handled.

After the fault-simulation preprocessing step, we check if for
each one of the selected test cubes, a seed, for at least one LFSR
cell, can be calculated such that the first vector generated from
that seed to be compatible with the corresponding test cube.
Practically, such a seed always exists according to [26], given
that the LFSR length is in the neighborhood of the maximum
number of defined bits of the test cubes .

A final preprocessing step then follows, which uses the in-
formation gathered in the preceding checking step. Its purpose
is to assign a weight to each of the selected test cubes, which
will be used by the seed selection procedure in the second part
of the algorithm. The weight of a test cube is equal to the av-
erage number of variables that remained undefined (free) after
solving the corresponding systems of linear equations from all
LFSR cells. That is, if is the number of free variables after
solving a system of linear equations for finding a seed for test
cube from cell , then the weight of is equal to

where is the LFSR length, , if the system is un-
solvable and is the number of solvable systems. The smaller
the weight is, the more difficult is for the algorithm to encode

1434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

another test cube along with in the same seed, since fewer vari-
ables remain free after solving a system for that cube.

B. Selection of Seeds and LFSR Cells for Testing
the Hard-to-Detect Faults

The procedure that will be described in this section deter-
mines a seed and some LFSR cells for feeding the scan chain
of the CUT in order to detect as many hard faults as possible.
By repeating the same procedure we derive the final set of seeds
and LFSR cells that will be used by the multiphase TPG. The
seed-selection algorithm that will be presented tries to encode
as many test cubes as possible to just one seed by exploiting the
bit sequences produced by more than one cells of the LFSR.

Before proceeding to the description of the algorithm, we
should note that although the proposed TPG architecture per-
forms all the reseedings while feeding the scan chain from the
same LFSR cell (Fig. 6), the seed-selection algorithm exam-
ines the sequence of all LFSR cells when deciding for a new
seed. That is, in order to preserve the regularity of the pro-
posed architecture, as it was described in Section III, the test
vectors are applied to the CUT in different order from which
they have been processed. This regularity is vital in the case that
the Seed-loading Mechanism is implemented as combinational
logic, as will be explained in Section VII.

The selection of a new seed and of the appropriate LFSR
cells is done by solving systems of linear equations based
on the feedback structure of the LFSR, as demonstrated in
Section II. Initially, the logic value stored in cell of the LFSR
is represented by the binary variable . Therefore, the initial
state of the LFSR consists of
variables, , where is the LFSR length and

. Then, we let the
LFSR evolve for states (i.e., as if it was
generating test vectors), where the th LFSR
state is equal to and each one of the

is a binary expression containing one
or more variables from the set (the variables in
each binary expression are related together with the modulo-2
addition, i.e., XOR, operation only). We define as
(Expression Vector) the th set of binary expressions produced
by the th cell of the LFSR. Each set has cardinality

. As shown in Fig. 7, is the th vector (in reverse bit
order) produced by the th cell of the LFSR, if its initial state
is equal to . In the example of Fig. 3 ,
we have

,
and

. As can be
seen in Fig. 3, the first symbolic vector shifted in the scan chain
of the CUT from the fourth LFSR cell is equal to in
reverse bit order.

Let be a test cube detecting fault , i.e.,
with . If the system of linear equations

, which is

...

Fig. 7. Expression vector (EV) sets as they are generated by the LFSR.

for , can be solved, then a test vector detecting fault
can be produced by cell of the LFSR during the th -tu-

plet of clock cycles after its reseeding. If this system has a so-
lution, then some of the variables can be re-
placed by expressions containing other binary variables (the
free variables when solving the system) and constants (0 or 1).
If we replace those variables in the initial state of the LFSR

we get a seed, starting from which
the LFSR will generate a test vector for detecting fault from
cell , after -tuplets of clock cycles. Thus, the first step of the
seed-selection procedure is to construct all sets of binary expres-
sions , with and ,
by simulating the LFSR symbolically.

The seed-selection algorithm tries to encode the test cubes
of the hard-to-detect faults in LFSR seeds according to the
following rule: the most “difficult” cubes according to their
weights (Section IV-A), have to be encoded first. This rule
leads to solutions with fewer seeds. By selecting the most
“difficult” cubes first, we avoid having to handle them at the
last stages of the encoding procedure, where it is not easy to
encode, in the same seed, another “difficult” test cube. As a
result, a more uniform distribution of the detected hard faults
over the reseedings is achieved, since in the last reseedings
we can still encode more than one test cube in an LFSR seed.
This rule is a generalization of a first-cube selection criterion
presented in [39].

Initially, the algorithm selects the test cube with the smallest
weight (the most “difficult” to be encoded along with another
one) and attempts to solve one of the systems ,
for all LFSR cells. Since no significant variable savings can

KALLIGEROS et al.: MULTIPHASE BIST: NEW RESEEDING TECHNIQUE FOR HIGH TEST-DATA COMPRESSION 1435

be achieved by solving the system for different LFSR cells, the
first system that can be solved is selected. The selected solu-
tion leads to the replacement of some variables as explained
above. These variables are replaced in all sets and, in
that way, we get new reduced sets . Then for each one
of the remaining test cubes , the algorithm attempts to solve
the systems , for all . All the systems that can be
solved are inserted in the set SolvableSystems and, from those, a
system that corresponds to the cube with the smallest weight is
selected first. The system is solved and some more variables are
replaced. This time the replacement of those variables is done
only in the systems of the set SolvableSystems. It is expected that
many of the systems of this set will no longer be solvable, due
to the variable replacements. Such systems are dropped from
the set. We repeat this selection procedure, until the set Solv-
ableSystems becomes empty. During the selection of a system

, etc., the algorithm also selects cells
, etc., for feeding the scan chain.

The successive replacements of the variables with binary
expressions leads gradually to their replacement with constant
values (0 or 1). In that way, the initial state of the LFSR

is gradually transformed to a -tuplet,
which is the required seed. Any variables not replaced by
constant values are set to a random value. Starting from that
seed, we generate all the VectorsPerSeed test vectors from each
selected cell, we fault simulate them and drop the test cubes of
the detected faults. The whole seed-selection procedure is then
repeated, targeting a new seed, until complete fault coverage is
achieved.

One final remark about the proposed algorithm is that the user
can bound the number of cells that will be selected for feeding
the scan chain by setting the value of parameter MaxCellsToSe-
lect. This constraint has been added in order to have better con-
trol of the resulting test sequence length (relation 1, Section III).
The algorithm confines its search to only the already selected
LFSR cells, if their number becomes equal to MaxCellsToSe-
lect. We note that when one test cube has to be chosen among
others of the same minimum weight, the one generated by an
already selected cell is preferred.

The complexity of the seed-selection algorithm is rather mod-
erate. It should be noted that the procedures for solving systems
of linear equations modulo-2, are efficient and fast [27]. In fact,
they are much faster than those for solving conventional sys-
tems of linear equations. Although in both cases oper-
ations are required [40], for a conventional system these oper-
ations are floating point, which are far more time consuming
than the simple modulo-2 addition (XOR). Also, the above-de-
scribed algorithm is significantly speeded up by the fact that the
most “difficult” cube is initially selected when searching for a
new seed. Consequently, many variables are initially replaced
and, as a result, few of the reduced systems can
be solved and inserted to the set SolvableSystems. The search
time of the algorithm is furthermore reduced when, after calcu-
lating the first seeds, the number of selected cells becomes equal
to the value of parameter MaxCellsToSelect. The actual running
time of our algorithm, excluding fault simulation, varied for the
five larger ISCAS’89 benchmark circuits between some minutes
and two hours on a 2.4-GHz Pentium IV system. However, sig-
nificant execution-time reductions can be achieved by adopting
various implementation optimizations.

C. Test Sequence Reduction Procedure

When all the necessary seeds and the cells of the LFSR that
will feed the scan chain of the CUT have been determined, the
third and final part of the reseeding algorithm is applied. This
part attempts to reduce the test sequence length. Let us assume
that:

1) LFSR cells have been selected for finally feeding the
scan chain of the CUT (includes the last cell used in
easy-fault-detection mode).

2) reseedings are performed.

Then, the test sequence length, as explained in Section III, is
equal to

Test Sequence Length

The optimization procedure attempts to reduce each one of
these factors in three steps, by fault simulating the vectors of
the test sequence in various permutations:

Step 1) Reduction of the reseedings (R) and/or the initial
vectors (VectorsForEasyFaults): This step is based
on the observation that many of the easy faults,
which are detected by the initial pseudorandom pat-
terns, are also detected by subsequent reseedings
and, therefore, many of the initial vectors could be
eliminated. This optimization step is executed in
two substeps.

1) Starting from the last reseeding, we fault
simulate the VectorsPerSeed test vectors pro-
duced by each seed, from all selected LFSR
cells, in reverse seed order. That is, the vec-
tors of the last LFSR seed are first simulated
from all LFSR cells, then those of the
second to the last, etc. If at some point during
this procedure complete fault coverage is
reached, all the initial VectorsForEasyFaults
patterns are removed from the test sequence
along with the test vectors that correspond
to the unsimulated seeds, if any. An unsim-
ulated seed is a seed, whose corresponding
vectors have not been simulated during this
procedure.

2) If complete fault coverage has not been
achieved in the previous substep, we fault
simulate in reverse order the initial Vectors-
ForEasyFaults patterns until we reach 100%
fault coverage. Then, we set the last reversely
simulated vector as the initial one (and its
corresponding state as the initial state of the
LFSR) and we exclude the rest test vectors
from the test sequence.

Step 2) Reduction of VectorsPerSeed: This reduction step is
based on the observation that the number of test vec-
tors generated between two successive reseedings

1436 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

Fig. 8. Proposed multiphase architecture for multiple scan chains.

has been set arbitrarily by the user and may be re-
duced, without any drop in the fault coverage. The
following tasks are executed during this step.

1) The remaining from Step 1 test vectors for
testing the easy faults are fault simulated and
the detected faults are dropped. If Step 1 has
eliminated all the initial vectors, we proceed
directly to task 2.

2) For all the seeds, we fault simulate the first
vector generated by each of the selected
LFSR cells and we drop the detected faults.
We repeat the same procedure for the second
vector, the third, etc., until at the th vector,
complete fault coverage is achieved. We then
set .

Step 3) Reduction of the selected LFSR cells : This step
fault simulates the test vectors produced by all the
selected cells of the LFSR and records the faults de-
tected by each cell, as well as the total number of
times a fault has been detected by different LFSR
cells. If all the faults tested by cell have been to-
tally detected more than once, then cell can be re-
moved without any loss in the fault coverage. For
this reduction step we should note that 1) no extra
fault simulation is required, since all the necessary
information can be gathered when executing Step
2 and 2) if Step 1 has not totally eliminated the ini-
tial pseudorandom vectors, the last LFSR cell (from
which they are generated) cannot be removed.

V. APPLICATION OF THE MULTIPHASE TECHNIQUE TO

MULTIPLE SCAN CHAIN ARCHITECTURES

So far, we have presented the multiphase architecture and the
corresponding reseeding algorithm considering circuits with a
single scan chain. We will now explain how the multiphase tech-
nique can be applied in a multiple scan chain environment. We
should note beforehand that neither the basic structure (Fig. 5)
of the proposed architecture nor the reseeding algorithm (and its
complexity) are modified in the multiple scan chain case.

Fig. 9. Multiphase Phase Shifter.

A. Multiphase Architecture for Multiple Scan Chains

The architecture of the proposed multiphase scan-based TPG,
for the case of a CUT with more than one scan chains, is shown
in Fig. 8.

The main difference from the architecture proposed for a
CUT with a single scan chain, is the multiphase Phase Shifter
module, which is inserted between the multiplexer and the scan
chains. The purpose of this module is twofold: it minimizes the
linear dependencies among the bit sequences shifted in the scan
chains, as well as, by receiving the output of the multiplexer, it
feeds the scan chains of the CUT with different shifted versions
of the LFSR’s -sequence. A more detailed diagram of the
multiphase Phase Shifter is shown in Fig. 9.

The multiphase Phase Shifter is initially calculated as a
normal phase shifter, as proposed by the authors of [41]. Then,
an extra input is added to each XOR tree, which is driven by the
multiplexer of the multiphase architecture. At each test phase, a
different LFSR cell is selected to drive through the multiplexer
that extra input. This way the shifting function of each of the
Phase Shifter’s outputs is altered and a different part of the

KALLIGEROS et al.: MULTIPHASE BIST: NEW RESEEDING TECHNIQUE FOR HIGH TEST-DATA COMPRESSION 1437

LFSR’s -sequence is generated. This is essentially the same
as using different LFSR cells in the single scan chain case
presented in Section III. In the case of multiple scan chains, the
multiplexer can also drive the XOR trees’ extra input with the
constant 0 value. When this happens, the Phase Shifter operates
as if the additional input was not present and, therefore, as it
was originally designed to shift the -sequences. This is done
for exploiting the potential of the original phase shifter too. We
should note that when the output of an LFSR cell is fed to the
XOR trees, there is some probability that the resulting interchain
separation for some of the scan chains will be less than the
maximum scan chain length. This may reduce the encoding
ability of the scheme when that specific LFSR cell drives the
XOR trees, but it is highly unlikely that the same will be true for
many LFSR cells. We should also mention that the additional
XOR trees’ input does not affect their propagation delay when
the number of the rest of the inputs is not equal to a power of
2. In the opposite case, one additional level of two-input XOR

gates is added to the trees.
As far as the operation of the scheme is concerned, it is the

same as that described in Section III with the difference that,
during the easy-fault-detection mode and the first reseeding
phase, the output of the multiplexer is not driven by the last
LFSR cell, but by the logic value 0 (i.e., the initially calculated
phase shifter is used). This is done in order to ensure the high
efficiency of the pseudorandom sequence, which tests the
easy-to-detect faults of the CUT.

B. Reseeding Algorithm in the Multiple Scan Chain Case

Handling the additional constant 0 value of the multiplexer is
what differentiates the reseeding algorithm for the multiple scan
chain case from that for the single one. As explained above, the
constant 0 value is used in the easy-fault-detection mode and
is also considered during seed selection. That is, it is utilized
exactly as the preselected last LFSR cell in the single scan chain
case. So, when a number of LFSR cells has been selected by
the reseeding algorithm, one of them (the first one) corresponds
to the constant 0 value. As for the linear system-solving part
of the seed-selection procedure, since the outputs of the LFSR
cells are driven through the XOR trees to the scan chains of the
CUT, the resulting binary expressions are of the form presented
in Sections II and IV. Consequently, the resulting linear systems
can be treated as already described. Of course, an set
is now constructed taking into consideration all the outputs of
the multiphase Phase Shifter, so as to correspond to a test vector
shifted in the scan chains of the CUT.

Another point that is worth discussion concerns the random
shift of the LFSR’s -sequence when an unconsidered, during
the original shifter’s calculation, LFSR cell is driven through
the multiplexer to the XOR trees, during the original shifter’s
calculation. The basic idea of the multiphase technique (for ei-
ther single or multiple scan chains) is to exploit various shifted
versions of the same -sequence available in an LFSR state se-
quence. Although the exact shift is not known at each test phase
(which is also the case when driving a single scan chain from
various LFSR cells), it can be utilized to our benefit by deter-
mining the binary variables’ values by means of solving sys-
tems of linear equations. That is, the randomness of the shifting

TABLE I
EXPERIMENTAL RESULTS FOR THE ISCAS BENCHMARK CIRCUITS,

ASSUMING A SINGLE SCAN CHAIN

is overbalanced by the derivation of the variables’ values via the
solution of linear systems. This way, the multiphase technique
enhances the encoding ability of an LFSR seed, as will be pre-
sented in the experimental results section that follows.

VI. EVALUATION AND COMPARISONS

For evaluating the effectiveness of the proposed technique,
we implemented the algorithm described in Section IV in
the C programming language and we performed a series of
experiments using the ISCAS’85 [42] and the ISCAS’89
[43] benchmark circuits. Only circuits with undetected faults
after the application of 10 000 pseudorandom patterns have
been considered. The size of the LFSRs used was deter-
mined by the maximum number of defined bits that
the test cubes, detecting the hard-to-detect faults of the
CUT, contained. According to [26], an LFSR of size , with

, suffices for encoding test cubes
with defined bits. For a few benchmark circuits, in order
to boost the encoding efficiency of the seed-selection algo-
rithm, we used LFSRs with greater length than (see
Table I). This way more variables remained in the produced
expressions after the selection of the first, most “difficult” test
cube. The primitive polynomials of the LFSRs were generated
with the tools that can be found in [44]. We note that in our
experiments, we used internal-XOR LFSRs. For each one of the
smaller circuits, which have few hard-to-detect faults, 20 ex-
periments were performed, starting from a random initial seed
each time. For the circuits containing many hard faults (c2670,
c7552, s838, s9234, s13207, s15850, s38417, s38584) we ran
up to five experiments with different values of parameters
VectorsPerSeed, MaxCellsToSelect and, in some cases, with
different LFSR lengths. For such circuits, the selection of the
initial seed is not critical for the performance of the algorithm.
The value of parameter VectorsForEasyFaults varied from 5000
to 10 000 (in most cases it was set to 10 000). The test sets we
have used in our experiments can be found in [45].

In Table I, the best results obtained from the above experi-
ments, for the single scan chain case, are reported (results for
circuits with multiple scan chains will be provided at the end
of this section). The names of the benchmark circuits as well
as the length of the corresponding scan paths (primary inputs +

1438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

internal flip-flops) are given in the first two columns. The sub-
sequent columns present the maximum number of defined bits
in the test cubes of the CUT , the length of the LFSR
used as TPG, the number of LFSR cells which were selected
for feeding the scan chain (source cells), the value of parameter
VectorsPerSeed and the number of calculated seeds. The total
number of vectors for achieving 100% stuck-at fault coverage
is shown in the right-most column of Table I. Please note that
although the outputs of the benchmark circuits are not included
in the scan element volumes that appear in the second column
of Table I, they have been taken into consideration when per-
forming our experiments.

Concerning the results of Table I, it is worth noting that, as
mentioned earlier, in most cases the LFSR length is in the neigh-
borhood of as it was reported in [26]. Consequently, the
high encoding efficiency of the proposed technique that will be
verified by subsequent comparisons is due to the better exploita-
tion of the LFSR seeds, which are used for feeding the scan
chain of the CUT from multiple LFSR cells. We also observe
that for circuits containing many hard-to-detect faults, we do not
need to set VectorsPerSeed to a high value in order to achieve
high compression rates. This favors the running time of the al-
gorithm, which remains low.

There are three parameters that affect the performance of
the seed-selection algorithm: 1) MaxCellsToSelect; 2) Vec-
torsPerSeed; and 3) the LFSR length. The LFSR length is
directly connected to the number of free variables when solving
a system for encoding a test cube to an LFSR seed and, as a
result, a larger LFSR offers higher encoding ability. However,
this is a well-known property and can be applied to the vast
majority of LFSR reseeding works. Thus, it would be more
interesting to investigate the behavior of the algorithm, with
respect to the values of parameters MaxCellsToSelect and
VectorsPerSeed.

In Fig. 10(a) and (b), the seed volume and the test sequence
length results for a series of experiments for s5378 are pre-
sented, respectively. 7000 pseudorandom patterns were initially
generated by the LFSR and then the seed-selection algorithm
was applied for calculating the seeds for the remaining hard-to-
detect faults. VectorsPerSeed was set to 1, 5, 15, 20, 30, 50, 100,
200, and 400 for each one of the values 5, 10, 15, and 19 of
parameter MaxCellsToSelect (36 experiments were totally per-
formed). The LFSR length was equal to 19.

In Fig. 10(a), we observe that, as was expected, the encoding
efficiency of the seed-selection algorithm improves as the value
of parameter VectorsPerSeed increases. The main characteristic
of the proposed TPG architecture however, is that of feeding the
scan chain of the CUT from multiple LFSR cells. In general, the
total number of selected seeds is reduced when the algorithm is
allowed to handle more LFSR cells (parameter MaxCellsToSe-
lect). Specifically, an increase in the value of MaxCellsToSelect
can affect the results of the seed-selection algorithm, in different
ways according to value of parameter VectorsPerSeed. As can
be seen in Fig. 10(a), when VectorsPerSeed is very small (1 to
15), there is no significant benefit, since the search space of the
algorithm is confined by parameter VectorsPerSeed. Especially
for VectorsPerSeed , the number of resulting seeds is con-
stant and equal to 30 for all values of parameter MaxCellsToSe-

(a)

(b)

Fig. 10. (a) Seed volume results for various values of parameters
VectorsPerSeed and MaxCellsToSelect. (b) Test sequence length results
for various values of parameters VectorsPerSeed and MaxCellsToSelect.

lect. For VectorsPerSeed to approximately 25, the reduc-
tion in the seed volume, caused by a MaxCellsToSelect increase,
does not bring about a respective increase in the test sequence
length, due to the relative small value of VectorsPerSeed. That
is, VectorsPerSeed is high enough so as not to decisively bound
the search space of the algorithm, as well as small enough in
order to allow an increase in the value of MaxCellsToSelect to
be compensated by the resulting decrease in the number of se-
lected seeds. For example, for VectorsPerSeed , we get 23
seeds and 9520 vectors for MaxCellsToSelect and seeds
with 9880 vectors for MaxCellsToSelect , that is, with a
3.8% increase in the test sequence length, we have a 13% gain
in test-data storage. For greater values of VectorsPerSeed, the
gain in seed volume due to an increase in the value of param-
eter MaxCellsToSelect, is “paid” by additional test vectors (the
classical “test-data storage—test sequence length” tradeoff).

For both parameters VectorsPerSeed and MaxCellsToSelect,
there is a saturation point such that an increase of their values
after that point slightly contributes to the seed volume results.
For the experiments presented in Fig. 10(a), the saturation point
of parameter VectorsPerSeed seems to be approximately 200 for
MaxCellsToSelect and and greater than 200 for the rest
values of MaxCellsToSelect. In general, the saturation point of
VectorsPerSeed gets higher as MaxCellsToSelect decreases (the
same holds for MaxCellsToSelect as the value of VectorsPerSeed
decreases). For parameter MaxCellsToSelect,

KALLIGEROS et al.: MULTIPHASE BIST: NEW RESEEDING TECHNIQUE FOR HIGH TEST-DATA COMPRESSION 1439

Fig. 11. Seed volume comparisons for MaxCellsToSelect = 1 and 10 or 15.

the saturation starts from value 10, while for values greater than
15 any further seed reduction cannot be achieved [the curves of
“MaxCellsToSelect ” and “MaxCellsToSelect ” coin-
cide in Fig. 10(a)]. We should also note that, for both the consid-
ered parameters, when the saturation point is exceeded, any fur-
ther increase in their value does not affect the resulting test-se-
quence length significantly. In the case that MaxCellsToSelect
is saturated, the seed-selection algorithm simply does not pick
any additional cells. That is why the curves of “MaxCellsToS-
elect ” and “MaxCellsToSelect ” coincide also in
Fig. 10(b). Furthermore, any additional vectors per seed, when
the value of the corresponding parameter is saturated, usually
cause a decrease in the number of utilized cells, which keeps
the test sequence length at similar levels to those for smaller
values of parameter VectorsPerSeed. This explains the fact that
the “# Test Vectors” curves in Fig. 10(b) seem to converge to
an upper limit. The anomalies of the “MaxCellsToSelect ”
curve in Fig. 10(b) (it should be close to the “MaxCellsToSe-
lect ” and above the “MaxCellsToSelect ” curve) are
mainly due to the test sequence reduction procedure. More of the
initial pseudorandom patterns are eliminated for VectorsPerSeed

and than in the corresponding cases for the rest values
of MaxCellsToSelect. Finally, for VectorsPerSeed the al-
gorithm takes advantage of the big pattern window (it manages
to keep the number of utilized cells equal to 10), reducing the
seed count a little more [Fig. 10(a)] and, as a result, the test se-
quence length increases again.

For demonstrating the benefit from the use of multiple LFSR
cells instead of 1, we have also performed some experiments
for c2670, s838, and s5378 with MaxCellsToSelect . While
keeping the size of the search space (i.e., the product of pa-
rameters MaxCellsToSelect and VectorsPerSeed) constant, we
have conducted the same experiments setting MaxCellsToSe-
lect for c2670 and s5378 and MaxCellsToSelect
for s838. The results are shown in Fig. 11. The gain in seed
volume is obvious. For c2670, there is a constant reduction of
about 16.5% (approximately ten seeds), for s838, the mean gain
is equal to 60.5%, while for s5378, the gain gradually increases
to reach 54% for vectors. We should men-
tion that for c2670 and s838, the test sequence reduction proce-
dure did not manage to reduce the test sequences for the exper-
iments with , which means that, due to
the increased seed volume, they are much longer than the cor-
responding test sequences for greater values of MaxCellsToS-
elect. We furthermore note that for the above experiments, in
order to demonstrate the advantage of using multiple LFSR cells
more clearly, smaller values than 10 000 vectors have been used
for parameter VectorsForEasyFaults (2000, 5000, and 7000 for
c2670, s838, and s5378, respectively), while for c2670 an LFSR
of length 55 has been used. Similar experiments with similar re-
sults have been also performed for the multiple scan chain case.

The most recent and efficient mixed-mode BIST reseeding
techniques in the open literature are those presented in [25],
[26], [30], [31], and [32]. As explained in the introduction, the

1440 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

TABLE II
TEST-DATA STORAGE COMPARISONS

folding counter approach of [25] requires a costly, nonstandard
scan chain configuration. This problem is solved in [26] and
therefore, we compare the proposed method against the 2-D
Compression approach of [26] and the dynamic reseeding tech-
niques of [30]–[32].

In Table II, the test-data storage comparisons are presented.
A dash (-) in the comparison tables means that no result has
been provided by the authors of the referenced paper for the cor-
responding benchmark circuit. The results of Table II validate
that the encoding ability of an LFSR seed is enhanced when it
is utilized by multiple LFSR cells. Compared to the 2-D Com-
pression technique of [26], which requires the smallest test-data
storage among all the reseeding techniques in the open litera-
ture, we observe that the gain in ROM bits is significant. This
gain is achieved regardless of the fact that, for all circuits ex-
cept for c7552, a larger LFSR is required by the proposed tech-
nique. In most cases, such a larger LFSR is necessary due to
the greater maximum number of defined bits in the test
cubes we have used in our experiments (we can estimate the
value of for the cubes of [26] from the length of the corre-
sponding LFSRs). The advantage of the proposed scheme over
that of [26] is that by adjusting parameters VectorsPerSeed and
MaxCellsToSelect as well as the LFSR length, various test-data
storage and test sequence length results can be derived. For ex-
ample, if we can tolerate an increase in the test sequence length,
we can “allow” the seed-selection algorithm to handle more Vec-
torsPerSeed and/or MaxCellsToSelect in order to achieve better
compression. On the contrary, in the approach of [26], an LFSR
is used in order to encode initial folding counter states that will
generate specific folding counter sequences. Thus, an increase
in the LFSR length is not directly linked with better compres-
sion results but just with more options on the folding counter
sequences that will be generated. Also, in [26], the number of
vectors applied to the CUT starting from a new seed is fixed, so
no “test-data storage—test sequence length” tradeoff is possible
via any parameter adjustment.

As for the techniques of [30]–[32], although they use much
larger LFSRs (2.2 times on average), they cannot match the re-
sults of the proposed method. The average test-data reduction of
the proposed technique over those of [30]–[32] is 53.5%, 43.8%,

TABLE III
TEST SEQUENCE LENGTH COMPARISONS (# TEST VECTORS

APPLIED TO THE CUT)

and 75.8%, respectively. We should note that the technique of
[32] encodes some seeds as Bit-Counter states by using some
combinational logic. This logic may be of significant size if the
number of encoded seeds is high. However, in the comparisons
we have taken into account, only the seeds that are loaded in the
LFSR.

As far as the rest of the implementation logic is concerned, the
proposed technique, compared to that of [26], requires an addi-
tional counter (the Cell Selection Counter), which is relatively
small (up to five bits for the experiments presented in Table I)
and the multiplexer, while the technique of [26] incorporates an
additional comparator. Thus, the area overhead of the TPGs of
the two techniques, excluding the ROM, is similar. Compared to
the techniques of [30]–[32], the proposed one requires addition-
ally the Reseeding Counter, the Cell Selection Counter and the
multiplexer, but the use of much smaller LFSRs overbalances
the additional hardware overhead of the extra counters and the
multiplexer.

From the test sequence length comparisons presented in
Table III, the dynamic reseeding technique of [32] has been
omitted, since no test sequence length results have been pro-
vided by the authors of this work. As can be seen in Table III,

KALLIGEROS et al.: MULTIPHASE BIST: NEW RESEEDING TECHNIQUE FOR HIGH TEST-DATA COMPRESSION 1441

the proposed technique leads in most cases to shorter test
sequences than those of [26] and [30]. This is mainly due to the
fact that the proposed seed-selection algorithm achieves high
test-data compression by using relatively few VectorsPerSeed.
We remind that two out of the four parameters that affect the
test sequence length of the proposed technique (relation 1,
Section III) are the number of reseedings and the number
of test vectors generated between reseedings (VectorsPerSeed).
The high value of parameter VectorsPerSeed for some of the
smaller circuits is overcompensated by the very small number
of seeds required for fully testing them.

As for the test sequence reduction procedure, its main con-
tribution is that it reduces the initial VectorsForEasyFaults.
This reduction may be significant for circuits that contain just
a few hard-to-detect faults, but for bigger circuits with many
hard faults it is not so important, since the part of the initial
pseudorandom patterns that is eliminated is usually a small
portion of the whole test sequence. We should mention that
the regularity of the proposed architecture limits the reduction
of VectorsPerSeed and the number of cells , which were
selected for feeding the scan chain of the CUT. If, for example,
VectorsPerSeed is set to 50 and there is just one hard-to-detect
fault that is tested by vector 50, while all the others are tested
by vectors 1 to 25, all 50 vectors must be applied for all seeds
and from all cells. A similar example can also be provided
for demonstrating the limitations of the LFSR cell reduction
procedure. Specifically, for the experiments of Table I, the
test sequence reduction procedure achieved a 17.27% average
reduction of the initial pseudorandom sequence, a 12.89%
reduction of the selected cells, a 6.51% reduction of Vec-
torsPerSeed and a 15.59% reduction of the total test sequence.
However, the same reductions for the five larger ISCAS’89
and the two ISCAS’85 benchmark circuits that contain many
hard-to-detect faults are 16.52%, 3.92%, 0.18%, and 7.12%,
respectively. As we have expected there was no seed reduction
in any experiment. We should also note that in the experiments
we performed, our main target was to reduce the number of the
seeds. For many circuits, with just a few more seeds, we could
get much smaller test sequences.

The technique of [31] requires impressively shorter test se-
quences, compared to any other reseeding technique in the open
literature. This can be explained by observing Fig. 12. In these
two diagrams, we present, for both the proposed multiphase
technique and that of [31], the number of initial pseudorandom
patterns applied to the CUT (upper diagram) as well as the
number of test cubes, which test the remaining hard-to-detect
faults (lower diagram). For the proposed technique, we provide
the length of the initial pseudorandom sequence after the test
sequence reduction procedure and the number of extracted test
cubes after the fault-simulation preprocessing step. The number
of initial pseudorandom patterns for the dynamic reseeding
technique of [31] can be easily derived by subtracting from
the test sequence length results of the regular mixed-mode
technique provided in [31], the number of seeds for detecting
the corresponding hard faults (one seed per pattern is assumed).

From Fig. 12, it is obvious that for all circuits, a much
smaller initial pseudorandom sequence has been used in the
experiments of [31] than in those of the proposed technique.

Also, after the application of the initial pseudorandom patterns,
much fewer test cubes are extracted in [31] for the compared
circuits that contain many hard-to-detect faults (s9234, s13207,
s15850, s38584). Therefore, the great difference in their test
sequence length results can be primarily attributed to the great
difference of the initial conditions of the performed experi-
ments (initial pseudorandom patterns volume and number of
test cubes used by the reseeding algorithm) that favors the
technique of [31]. For the two circuits (s1238 and s5378) that
fewer test cubes are handled by the proposed algorithm, the
difference in the test sequence lengths is due to the difference
in the initial test sequences combined with the high value of
parameter VectorsPerSeed we have chosen for optimizing the
seed volume results (our primary objective was to reduce the
test-data volume). We should mention, however, that a highly
compressed test-cube set by the ATPG tool, may be good in
terms of test sequence length, but requires LFSRs of greater
length in order to be encoded. It also confines the solution space
of the seed-selection algorithm (since its test cubes probably
contain few don’t care bits). Therefore, a less compressed
test-cube set may lead to better test-data storage results. Un-
fortunately, we were not able to confirm this assertion, since
ATALANTA does not have any test-cube compression (fault
merging) capabilities.

Let us now present some experimental results for the larger of
the ISCAS’89 benchmark circuits, assuming that the CUT con-
tains multiple scan chains. For conducting the corresponding ex-
periments, we have used the same LFSRs and parameter values
as those for the single scan chain case of Table I. The phase
shifters have been obtained by using the fast synthesis algorithm
presented in [41] and the number of XOR taps of the XOR trees of
each phase shifter (excluding the extra input) has been chosen
to be equal to 3. The total number of seeds and the final test
sequence lengths after the application of the test sequence re-
duction procedure, for various scan chain volumes, are shown
in Table IV.

As we have expected, the results for the single and the mul-
tiple scan chain cases are similar. In fact, for all circuits, with
the exception of s15850, the results for multiple scan chains
are, in most cases, better than those for a single chain. This can
be attributed to the existence of the phase shifter. For s38417,
the multiple scan chains results are significantly better for all
the scan chain volume cases than that for a single scan chain.
The reason is the same, but, probably, when a lot of test cubes
are considered as in this case, the improvement of the encoding
ability of the scheme, due to the existence of the phase shifter,
is more visible in the final seeds results. On the other hand,
from the results of s15850, we deduce that there are circuits for
which the application of the multiphase technique in a multiple
scan environment does not offer the same encoding ability as
in the single scan case (the difference is minor, however). We
also observe that among the experiments for the same circuit,
the seed-volume results are essentially the same. This demon-
strates the robustness of the proposed multiphase scheme and
reseeding algorithm. Any differences can be primarily attributed
to different initial conditions (the number of test cubes remained
after the fault-simulation preprocessing step). Finally, we should
note that the discrepancy in the test sequence length results of

1442 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

Fig. 12. Initial condition comparisons between the proposed technique and that of [31].

TABLE IV
EXPERIMENTAL RESULTS FOR MULTIPLE SCAN CHAINS FOR THE

LARGER ISCAS’89 BENCHMARK CIRCUITS

s38584 between the single and multiple scan chain cases is due
to the high efficiency of the test sequence reduction procedure in
the single scan chain case (for the corresponding experiment).

VII. DYNAMIC RESEEDING SCHEME

In this section, we demonstrate how the proposed architecture
can be combined with the dynamic reseeding scheme of [28],

in a full BIST environment, for further reducing the hardware
requirements of the BIST circuitry. According to the dynamic
reseeding approach, the reseeding operation, that is, the alter-
ation of the normal state sequence of the LFSR to the
sequence , with , is performed dynamically
when the LFSR passes from state to state , by inverting
the logic value of the bits of state which are complemen-
tary to those of . The required inversions are performed by
means of additional XOR gates controlled by a combinational
module, as will be explained in the following section. When
dynamic reseeding is adopted, the flexibility of a ROM-based
approach (store-and-generate) is exchanged with reduced BIST
implementation area.

The dynamic reseeding scheme was first proposed for cir-
cular BIST in [46]. A more efficient approach, which uses de-
coding of the pattern counter states to trigger the inversions, was
presented for both LFSR- and accumulator-based test-per-clock
BIST schemes in [47]–[49]. Later, it was applied to scan-based
BIST schemes as well [28], [29]. At the same time period with
the publication of [29], two scan-based techniques based on dy-
namic reseeding were presented in [30] and [31], the latter of
which was enhanced in [32]. All three techniques of [30]–[32]
perform the necessary inversions by using multiplexers
instead of XOR gates.

The rest of this section is organized as follows. For the shake
of completeness, the basic concepts of dynamic reseeding [28]
are presented in Section VII-A. In Section VII-B, an explanation
of why the dynamic reseeding scheme is preferable to a ROM is
provided, as well as why it suits the proposed multiphase archi-
tecture well. Finally, in Section VII-C the effectiveness of the
dynamic reseeding scheme in terms of area overhead is evalu-
ated with synthesis results.

KALLIGEROS et al.: MULTIPHASE BIST: NEW RESEEDING TECHNIQUE FOR HIGH TEST-DATA COMPRESSION 1443

Fig. 13. Dynamic reseeding scheme.

A. Dynamic Reseeding

The dynamic reseeding scheme along with the counters of the
multiphase architecture that control it are shown in Fig. 13. The
reseeding operation is performed by inverting, at certain clock
cycles, the outputs of some of the LFSR cells before being stored
to their adjacent cells. This is achieved by means of additional
XOR gates, which are placed between the cells of the LFSR, as
shown in Fig. 13 (these XOR gates are drawn using dashed lines).
We observe that one of the inputs of each of the additional XORs
is driven by the output of the previous LFSR cell, while the other
one is driven by an output of the inversion control module,
which is a combinational module as mentioned earlier. is
responsible for controlling all the inversion operations of cell ,
with . When the multiphase architecture of Figs. 5 or 8
is implemented using the dynamic reseeding scheme of Fig. 13,
the Seed-loading Mechanism of the former is comprised of the
Inversion Control Module and the additional XOR gates.

We assume that the LFSR changes state at clock times
. The time interval , with ,

actually represents the clock cycle , where, between
and , a new state of the LFSR is generated. This new state
is stored in the LFSR flip-flops exactly at clock time . For

, no inversions occur and the LFSR changes state at each
clock time according to its feedback structure. If a reseeding
must take place at clock time (when Bit Counter
and Vector Counter VectorsForEasyFaults), some of
the control lines must be set to the logic value 1 in the time
interval between and . During this interval (i.e., clock
cycle) the state of the Reseeding Counter is captured
by the Inversion Control Module and a proper subset of
the lines is activated, while the rest control
lines are left to 0. In that way, at clock time , the flip-flops

receive the new state, which is inverted at the
bit positions that correspond to the lines of and, therefore,
a new seed is stored in the LFSR register. After the reseeding
is performed, the control lines of are reset by the Inversion
Control Module and the LFSR resumes its normal operation.

Let us now demonstrate how the seed calculated in Section II
will be loaded in the LFSR if it is to replace state

(we assume that 0101 is the state that would have been loaded
in the LFSR if it was let run in autonomous mode). What we
should do is to invert the third bit of the LFSR (since the new
seed and the state to be replaced differ in the third bit) before it
is stored in the third cell. This can be done by using a XOR gate

Fig. 14. Example of the application of the dynamic reseeding scheme.

between the second and the third LFSR cell and by activating
its control line in the clock cycle before state 0101 is stored in
the LFSR register. This is shown in Fig. 14.

As can be seen, the Inversion Control Module synchronizes
the reseedings according to the values of the Bit and the Vector
Counters and loads the appropriate seed according to the value
of the Reseeding Counter. Concerning the inverting XOR gates,
such a gate is usually used in more than one reseeding, while
there may be cases in which less than XORs may be sufficient
for producing all the necessary seeds. That is why in Fig. 13
these gates are drawn using dashed lines. It is also obvious that,
although for the above description we have used an external-
XOR LFSR, the dynamic technique can be applied to internal-
XOR LFSRs in a straightforward manner.

B. Effectiveness of the Dynamic Reseeding Scheme

However, the question stil remains. Why should someone
choose the dynamic reseeding scheme instead of a ROM or,
equivalently, why the dynamic reseeding scheme leads to better
hardware overhead results than a ROM? There are two major
advantages of the dynamic reseeding approach over the imple-
mentations based on a ROM. The first one is that, at each re-
seeding, only the LFSR cells that their values need to be inverted
are handled. When a ROM is used, due to its regular structure,
some area is required for every stored bit. On the contrary, in
the case of dynamic reseeding, logic needs to be added only if a
bit’s value has to be inverted during a reseeding. Also, various
LFSR cells share common parts of that logic and, as a result,
a single copy is generated for them by the synthesis tool. Con-
sequently, the hardware overhead requirements of the inversion
control module are further reduced.

1444 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

The second advantage of the dynamic reseeding scheme is not
inherent like the previous one and relies on the fact that there are
more ways for reducing its hardware overhead than the classical
LFSR length and seed minimization, which are also valid in the
case of a ROM. The most profitable way has to do with the pe-
riodicity of the reseedings. It is obvious that when there are no
separate Vector and Reseeding Counters but just a single pat-
tern counter which controls the reseedings [28], [30]–[32], the
hardware overhead of the Inversion Control Module can be re-
duced when the pattern distance between subsequent reseedings
is constant and equal to a power of 2. This way the logic that de-
codes the reseeding states of the pattern counter is minimized. In
the proposed multiphase architecture we have chosen to use sep-
arate Vector and Reseeding Counters, so as both, the reseeding
counter to be as small as possible, as well as to be able to de-
fine the size of the pattern window between reseedings freely.
Another way would be to try to minimize the number of inver-
sions required for performing the reseedings, either by selecting
the most appropriate seeds (those that require the fewer inver-
sions) [28], or by taking advantage of the undefined variables
after having selected a seed. Such optimization steps have not
been adopted in the proposed method due to the “seed volume
reduction” objective of the seed-selection algorithm and the ex-
istence of the test sequence reduction procedure, respectively.

Although the dynamic reseeding scheme suits the proposed
multiphase architecture well, it is not straightforward to assume
the same for every reseeding technique. For example, let us con-
sider the 2-D Compression approach of [26], which is the best
reseeding technique in the literature, in terms of test-data storage
requirements. If the dynamic reseeding scheme had been used
in conjunction with the 2-D Compression technique, then two
different sets of inversions would have had to be implemented
for each reseeding. The reason is that each seed has to be
loaded times in the LFSR (is the scan chain length)
before the next one is loaded. This means that state must be
inverted in some bit positions times so as to be equal to seed

and once in some other bit positions so as to be equal to ,
which is the next seed to . is the state of the LFSR that will
be modified by reseeding, after seed has expanded to the re-
quired folding counter state. The proposed architecture would
have had the same problem if each seed had been used from all
selected source cells before proceeding to the next one. That is
why we have chosen to apply all reseedings while feeding the
scan chain from a single cell. However, if we adopt a similar ap-
proach for the 2-D Compression technique, its folding controller
needs to be modified (an additional reseeding counter should be
added that will also control the index counter). From the above,
we conclude that the proposed multiphase architecture can be
implemented equally easily when it is combined either with the
dynamic reseeding scheme or with a ROM.

C. Evaluation of the Dynamic Reseeding Scheme

In this section, for demonstrating the effectiveness of the dy-
namic reseeding scheme, we provide hardware overhead com-
parisons for both ROM and dynamic reseeding implementations
of the proposed multiphase architecture, for the experiments
presented in Section VI for the single scan chain case (Table I).

TABLE V
HARDWARE OVERHEAD COMPARISONS BETWEEN ROM-BASED AND DYNAMIC

RESEEDING IMPLEMENTATIONS OF THE PROPOSED ARCHITECTURE

Our goal is to validate that when a full BIST solution is targeted,
the dynamic reseeding approach constitutes the best solution in
terms of area required for implementing the BIST circuitry. The
corresponding results are shown in Table V.

For the calculation of the hardware overhead of the dynamic
reseeding scheme we have used a commercial synthesis tool for
synthesizing the Inversion Control Module and, to the synthesis
results, we have added the hardware overhead of the XOR gates
that perform the inversions. We should note that one gate equiv-
alent corresponds to a two-input NAND gate. For translating the
ROM bits of the ROM-based approach to gate equivalents, we
have taken into account the estimation of [50] that, on average,
0.25 gates are required for each memory cell of a ROM. Also,
the hardware overhead of the multiplexers required for loading
a seed from the ROM to the LFSR has been calculated.

As can be seen in Table V, the hardware overhead gain is sig-
nificant even for circuits with few hard-to-detect faults that need
a small number of seeds in order to be tested. We should mention
that since, in most cases, the number of additional XORs is equal
to the LFSR length and, as a result, equal to the number of mul-
tiplexers used in the ROM-based case for loading the seeds, the
area gain is mainly due to the effectiveness of the dynamic re-
seeding scheme. This is more evident in the case of circuits with
many hard-to-detect faults (c2670, c7552, s838, s9234, s13207,
s15850, s38417, and s38584), where the area gain concerning
the Seed-loading Mechanism of the multiphase scheme ranges
from 35.13% to 49.25%. Given that the proposed multiphase
technique requires significantly less storage than the most cur-
rent reseeding techniques in the open literature (Section VI), we
conclude that, when combined with dynamic reseeding, it con-
stitutes a very cheap BIST reseeding solution in terms of area
overhead (the size of the synthesized combinational logic is di-
rectly analogous to the size of the corresponding ROM).

VIII. CONCLUSION

We have described a novel multiphase reseeding architecture
for scan-based BIST. Multiple cells of the LFSR, which are used
as TPG, feed the scan chain of the CUT in different test phases.
Since the operation of the LFSR is identical in all of them, i.e.,

KALLIGEROS et al.: MULTIPHASE BIST: NEW RESEEDING TECHNIQUE FOR HIGH TEST-DATA COMPRESSION 1445

the LFSR passes through the same state sequence, the imple-
mentation cost of the proposed architecture remains low. Fur-
thermore, the encoding ability of an LFSR seed is enhanced
when the bit sequences generated by more than one LFSR cells
are considered during its calculation. Thus, the reseeding algo-
rithm that accompanies the multiphase architecture manages to
reduce the number of necessary seeds for fully testing the CUT
significantly, compared to the already known reseeding tech-
niques. As a result, the proposed architecture is suitable when
either a full BIST or a test resource partitioning approach is
selected. When BIST is the desired solution, the designer can
choose between the flexibility that an on-chip ROM offers and
the area gain that can be achieved when the proposed architec-
ture is combined with the dynamic reseeding scheme described
in Section VII. In any case, the same generic multiphase archi-
tecture can be used, the efficiency of which has been demon-
strated by experimental results and comparisons against some
of the most effective reseeding techniques that have been pre-
sented so far in the open literature.

REFERENCES

[1] E. J. McCluskey, D. Burek, B. Koenemann, S. Mitra, J. Patel, J. Rajski,
and J. Waicukauski, “Test data compression (ITC 2002 roundtable),”
IEEE Design Test Comput., vol. 20, pp. 76–87, Mar./Apr. 2003.

[2] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan
chains and its application to testing core-based designs,” in Proc. Int.
Test Conf., Oct. 1998, pp. 458–464.

[3] A. Chandra and K. Chakrabarty, “Test data compression for
system-on-a-chip usingGolomb codes,” in Proc. 18th IEEE VLSI
Test Symp., Apr./May 2000, pp. 113–120.

[4] , “Frequency-directed run length (FDR) codes with application to
system-on-a-chip test data compression,” in Proc. 19th IEEE VLSI Test
Symp., Apr.–May 2001, pp. 42–47.

[5] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector compres-
sion/decompression using statistical coding,” in Proc. 17th IEEE VLSI
Test Symp., Apr. 1999, pp. 114–120.

[6] C. V. Krishna and N. A. Touba, “Reducing test data volume using LFSR
reseeding with seed compression,” in Proc. IEEE Int. Test Conf., Oct.
2002, pp. 321–330.

[7] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, “An efficient
test vector compression scheme using selective Huffman coding,” IEEE
Trans. Computer-Aided Design, vol. 22, pp. 797–806, June 2003.

[8] I. Hamzaoglu and J. H. Patel, “Reducing test application time for full
scan embedded cores,” in Proc. Int. Symp. Fault Tolerant Comput., June
1999, pp. 260–267.

[9] A. Jas and N. A. Touba, “Virtual scan chains: A means for reducing scan
length in cores,” in Proc. 18th IEEE VLSI Test Symp., Apr./May 2000,
pp. 73–78.

[10] S. M. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz, “On test data
volume reduction for multiple scan chain design,” in Proc. 20th IEEE
VLSI Test Symp., Apr./May 2002, pp. 103–108.

[11] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time
reduction through scan chain concealment,” in Proc. Design Automation
Conf., June 2001, pp. 151–155.

[12] W. Rao, I. Bayraktaroglu, and A. Orailoglu, “Test application time and
volume compression through seed overlapping,” in Proc. Design Au-
tomation Conf., June 2003, pp. 732–737.

[13] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, K.-H. Tsai,
A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eider, and J. Qian, “Em-
bedded deterministic test for low cost manufacturing test,” in Proc. IEEE
Int. Test Conf., Oct. 2002, pp. 301–310.

[14] P. Wohl, J. A. Waicukauski, S. Patel, and M. B. Amin, “Efficient com-
pression and application of deterministic patterns in a logic BIST archi-
tecture,” in Proc. Design Automation Conf., June 2003, pp. 566–569.

[15] P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VLSI: Pseu-
dorandom Techniques. New York: Wiley, 1987.

[16] B. Koenemann, “LFSR-coded test patterns for scan design,” in Proc.
Eur. Test Conf., Apr. 1991, pp. 237–242.

[17] S. Hellebrand, S. Tarnick, B. Courtois, and J. Rajski, “Generation
of vector patterns through reseeding of multiple-polynomial linear
feedback shift registers,” in Proc. IEEE Int. Test Conf., Sept. 1992, pp.
120–129.

[18] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in test for circuits with scan based on reseeding of multiple-poly-
nomial linear feedback shift registers,” IEEE Trans. Comput., vol. 44,
pp. 223–233, Feb. 1995.

[19] S. Hellebrand, B. Reeb, S. Tarnick, and H.-J. Wunderlich, “Pattern gen-
eration for a deterministic BIST scheme,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, Nov. 1995, pp. 88–94.

[20] N. Zacharia, J. Rajski, and J. Tyszer, “Decompression of test data using
variable-length seed LFSRs,” in Proc. 13th IEEE VLSI Test Symp.,
Apr./May 1995, pp. 426–433.

[21] N. Zacharia, J. Rajski, J. Tyszer, and J. Waicukauski, “Two dimensional
test data decompressor for multiple scan designs,” in Proc. IEEE Int.
Test Conf., Oct. 1996, pp. 186–194.

[22] J. Rajski, J. Tyszer, and N. Zacharia, “Test data decompression for mul-
tiple scan designs with boundary scan,” IEEE Trans. Comput., vol. 47,
pp. 1188–1200, Nov. 1998.

[23] K. Chakrabarty, B. T. Murray, and V. Iyengar, “Built-in test pattern gen-
eration for high-performance circuits using twisted-ring counters,” in
Proc. 17th IEEE VLSI Test Symp., Apr. 1999, pp. 22–27.

[24] K. Chakrabarty and S. Swaminathan, “Built-in testing of high-perfor-
mance circuits using twisted-ring counters,” in Proc. IEEE Int. Symp.
Circuits Syst., May 2000, pp. 72–75.

[25] S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, “A mixed mode BIST
scheme based on reseeding of folding counters,” in Proc. IEEE Int. Test
Conf., Oct. 2000, pp. 778–784.

[26] H.-G. Liang, S. Hellebrand, and H.-J. Wunderlich, “Two-dimensional
test data compression for scan-based deterministic BIST,” in Proc. IEEE
Int. Test Conf., Oct./Nov. 2001, pp. 894–902.

[27] C. V. Krishna, A. Jas, and N. A. Touba, “Test vector encoding using
partial LFSR reseeding,” in Proc. IEEE Int. Test Conf., Oct./Nov. 2001,
pp. 885–893.

[28] E. Kalligeros, X. Kavousianos, and D. Nikolos, “A ROMless LFSR re-
seeding scheme for scan-based BIST,” in Proc. 11th Asian Test Symp.,
Nov. 2002, pp. 206–211.

[29] , “A highly regular multi-phase reseeding technique for scan-based
BIST,” in Proc. 13th ACM Great Lakes Symp. VLSI, Apr. 2003, pp.
295–298.

[30] A. A. Al-Yamani and E. J. McCluskey, “Built-in reseeding for serial
BIST,” in Proc. 21st IEEE VLSI Test Symp., Apr./May 2003, pp. 63–68.

[31] A. A. Al-Yamani, S. Mitra, and E. J. McCluskey, “BIST reseeding with
very few seeds,” in Proc. 21st IEEE VLSI Test Symp., Apr./May 2003,
pp. 69–74.

[32] A. A. Al-Yamani and E. J. McCluskey, “Seed encoding with LFSR’s
and cellular automata,” in Proc. Design Automation Conf., June 2003,
pp. 560–565.

[33] C. Barnhart, B. Keller, and B. Koenemann, “Logic DFT and test resource
partitioning for 100 M gate ASICs,” in Proc. Int. Workshop Test Re-
source Partition., Oct. 2000.

[34] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in Proc.
IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 1996, pp.
337–343.

[35] G. Kiefer and H.-J. Wunderlich, “Using BIST control for pattern gener-
ation,” in Proc. IEEE Int. Test Conf., Nov. 1997, pp. 347–355.

[36] G. Kiefer, H. Vranken, E. J. Marinissen, and H.-J. Wunderlich, “Appli-
cation of deterministic logic BIST on industrial circuits,” in Proc. IEEE
Int. Test Conf., Oct. 2000, pp. 105–114.

[37] N. A. Touba and E. J. McCluskey, “Bit-fixing in pseudorandom se-
quences for scan BIST,” IEEE Trans. Computer-Aided Design, vol. 20,
pp. 545–555, Apr. 2001.

[38] H. K. Lee and D. S. Ha, “Atalanta: An efficient ATPG for combina-
tional circuits,” Dept. Elect. Eng., Virginia Polytechnic Inst. State Univ.,
Blacksburg, Tech. Rep. 93-12, 1993.

[39] E. Kalligeros, X. Kavousianos, D. Bakalis, and D. Nikolos, “An efficient
seeds selection method for LFSR-based test-per-clock BIST,” in Proc.
Int. Symp. Quality Electron. Design, Mar. 2002, pp. 261–266.

[40] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. Balti-
more, MD: Johns Hopkins Univ. Press, 1989.

[41] J. Rajski, N. Tamarapalli, and J. Tyszer, “Automated synthesis of phase
shifters for built-in self-test applications,” IEEE Trans. Computer-Aided
Design, vol. 19, pp. 1175–1188, Oct. 2000.

[42] F. Brglez, P. Pownall, and R. Hum, “Accelerated ATPG and fault grading
via testability analysis,” in Proc. IEEE Int. Symp. Circuits Syst., June
1985, pp. 695–698.

1446 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 10, OCTOBER 2004

[43] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of se-
quential benchmark circuits,” in Proc. IEEE Int. Symp. Circuits Syst.,
May 1989, pp. 1929–1934.

[44] A primitive polynomial search program [Online]. Available:
http://users2.ev1.net/~sduplichan/primitivepolynomials/primitive-
polynomials.htm

[45] TCA Lab web page [Online]. Available: http://tca-lab.ceid.upa-
tras.gr/cubes.zip

[46] N. A. Touba, “Obtaining high fault coverage with circular BIST via
state skipping,” in Proc. 15th IEEE VLSI Test Symp., Apr./May 1997,
pp. 410–415.

[47] X. Kavousianos, D. Bakalis, and D. Nikolos, “A novel reseeding tech-
nique for accumulator-based test pattern generation,” in Proc. 11th Great
Lakes Symp. VLSI, Mar. 2001, pp. 7–12.

[48] E. Kalligeros, X. Kavousianos, D. Bakalis, and D. Nikolos, “A new re-
seeding technique or LFSR-based test pattern generation,” in Proc. 7th
Int. On-Line Test. Workshop, July 2001, pp. 80–86.

[49] , “On-the-fly reseeding: A new reseeding technique for test-per-
clock BIST,” J. Electron. Test.: Theory Applicat., vol. 18, no. 3, pp.
315–332, 2002.

[50] L. R. Huang, J. Y. Jou, and S. Y. Kuo, “Gauss-elimination-based gener-
ation of multiple seed-polynomial pairs for LFSR,” IEEE Trans. Com-
puter-Aided Design, vol. 16, pp. 1015–1024, Sept. 1997.

Emmanouil Kalligeros was born in Athens, Greece,
in 1976. He received the Diploma in computer en-
gineering and informatics and the M.Sc. degree in
1999 and 2001, respectively, from the University of
Patras, Patras, Greece, where he is currently pursuing
the Ph.D. degree.

His research interests include built-in self-test,
test-data compression, and low-power testing.

Xrysovalantis Kavousianos (S’97–M’02) received
the B.E. degree in computer engineering and infor-
matics and the Ph.D. degree from the University of
Patras, Patras, Greece, in 1996 and 2000, respec-
tively.

He is currently a Lecturer in the Computer Sci-
ence Department, University of Ioannina, Ioannina,
Greece. His main interests are in the fields of very
large scale integration design and digital testing. He
is currently working in the areas of built-in-self-test,
low power testing, and on-line testing.

Dimitris Nikolos (M’95) received the B.Sc. degree
in physics, the M.Sc. degree in electronics, and the
Ph.D. degree in computer science, from the Univer-
sity of Athens, Athens, Greece, in 1979, 1981, and
1985, respectively.

He is currently a Full Professor in the Computer
Engineering and Informatics Department, University
of Patras, Patras, Greece, and Head of the Technology
and Computer Architecture Laboratory. He has au-
thored or coauthored more than 130 scientific papers
and holds one U.S. patent. His main research inter-

ests include fault-tolerant computing, computer architecture, VLSI design, and
test and design for testability.

Prof. Nikolos has served as the Program Co-chairman of five IEEE Int.
On-Line Testing Workshops (1997–2001). He also served on the program com-
mittees for the IEEE International Symposium on Defect and Fault Tolerance
in VLSI systems (1997–1999), the Third and Fourth European Dependable
Computing Conferences, and the DATE Conferences (2000–2004). He was a
Guest Co-editor for the June 2002 special issue of the Journal of Electronic
Testing, Theory and Applications (JETTA), which was devoted to the 2001
IEEE International On-Line Testing Workshop. He also was co-recipient of the
Best Paper Award for his work “Extending the Viability of IDDQ Testing in
the Deep Submicron Era,” which was presented at the Third IEEE International
Symposium on Quality Electronic Design (2002).

	toc
	Multiphase BIST: A New Reseeding Technique for High Test-Data Co
	Emmanouil Kalligeros, Xrysovalantis Kavousianos, Member, IEEE, a
	I. I NTRODUCTION

	Fig. 1. Classical reseeding scheme for scan-based BIST.
	II. M OTIVATION

	Fig. 2. External- XOR LFSR with characteristic polynomial ${ x}^
	III. P ROPOSED A RCHITECTURE

	Fig. 3. Generating seven states starting from seed $\{a_{1}, a_{
	Fig. 4. Using multiple LFSR cells for generating test vectors.
	Fig. 5. Multiphase scan-based TPG architecture.
	Fig. 6. Test sequence generated by the multiphase TPG architectu
	IV. R ESEEDING A LGORITHM
	A. Easy-Fault Detection and Preprocessing
	B. Selection of Seeds and LFSR Cells for Testing the Hard-to-Det

	Fig. 7. Expression vector (EV) sets as they are generated by
	C. Test Sequence Reduction Procedure

	Fig. 8. Proposed multiphase architecture for multiple scan chain
	V. A PPLICATION OF THE M ULTIPHASE T ECHNIQUE TO M ULTIPLE S CAN

	Fig. 9. Multiphase Phase Shifter.
	A. Multiphase Architecture for Multiple Scan Chains
	B. Reseeding Algorithm in the Multiple Scan Chain Case

	TABLE I E XPERIMENTAL R ESULTS FOR THE ISCAS B ENCHMARK C IRCUIT
	VI. E VALUATION AND C OMPARISONS

	Fig. 10. (a)  Seed volume results for various values of paramete
	Fig. 11. Seed volume comparisons for MaxCellsToSelect ${} = 1$ a

	TABLE II T EST -D ATA S TORAGE C OMPARISONS
	TABLE III T EST S EQUENCE L ENGTH C OMPARISONS (# T EST V ECTORS
	Fig. 12. Initial condition comparisons between the proposed tech
	TABLE IV E XPERIMENTAL R ESULTS FOR M ULTIPLE S CAN C HAINS FOR
	VII. D YNAMIC R ESEEDING S CHEME

	Fig. 13. Dynamic reseeding scheme.
	A. Dynamic Reseeding

	Fig. 14. Example of the application of the dynamic reseeding sch
	B. Effectiveness of the Dynamic Reseeding Scheme
	C. Evaluation of the Dynamic Reseeding Scheme

	TABLE V H ARDWARE O VERHEAD C OMPARISONS B ETWEEN ROM-B ASED AND
	VIII. C ONCLUSION
	E. J. McCluskey, D. Burek, B. Koenemann, S. Mitra, J. Patel, J.
	A. Jas and N. A. Touba, Test vector decompression via cyclical s
	A. Chandra and K. Chakrabarty, Test data compression for system-
	A. Jas, J. Ghosh-Dastidar, and N. A. Touba, Scan vector compress
	C. V. Krishna and N. A. Touba, Reducing test data volume using L
	A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, An efficie
	I. Hamzaoglu and J. H. Patel, Reducing test application time for
	A. Jas and N. A. Touba, Virtual scan chains: A means for reducin
	S. M. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz, On test da
	I. Bayraktaroglu and A. Orailoglu, Test volume and application t
	W. Rao, I. Bayraktaroglu, and A. Orailoglu, Test application tim
	J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, K.-H
	P. Wohl, J. A. Waicukauski, S. Patel, and M. B. Amin, Efficient
	P. H. Bardell, W. H. McAnney, and J. Savir, Built-in Test for VL
	B. Koenemann, LFSR-coded test patterns for scan design, in Proc.
	S. Hellebrand, S. Tarnick, B. Courtois, and J. Rajski, Generatio
	S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Co
	S. Hellebrand, B. Reeb, S. Tarnick, and H.-J. Wunderlich, Patter
	N. Zacharia, J. Rajski, and J. Tyszer, Decompression of test dat
	N. Zacharia, J. Rajski, J. Tyszer, and J. Waicukauski, Two dimen
	J. Rajski, J. Tyszer, and N. Zacharia, Test data decompression f
	K. Chakrabarty, B. T. Murray, and V. Iyengar, Built-in test patt
	K. Chakrabarty and S. Swaminathan, Built-in testing of high-perf
	S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, A mixed mode B
	H.-G. Liang, S. Hellebrand, and H.-J. Wunderlich, Two-dimensiona
	C. V. Krishna, A. Jas, and N. A. Touba, Test vector encoding usi
	E. Kalligeros, X. Kavousianos, and D. Nikolos, A ROMless LFSR re
	A. A. Al-Yamani and E. J. McCluskey, Built-in reseeding for seri
	A. A. Al-Yamani, S. Mitra, and E. J. McCluskey, BIST reseeding w
	A. A. Al-Yamani and E. J. McCluskey, Seed encoding with LFSR's a
	C. Barnhart, B. Keller, and B. Koenemann, Logic DFT and test res
	H.-J. Wunderlich and G. Kiefer, Bit-flipping BIST, in Proc. IEEE
	G. Kiefer and H.-J. Wunderlich, Using BIST control for pattern g
	G. Kiefer, H. Vranken, E. J. Marinissen, and H.-J. Wunderlich, A
	N. A. Touba and E. J. McCluskey, Bit-fixing in pseudorandom sequ
	H. K. Lee and D. S. Ha, Atalanta: An efficient ATPG for combinat
	E. Kalligeros, X. Kavousianos, D. Bakalis, and D. Nikolos, An ef
	G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. Bal
	J. Rajski, N. Tamarapalli, and J. Tyszer, Automated synthesis of
	F. Brglez, P. Pownall, and R. Hum, Accelerated ATPG and fault gr
	F. Brglez, D. Bryan, and K. Kozminski, Combinational profiles of

	A primitive polynomial search program [Online] . Available: http
	TCA Lab web page [Online] . Available: http://tca-lab.ceid.upatr
	N. A. Touba, Obtaining high fault coverage with circular BIST vi
	X. Kavousianos, D. Bakalis, and D. Nikolos, A novel reseeding te
	E. Kalligeros, X. Kavousianos, D. Bakalis, and D. Nikolos, A new
	L. R. Huang, J. Y. Jou, and S. Y. Kuo, Gauss-elimination-based g

